Electronic Supplementary Information

Ru₂^{II,III} diphosphonato complex with metal-metal bond for water oxidation

Guo Chen,^a Ting Fan,^b Bin Liu,^a Meng Xue,^a Jing-Jing Wei,^a Shi-Rui Kang,^a Hai-Xia Tong^c and Xiao-Yi Yi^{*a}

^a College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Chemical Power Sources, Hunan Provincial Key Laboratory of Efficient and Clean Utilization of Manganese Resources, Central South University, Changsha, Hunan 410083, P. R. China.

^b School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, Guangdong 510641, P. R. China.

^c School of Chemistry and Food Engineering, Changsha University of Science and Technology, Changsha, Hunan 410114, P. R. China.

* Corresponding authors: Fax: 86 731 88879616; Tel: 86 731 88879616;

E-mail addresses: xyyi@csu.edu.cn

Experimental Section

General considerations. $K_3[Ru_2(hedp)_2(H_2O)_2]$ ($K_3 \cdot 1$) was prepared according to our porous work.^{51,52} All of other chemicals were obtained from J&K Scientific. DI water was employed throughout the whole study for preparing a series of solutions. The UVvisible spectroscopic titration was performed with a spectrophotometer Cary 8454. Infrared spectra (KBr) were recorded on Nicolet 6700 spectrometer FT-IR spectrophotometer. Electrochemical measurements were accomplished with a CHENHUA CHI660E. Measurements of pH values were carried out on a INESA PHS-3C pH meter. Gas quantifications were conducted with a Shimadzu GC-2014 gas chromatograph. XRD crystallography studies were carried out at the Bruker Smart ApexII CCD diffractometer (Mo K α radiation). ESI-MS was performed in a Bruker Daltonik GmbH, Bremen mass spectrometer equipped with an electrospray ionization (ESI) source.

Oxygen evolution measurements. 100 equiv. of CAN (10 mM, 5 mL) was purged with Ar for 20 min, catalyst $K_3 \cdot 1$ (5 mM, 100 μ L) was immediately injected to the above solution under vigorous stirring. The oxygen amount was measured by GC experiment, which performed on a Shimadzu GC-2014 gas chromatograph. Ar was used as the carrier gas. 200 μ L volumes of headspace mixture were manually injected to the GC using a gastight syringe (SGE Analytical Science).

Electrochemical measurements. The typical three-electrode cell was employed, including a Ag/AgCl electrode, a Pt wire, and a glassy carbon electrode (GCE), which were used as the reference electrode, the counter electrode, and the working electrode with a diameter of 3 mm, respectively. All potentials are reported versus Ag/AgCl electrode in saturated KCl. Cyclic voltammetry (CV) chronoamperometry and differential pulse voltammogram (DPV) were measured using 1 mM solutions of $K_3 \cdot 1$. The scan rate in all CV experiments was 100 mVs⁻¹. The current of chronoamperometry (CA) was tested at the overpotential of 1.50 V (*vs.*)

NHE). The 0.1 M pH 1.0 HNO_3 solution and 0.1 M pH 7.0 PBS were employed as electrolyte, respectively.

The diffusion coefficient (D_{Ru}) was determined from the dependence of the i_p on $v^{1/2}$ based on the Randles–Sevcik relation:

$$i_p = 0.446 n FAC_{cat} \sqrt{n F v D_{Ru}/RT}$$
 (eqn. 1)

where *n* is the number of transferred electrons (1e⁻), *F* is the Faraday constant, *A* is the area of the working electrode (0.07065 cm²), C_{cat} is the concentration of the catalyst (mol L⁻¹), D_{Ru} is the catalyst diffusion coefficient (cm² s⁻¹), *R* is the ideal gas constant and *T* is the temperature (K).^{S3,S4}

The rate constant (k_{cat}) was determined by linear fitting of i_{cat}/i_p with $v^{1/2}$ based on the following equation:

$$i_{cat}/i_p = 2.242n_{cat}\sqrt{k_{cat}RT/nFv}$$
 (eqn. 2)

where n_{cat} is the number of electrons involved in water oxidation (4), k_{cat} is the rate constant for water oxidation (s⁻¹), *R* is the ideal gas constant, *T* is the temperature (K), *n* is the number of electrons transferred (1e⁻), *F* is the Faraday constant and *v* is the scan rate (V s⁻¹).^{S3,S4}

Redox titration. UV-visible spectra were taken after every addition of 5 μ L (NH₄)[Ce(NO₃)₆] (CAN, 12.5 mM in 0.1 M HNO₃) solution to 2.0 mL K₃·**1** (0.5 mM in 0.1 M HNO₃). The absorbances at λ = 320 nm were plotted against the ratio of mol of CAN to mol of K₃·**1**.

Gas Chromatography (GC) methods. Gas quantification was performed using a molecular sieve column attached to a thermal conductivity detector. Ar was used as the carrier gas. Standard curves were generated by direct injection of calibrating gas. 200 μL volumes of headspace mixture were manually injected to the GC using a gastight syringe (SGE Analytical Science).

X-Ray Crystallography. The measurement of the crystals was performed using a Bruker Smart ApexII CCD diffractometer using graphite-mono-chromated Mo Kα radiation from an X-ray tube. The collected frames were processed with the software SAINT. The absorption correction was treated with SADABS. Structures were solved using direct methods with SHELXS or SHELXT and refined against *F*² on all data by full-matrix least squares with SHELXL.^{S5} The atomic positions of non-hydrogen atoms were refined with anisotropic parameters. The hydrogen atoms were introduced at their geometric positions and refined as riding atoms.

ESI-MS spectra. The given CAN solution (0.5 M in 0.1 HNO₃) was injected into $K_3 \cdot 1$ solution (0.5 mM in 0.1 M HNO₃, 2 mL), and the mixture was stirred for 5 min. ESI-MS spectra was measured. The experimental parameters were as follows: capillary temperature, 200 °C; capillary voltage, 3500 V; flow rate, 4 L/min; hexapole, 400 Vpp.

DFT calculation. All the calculations were performed with Gaussian09 software via DFT methods.⁵⁶ Geometry optimizations were carried out under B3LYP functional⁵⁷ with SDD basis set⁵⁸ for Ru and P and 6-31G^{**} basis set for C, H and O. Additional polarization f exponent ($\zeta_f = 1.235$) was added for Ru, and d exponent ($\zeta_d = 0.387$) was added for P.⁵⁹ Frequency calculations were carried out at the same level to get the free energy and to verify the geometries corresponding to minima. And single-point energy corrections were performed at the M06 functional⁵¹⁰ with 6-311++G^{**} basis set for C, H and O except for Ru and P. All calculated solvation free energies use a standard state of ideal gas (1 M, 298.15 K, 1atm) dissolving as an ideal dilute solution (1 M), but for water, the standard state for water solvent is 55.6 M. Thus the concentration correction of 1.9 kcal/mol was added for all the species except for water, for which 4.3 kcal/mol is added. The standard redox potential of hydrogen electrode is 4.281 V and the corresponding reference free energy of solvation of a proton is –1101 kJ/mol.^{S11} The calculated energies and coordinates are shown in table S2.

In our calculation, we failed to coordinate water molecule to the Ru center of

catalyst 1³⁻. This suggests that the interaction between H₂O and Ru center in 1³⁻ is very weak which explains why the Ru-OH₂ bond in the crystal structure of K₃·1 (2.31 Å) is much larger than those in other Ru-based catalysts (2.136Å for [(bpy)²⁻ (OH₂)Ru^{III}ORu^{III}(OH₂)(bpy)₂]⁴⁺, bpy = 2,2'-bipyridine;^{S12} 2.100Å for [Ru^{II-} (CO)₃(H₂O)₃]^{2+;S13} 2.198(5)Å for [Ru^{II}(dppe)(CO)(O₃SCF₃)₂(OH₂)],^{S14} dppe = 1,2-bis(diphenylphosphino)ethylene). Therefore, only two explicit water molecules, one on each side of catalyst 1³⁻, were included in our calculation. Other solvent effect of water was estimated by single-point calculations using SMD continuum solvation model^{S15} based on gas-phase optimized structures.

Fig. S1 (a) CVs of $K_3 \cdot \mathbf{1}$ (1.0 mM) in 0.1 M pH 7 PBS at a scan rate of 100 mV s⁻¹. (b) Chronoamperometric response of $K_3 \cdot \mathbf{1}$ (1.0 mM) at a constant potential of 1.50 V (*vs.* NHE) in 0.1 M pH 7.0 PBS.

Fig. S2 (a) DPVs of $K_3 \cdot 1$ (1.0 mM) in 0.1 M HNO₃ with pH varied from 1.30 to 6.27. (b) Pourbaix diagram for I (Ru_2^{5+}/Ru_2^{4+}), II (Ru_2^{6+}/Ru_2^{5+}) and III (onset potential).

Fig. S3 (a) CVs of K₃·1 (1.0 mM) in 0.1 M HNO₃ with scan rate varying from 10 to 100 mV s⁻¹. (b) Plot of the anodic current maximum of the i_c (Ru₂⁵⁺/Ru₂⁴⁺) and i_d (Ru₂⁶⁺/Ru₂⁵⁺) couples as a function of the square root of scan rate. (c) Plot of i_{cat}/i_p vs. $v^{-1/2}$ at 1.64 V (vs. NHE).

Fig. S4 IR spectra of K₃.1, brown precipitate and CAN.

Table S1. The element analysis of brown precipitate by the inductively coupled plasmaspectrum

	Ce	Ru	Р
Content (wt%)	17.7 %	3.7 %	4.8 %

Fig. S5 The X-ray structure of $[Ce^{III}(H_2O)_4]$ **[1**]·4H₂O and crystallographic data.

compound	[Ce ^{III} (H ₂ O) ₄][1]·4H ₂ O
Empirical formula	C ₄ H ₂₀ CeKO ₂₄ P ₄ Ru ₂
Fw	918.34
Crystal system	monoclinic
Space group	P2 ₁ /c
a/Å	12.8558(19)
b/Å	12.808(2)
<i>c</i> /Å	17.015(2)
α∕/°/o	90
<i>в</i> /°	118.539(8)
γ/°	90
V/ Å ³	2461.2(6)
Ζ	4
20 range for data collection/°	3.606 to 55.376
Reflections collected/unique	41788/ 5704
F(000)	1768.0
$ ho_{ m calcd}$ (g cm ⁻³)	2.478
μ (Mo K $lpha$)/ mm ⁻¹	10.692
$R_1/wR_2 (l > 2\sigma(l))^a$	0.0191 /0.0445
R_1 , w R_2 (all data)	0.0230/0.0461

Table S2. Crystallographic data of $[Ce^{III}(H_2O)_4][\mathbf{1}]\cdot 4H_2O$

Fig. S6 (a) UV-visible spectral change of $K_3 \cdot 1$ after addition of 3 equiv. of CAN within 3 min, time interval of spectral change = 40 s. (b) UV-visible spectral change of $K_3 \cdot 1$ after direct addition of 4 equiv. of CAN, time interval of spectral change = 40 s. t=0 (black line), t=1000 s (blue line).

Fig. S7 ESI-MS spectra of $K_3 \cdot \mathbf{1}$ upon addition of 0-3 equiv. of CAN. (a) $K_3 \cdot \mathbf{1}$; (b) $K_3 \cdot \mathbf{1}$ and 1 equiv. of CAN; (c) $K_3 \cdot \mathbf{1}$ and 2 equiv. of CAN; (d) $K_3 \cdot \mathbf{1}$ and 3 equiv. of CAN.

Species	Multiplicity	E (a.u.)	G (a.u.)	Esol (a.u.)	Em06 (a.u.)
H2ORu3-Ru2H ₂ O	2	-2918.865647	-2918.695498	-2919.443817	-2918.484371
	4	-2918.887736	G (a.u.) Esol (a.u.) -2918.695498 -2919.4438 -2918.71868 -2919.4607 -2918.775642 -2919.2584 -2918.775642 -2919.2584 -2918.805759 -2919.2821 -2918.805759 -2919.3054 -2918.162617 -2918.6302 -2918.162617 -2918.6302 -2918.179922 -2918.6557 -2918.183099 -2918.6674 -2917.543308 -2918.0027 -2917.552363 -2918.0027 -2917.561267 -2918.0027 -2917.5515913 -2917.9664 -2917.547613 -2918.0170 -2917.547613 -2918.0170 -2917.541583 -2918.0170 -2917.541583 -2918.0170 -2993.239024 -2993.9179 -2993.248762 -2993.91616 -2992.625532 -2993.3386 -2992.63704 -2993.3462 -2992.632967 -2993.3432	-2919.460781	-2918.505455
	1	-2918.946711	-2918.775642	-2919.258419	-2918.547243
H2ORu3-Ru3H ₂ O	3	-2918.973977	-2918.805759	-2919.282172	-2918.568799
	5	-2918.99516	-2918.99516	-2919.305421	-2918.590973
	2	-2918.319267	-2918.162617	-2918.630218	-2917.904594
H2ORu3-Ru4OH	4	-2918.336396	-2918.179922	-2918.655727	-2917.921733
	6	-2918.338698	-2918.183099	-2918.667413	-2917.925268
	1	-2917.693905	-2917.543308	-2918.002777	-2917.270666
HORu4-Ru4OH	3	-2917.699761	-2917.552363	-2918.009138	-2917.275048
	5	-2917.70916	-2917.561267	-2918.013169	-2917.285064
	1	-2917.663572	-2917.515913	-2917.96647	-2917.256241
H2ORu3-Ru5O	3	-2917.692728	-2917.547613	-2918.017035	-2917.273531
	5	-2917.685694	-2917.541583	-2918.014637	-2917.263514
	1	-2993.368238	-2993.206673	-2993.917918	-2992.973371
H2ORu3-Ru3OOH	3	-2993.398656	-2993.239024	-2993.96169	-2992.996458
	5	-2993.408456	-2993.248762	-2993.970756	-2993.007235
	2	-2992.773307	-2992.625532	-2993.33867	-2992.348854
H2ORu3-Ru4OO	4	-2992.784251	-2992.63704	-2993.346249	-2992.350159
	6	-2992.779236	-2992.632967	-2993.343215	-2992.376563
H2O	1	-76.41815901	-76.414431	-76.43051144	-76.41785716
02	3	-150.316605	-150.332809	-150.3170769	-150.2908496

Table S3. The calculated energies at b3lyp level, solvent energies and the single-point energies at M06 level.

Coordinates

H2OR	u3-Ru2H2OM2			1	-5.134712	1.043743	0.447592
44	-0.112588	0.169227	1.072599	6	-3.449162	-0.022102	-0.368263
15	2.411273	1.556666	0.019317	8	-1.299529	-1.637407	-1.168626
15	2.395318	-1.525794	0.559574	8	-1.623288	-1.268789	1.351065
6	4.498819	-0.198264	-0.733664	8	-3.410559	-2.713120	-0.043096
1	4.041494	-0.409267	-1.703024	8	-1.262278	1.187441	-1.655972
1	5.108638	0.708559	-0.826683	8	-1.578235	1.587882	0.852504
1	5.134610	-1.043802	-0.447918	8	-3.252801	2.742625	-0.841056
6	3.449198	0.022090	0.368169	8	-4.151225	-0.304548	-1.601958
8	1.299589	1.637420	1.168641	1	-4.273940	-1.269872	-1.560265
8	1.623298	1.268837	-1.351052	8	2.233759	-0.560119	-3.426301
8	3.410626	2.713112	0.043088	1	2.154715	-1.206029	-2.698120
8	1.262333	-1.187389	1.656028	1	2.177538	0.272032	-2.914319
8	1.578244	-1.587909	-0.852431				
8	3.252835	-2.742609	0.841128	H20	DRu3-Ru2H2OM4		
8	4.151443	0.304551	1.601754	44	5.286433	13.617698	-0.513698
				15	2.328959	13.780796	-1.342428
1	4.274171	1.269873	1.560013	15	3.122004	12.575075	1.435922
8	-2.234357	0.559946	3.426440	6	0.469923	13.063775	0.659026
1	-2.155051	1.205967	2.698397	1	0.516765	14.047341	1.131566
1	-2.177779	-0.272122	2.914351	1	-0.275777	13.097443	-0.144874
44	0.112625	-0.169201	-1.072575	1	0.168783	12.323794	1.409095
15	-2.411233	-1.556654	-0.019322	6	1.823924	12.636758	0.068091
15	-2.395286	1.525803	-0.559528	8	3.798358	13.283551	-1.801325
6	-4.498960	0.198200	0.733410	8	2.501413	15.247386	-0.733559
1	-4.041807	0.409156	1.702858	8	1.270511	13.564426	-2.423120
1	-5.108788	-0.708632	0.826283	8	4.508272	12.216605	0.679139

8	3.249608	14.120192	1.876173	H20	DRu3-Ru3H2OM1		
8	2.715914	11.615200	2.536538	44	-0.059039	1.001815	0.343550
8	1.656332	11.334634	-0.538624	15	-2.407020	-0.565753	1.433373
1	1.357869	11.555999	-1.439305	15	-2.427421	0.492241	-1.505797
8	8.164789	12.732930	-1.723433	6	-4.288844	-1.339010	-0.507418
1	7.629166	13.465655	-2.087121	1	-3.661056	-2.153521	-0.879355
1	8.025171	12.895704	-0.770795	1	-4.872667	-1.708744	0.342398
44	4.200764	15.378567	0.508150	1	-4.962396	-1.021075	-1.308836
15	7.149865	15.223551	1.348695	6	-3.454137	-0.127072	-0.060322
15	6.367231	16.425805	-1.427461	8	-1.443209	0.699239	1.739323
6	9.023628	15.964549	-0.635997	8	-1.367149	-1.711152	0.957369
1	8.995001	14.977863	-1.103816	8	-3.373904	-0.900116	2.550724
1	9.763025	15.943677	0.173993	8	-1.454621	1.649664	-0.922023
1	9.317327	16.704676	-1.388623	8	-1.385274	-0.739096	-1.765623
6	7.660190	16.371825	-0.056045	8	-3.280315	0.864220	-2.689071
8	5.708326	15.691604	1.845482	8	-4.342707	0.915554	0.374669
8	6.959680	13.764577	0.668575	1	-4.538811	0.691820	1.300835
8	8.251011	15.358181	2.398541	8	0.626494	3.263074	1.165887
8	4.975970	16.800629	-0.745245	1	1.158189	2.716865	1.775588
8	6.258542	14.835262	-1.812423	1	1.152082	3.264834	0.345249
8	6.826192	17.299353	-2.578897	44	0.059077	-1.001654	-0.343544
8	7.805296	17.678530	0.550590	15	2.407058	0.565919	-1.433364
1	8.118764	17.468045	1.447417	15	2.427458	-0.492077	1.505803
8	1.468588	16.289847	1.707348	6	4.288879	1.339180	0.507430
1	1.956474	15.522191	2.070358	1	3.661089	2.153689	0.879368
1	1.548712	16.099307	0.752089	1	4.872702	1.708917	-0.342385
				1	4.962431	1.021244	1.308848

6	3.454175	0.127241	0.060331	8	-4.321860	0.921114	0.382966
8	1.443249	-0.699073	-1.739314	1	-4.507803	0.706594	1.312899
8	1.367184	1.711316	-0.957360	8	0.693798	3.416805	1.208579
8	3.373941	0.900285	-2.550714	1	1.195980	2.827471	1.800114
8	1.454661	-1.649500	0.922027	1	1.181949	3.352915	0.368231
8	1.385308	0.739257	1.765631	44	0.056810	-1.108526	-0.386822
8	3.280353	-0.864055	2.689078	15	2.392438	0.596575	-1.420140
8	4.342749	-0.915382	-0.374660	15	2.414026	-0.471609	1.504739
1	4.538854	-0.691645	-1.300826	6	4.302041	1.331717	0.512020
8	-0.626438	-3.262905	-1.165875	1	3.682939	2.152025	0.885650
1	-1.158147	-2.716709	-1.775576	1	4.891265	1.697087	-0.335996
1	-1.152029	-3.264687	-0.345238	1	4.970832	1.003756	1.313458
H2ORu3-Ru3H2OM3				6	3.452233	0.132883	0.060416
44	-0.056784	1.108689	0.386826	8	1.455881	-0.690998	-1.713301
15	-2.392407	-0.596411	1.420147	8	1.386490	1.746835	-0.896376
15	-2.414001	0.471770	-1.504737	8	3.340099	0.941751	-2.549954
6	-4.302018	-1.331546	-0.512006	8	1.461740	-1.631644	0.900608
1	-3.682923	-2.151862	-0.885631	8	1.406075	0.795887	1.723934
1	-4.891242	-1.696908	0.336012	8	3.239987	-0.836896	2.708611
1	-4.970807	-1.003586	-1.313447	8	4.321908	-0.920943	-0.382954
6	-3.452198	-0.132718	-0.060410	1	4.507849	-0.706452	-1.312893
8	-1.455843	0.691156	1.713318	8	-0.693675	-3.416586	-1.208555
8	-1.386461	-1.746674	0.896387	1	-1.195912	-2.827309	-1.800101
8	-3.340078	-0.941587	2.549954	1	-1.181854	-3.352766	-0.368220
8	-1.461710	1.631806	-0.900607				
8	-1.406050	-0.795726	-1.723934	H20	DRu3-Ru3H2OM5		
8	-3.239967	0.837056	-2.708606	44	-0.051638	1.105663	0.384316

15	-2.392595	-0.595121	1.420645	8	1.389414	1.749688	-0.896974
15	-2.412472	0.471622	-1.505474	8	3.340575	0.939314	-2.550512
6	-4.301566	-1.331839	-0.510829	8	1.462478	-1.632631	0.901772
1	-3.682839	-2.151420	-0.886514	8	1.408668	0.800364	1.725245
1	-4.888065	-1.697760	0.338825	8	3.238165	-0.835414	2.710033
1	-4.972724	-1.003802	-1.310227	8	4.321073	-0.921660	-0.381225
6	-3.451283	-0.132519	-0.060877	1	4.509035	-0.707690	-1.310852
8	-1.452756	0.688693	1.713805	8	-0.692451	-3.416839	-1.212218
8	-1.389387	-1.749524	0.896983	1	-1.196112	-2.826954	-1.802177
8	-3.340547	-0.939151	2.550521	1	-1.181712	-3.358177	-0.372239
8	-1.462449	1.632795	-0.901763				
8	-1.408641	-0.800201	-1.725236	H2C	DRu3-Ru4OHM2		
8	-3.238135	0.835578	-2.710025	44	-0.044706	1.108507	-0.511448
8	-4.321041	0.921825	0.381235	15	-2.491086	0.772142	1.329256
1	-4.508996	0.707855	1.310863	15	-2.490197	-0.495597	-1.507733
8	0.692572	3.417041	1.212240	6	-4.475779	-0.974417	0.378214
1	1.196198	2.827108	1.802181	1	-3.909784	-1.858884	0.681838
1	1.181801	3.358328	0.372245	1	-5.058656	-0.615574	1.233187
44	0.051667	-1.105497	-0.384307	1	-5.149776	-1.245926	-0.439999
15	2.392623	0.595284	-1.420636	6	-3.541844	0.148855	-0.099675
15	2.412501	-0.471457	1.505483	8	-1.447724	1.824840	0.691180
6	4.301591	1.332006	0.510839	8	-1.616715	-0.501449	1.799472
1	3.682862	2.151586	0.886521	8	-3.443350	1.377245	2.338591
1	4.888091	1.697927	-0.338815	8	-1.397743	0.673043	-1.821234
1	4.972748	1.003971	1.310238	8	-1.593775	-1.625427	-0.752757
6	3.451311	0.132684	0.060886	8	-3.281163	-0.985098	-2.686682
8	1.452784	-0.688529	-1.713797	8	-4.317164	1.269485	-0.549108

1	-4.505165	1.773186	0.261273	6	-4.472719	-0.906240	-0.302040
8	2.060526	3.344769	-1.643257	1	-3.940677	-1.808081	-0.615464
1	1.988120	3.156899	-0.693683	1	-5.061590	-1.133947	0.593152
1	1.992037	2.450986	-2.020947	1	-5.139596	-0.587129	-1.108693
44	-0.176434	-1.156896	0.543872	6	-3.494333	0.237704	0.011732
15	2.287546	-0.771235	-1.320601	8	-1.333884	0.987717	1.618276
15	2.294708	0.546746	1.489298	8	-1.642042	-1.528678	1.116524
6	4.347628	0.900992	-0.385807	8	-3.383577	-0.242675	2.695959
1	3.853981	1.798310	-0.766256	8	-1.338881	1.672440	-1.039781
1	4.949343	0.469619	-1.192890	8	-1.567396	-0.806130	-1.589580
1	4.998121	1.179002	0.448877	8	-3.230073	0.905006	-2.730280
6	3.346058	-0.156409	0.104851	8	-4.222803	1.422019	0.363428
8	1.226489	-1.811368	-0.658676	1	-4.397332	1.320861	1.315388
8	1.407215	0.493040	-1.794854	8	2.221024	3.621775	0.684781
8	3.214631	-1.419043	-2.323699	1	2.141524	2.885959	1.313526
8	1.220703	-0.607108	1.836126	1	2.147551	3.158829	-0.166099
8	1.388537	1.667668	0.700961	44	-0.168500	-1.283690	-0.273166
8	3.095156	1.089110	2.638868	15	2.322685	0.078887	-1.536548
8	4.061571	-1.295528	0.605003	15	2.317012	-0.520453	1.511041
1	4.237724	-1.842256	-0.178706	6	4.405504	0.828384	0.214970
8	-0.394656	-2.850773	1.486019	1	3.937603	1.789771	0.438909
1	-1.110655	-2.682709	2.121917	1	5.011202	0.942830	-0.690079
				1	5.047090	0.541603	1.053641
H2OF	Ru3-Ru4OHM4			6	3.373880	-0.285408	-0.019479
44	0.036699	1.223544	0.249620	8	1.280912	-1.137650	-1.646888
15	-2.447669	-0.199725	1.506976	8	1.449027	1.401667	-1.143629
15	-2.439611	0.559413	-1.500835	8	3.260193	0.218744	-2.714383

8	1.199100	-1.613208	1.115974	44	-0.058501	-1.286273	0.344331
8	1.466244	0.888936	1.550610	15	2.421088	-0.553890	-1.438462
8	3.109919	-0.791892	2.757887	15	2.446196	0.230709	1.560839
8	4.061566	-1.517974	-0.285929	6	4.500328	0.862157	-0.214741
1	4.241801	-1.506686	-1.239988	1	3.999855	1.814066	-0.408128
8	-0.363046	-3.172490	-0.625254	1	5.095617	0.591998	-1.093758
1	-1.078837	-3.436917	-0.020571	1	5.156181	0.971536	0.654250
				6	3.482867	-0.253913	0.073749
H2OR	u3-Ru4OHM6			8	1.302988	-1.653513	-0.969018
44	0.191411	1.318192	-0.356545	8	1.590743	0.787874	-1.705255
15	-2.292318	0.546204	1.441946	8	3.323763	-1.075529	-2.532948
15	-2.318805	-0.103965	-1.589913	8	1.320112	-0.948164	1.685109
6	-4.417550	-0.782573	0.151614	8	1.670009	1.533960	0.995989
1	-3.974364	-1.768173	0.309859	8	3.259480	0.453132	2.805781
1	-5.011950	-0.524236	1.034932	8	4.170387	-1.485904	0.333802
1	-5.065871	-0.825820	-0.728307	1	4.366761	-1.846106	-0.547833
6	-3.360553	0.307416	-0.079807	8	-2.303061	-3.599694	0.755769
8	-1.170690	1.631076	1.039141	1	-2.197665	-3.141061	-0.094790
8	-1.488188	-0.853753	1.655865	1	-2.251189	-2.860334	1.382627
8	-3.191616	0.987519	2.573798				
8	-1.264373	1.094831	-1.728251	HO	Ru4-Ru4OHM1		
8	-1.467227	-1.407666	-1.022871	44	-0.134204	1.563462	0.160582
8	-3.146102	-0.434555	-2.801634	15	-2.298474	-0.561425	1.388350
8	-4.018496	1.564673	-0.298842	15	-2.332692	0.617049	-1.417231
1	-4.203669	1.909661	0.590460	6	-4.107263	-1.391371	-0.621880
8	0.411394	3.187868	-0.734542	1	-3.401393	-2.123860	-1.021987
1	1.172293	3.432375	-0.178081	1	-4.677561	-1.859375	0.188417

1	-4.788123	-1.092175	-1.423331	1	-0.731024	-3.620785	-0.203163
6	-3.395008	-0.145382	-0.077716	8	0.014454	3.272574	0.867686
8	-1.223419	0.665740	1.496962	1	0.724512	3.201536	1.536298
8	-1.487684	-1.877440	1.032887				
8	-3.230063	-0.580756	2.588266	HO	Ru4-Ru4OHM3		
8	-1.815617	2.050422	-1.004874	44	-0.037624	1.399106	0.089799
8	-0.817848	-0.156917	-1.118608	15	-2.434469	-0.169733	1.515033
8	-2.851590	0.341481	-2.799550	15	-2.398160	0.869358	-1.367245
8	-4.362022	0.798475	0.390720	6	-4.293702	-0.957823	-0.480922
1	-4.390438	0.636140	1.354058	1	-3.638934	-1.752513	-0.848984
44	0.166037	-1.509410	-0.206058	1	-4.889761	-1.351781	0.349462
15	2.400586	0.290895	-1.482003	1	-4.956797	-0.646611	-1.292738
15	2.301991	-0.019971	1.608832	6	-3.498414	0.258420	0.015898
6	4.486868	1.083903	0.276111	8	-1.334215	1.021000	1.541038
1	4.037972	2.067450	0.442216	8	-1.707159	-1.561750	1.232028
1	5.101694	1.121748	-0.627575	8	-3.391307	-0.109446	2.693297
1	5.104711	0.826871	1.142273	8	-1.599977	2.195186	-0.964768
6	3.403375	0.025680	0.091440	8	-1.042011	-0.126879	-1.098289
8	1.700703	-1.151426	-1.555855	8	-3.008426	0.743754	-2.731688
8	1.247860	1.422138	-1.198907	8	-4.396081	1.285786	0.440232
8	3.257342	0.691377	-2.656757	1	-4.442088	1.160599	1.408681
8	1.202427	-1.264009	1.347373	44	-0.107192	-1.516449	-0.101823
8	1.417773	1.297150	1.521817	15	2.228942	-0.096249	-1.579654
8	3.059214	-0.252356	2.889939	15	2.300277	-0.483340	1.500267
8	4.051456	-1.245116	-0.068858	6	4.250929	0.905301	0.106761
1	3.406751	-1.793612	-0.549039	1	3.688648	1.821442	0.303262
8	0.019136	-3.279697	-0.728975	1	4.818139	1.035859	-0.820809

1	4.937972	0.717285	0.937669	8	1.627283	-0.253539	-2.351590
6	3.315711	-0.303417	-0.058911	8	1.013486	1.039905	-0.432383
8	1.295691	-1.397826	-1.559664	8	2.992781	2.030958	-1.992297
8	1.347378	1.257198	-1.327203	8	4.423509	-0.890799	-0.759553
8	3.156354	-0.026844	-2.776040	1	4.501519	-1.651070	-0.151313
8	1.186925	-1.690818	1.292925	44	-0.043321	0.753352	1.249681
8	1.418264	0.854466	1.442089	15	-2.277710	1.335931	-0.801645
8	3.124489	-0.679326	2.742842	15	-2.398021	-1.077649	1.140631
8	4.093095	-1.487445	-0.286923	6	-4.217679	-0.699434	-0.919477
1	4.241459	-1.501556	-1.247605	1	-3.577845	-1.318869	-1.552663
8	-0.610395	-3.270383	-0.550721	1	-4.772551	-0.004267	-1.558564
1	-1.338313	-3.459701	0.071666	1	-4.919715	-1.339967	-0.376982
8	0.507766	3.072749	0.802525	6	-3.391665	0.112480	0.092215
1	1.173245	2.831149	1.473413	8	-1.375090	1.966397	0.373238
				8	-1.344950	0.464110	-1.813193
HORu	I4-Ru4OHM5			8	-3.189637	2.341265	-1.474517
44	0.065600	-0.775061	-1.163289	8	-1.455234	-0.175105	2.159727
15	2.395568	-1.189859	0.939617	8	-1.382819	-1.661164	0.042712
15	2.372393	0.803178	-1.394521	8	-3.229162	-2.097047	1.869661
6	4.160618	1.019351	0.720230	8	-4.264098	0.903335	0.908850
1	3.447357	1.704398	1.186936	1	-4.394609	1.722554	0.400130
1	4.737886	0.524062	1.508838	8	0.347934	2.041447	2.604785
1	4.834916	1.595457	0.080637	1	1.041344	1.600503	3.128064
6	3.455682	-0.050778	-0.127020	8	-0.476609	-2.269291	-2.203195
8	1.361240	-1.848802	-0.109304	1	-1.124874	-2.719792	-1.628892
8	1.565976	-0.274427	1.969795				
8	3.366505	-2.186639	1.545173	H20	DRu3-Ru5OM1		

44	-0.057552	1.096127	-0.340557	8	1.166672	-1.784130	-0.688935
15	-2.549143	0.747587	1.357730	8	1.336131	0.534656	-1.712716
15	-2.414573	-0.515660	-1.490395	8	3.121236	-1.371908	-2.369684
6	-4.441333	-1.034785	0.341202	8	1.322673	-0.619212	1.917919
1	-3.863521	-1.893599	0.692025	8	1.457919	1.629437	0.694621
1	-5.081523	-0.682746	1.157246	8	3.208480	1.105163	2.604733
1	-5.062771	-1.340058	-0.506019	8	4.075992	-1.341348	0.506322
6	-3.523795	0.115507	-0.112728	1	4.246568	-1.840692	-0.310162
8	-1.486671	1.819137	0.671480	8	-0.350234	-2.547708	1.697452
8	-1.671470	-0.441997	1.898017				
8	-3.524603	1.448218	2.279737	H20	DRu3-Ru5OM3		
8	-1.340887	0.685337	-1.741037	44	0.037208	-1.325166	0.123253
8	-1.505672	-1.656114	-0.775850	15	-2.435387	-0.269009	-1.503804
8	-3.181121	-0.988505	-2.692776	15	-2.441559	-0.050232	1.586607
8	-4.314127	1.209096	-0.596455	6	-4.475671	0.951599	-0.025468
1	-4.516758	1.729160	0.200418	1	-3.947889	1.908457	-0.030604
8	2.069513	3.368646	-1.577440	1	-5.070431	0.869517	-0.941615
1	2.001122	3.145163	-0.635131	1	-5.136171	0.909991	0.845928
1	1.920793	2.497907	-1.983828	6	-3.490068	-0.225944	0.045062
44	-0.177090	-1.259936	0.632237	8	-1.328213	-1.443595	-1.243028
15	2.237444	-0.739925	-1.317982	8	-1.615432	1.104160	-1.537672
15	2.370881	0.492230	1.515922	8	-3.353287	-0.588776	-2.662260
6	4.362706	0.881111	-0.432171	8	-1.334787	-1.250210	1.487929
1	3.863259	1.786637	-0.785690	8	-1.621418	1.306672	1.266206
1	4.938000	0.457876	-1.262815	8	-3.234942	-0.035880	2.862279
1	5.039063	1.143449	0.386886	8	-4.205232	-1.468631	0.078948
6	3.365132	-0.170818	0.072611	1	-4.391437	-1.665563	-0.855257

8	2.327471	-3.672470	0.295625	1	-5.062442	-0.890173	0.913944
1	2.205371	-3.127230	-0.498706	1	-5.128085	-0.880116	-0.873998
1	2.231324	-3.012339	1.001166	6	-3.482537	0.233370	-0.040994
44	-0.189816	1.421356	-0.128907	8	-1.325804	1.418766	1.283955
15	2.295604	0.336717	1.500319	8	-1.617537	-1.146942	1.505533
15	2.301255	0.108936	-1.591693	8	-3.346416	0.518905	2.676195
6	4.407612	-0.810087	0.022756	8	-1.323334	1.296352	-1.447228
1	3.962644	-1.806947	0.056032	8	-1.620147	-1.272083	-1.307069
1	5.007323	-0.670023	0.928396	8	-3.219895	0.129806	-2.862186
1	5.050278	-0.739148	-0.859672	8	-4.197482	1.476284	-0.042240
6	3.353946	0.304792	-0.050511	1	-4.385205	1.647432	0.896685
8	1.228070	1.518841	1.271331	8	2.373151	3.679111	-0.183387
8	1.454428	-1.058236	1.492057	1	2.246636	3.118556	0.599135
8	3.212123	0.559938	2.681047	1	2.270159	3.035691	-0.903469
8	1.225991	1.304237	-1.533772	44	-0.201141	-1.458225	0.088730
8	1.453941	-1.259068	-1.236437	15	2.286111	-0.293706	-1.507484
8	3.106470	-0.001974	-2.855789	15	2.291730	-0.170979	1.585368
8	4.015706	1.577689	-0.110098	6	4.409260	0.786725	0.006300
1	4.204424	1.807953	0.814362	1	3.973602	1.788069	0.009492
8	-0.327676	3.166631	-0.260583	1	5.006060	0.673929	-0.905023
				1	5.052873	0.678816	0.884239
H2OF	Ru3-Ru5OM5			6	3.346755	-0.321193	0.041647
44	0.045536	1.377841	-0.083570	8	1.215465	-1.480481	-1.316712
15	-2.428877	0.232998	1.508600	8	1.462688	1.111382	-1.453662
15	-2.431343	0.099778	-1.583969	8	3.198527	-0.484404	-2.697043
6	-4.467632	-0.946353	-0.004087	8	1.217613	-1.364875	1.486928
1	-3.939760	-1.902818	-0.025874	8	1.452303	1.212966	1.274017

8	3.092012	-0.101861	2.855438	1	3.802451	1.670686	0.622800
8	3.998615	-1.600026	0.060080	1	4.959023	1.016157	-0.570035
1	4.178346	-1.806596	-0.871667	1	5.039994	0.500243	1.142010
8	-0.355378	-3.200718	0.166699	6	3.436281	-0.405263	0.020968
				8	1.302782	-1.215314	-1.612507
H2OF	Ru3-Ru3OOHM1			8	1.644902	1.341179	-1.237652
44	0.102434	1.120612	0.226636	8	3.409477	-0.073537	-2.663038
15	-2.403967	-0.220958	1.563108	8	1.328064	-1.888056	1.039103
15	-2.325816	0.283088	-1.550032	8	1.523534	0.606679	1.674064
6	-4.642712	-0.571657	-0.172151	8	3.207510	-1.128380	2.744120
1	-4.377332	-1.615476	-0.365707	8	4.239991	-1.551046	-0.325266
1	-5.244887	-0.522796	0.741453	1	4.352237	-1.442234	-1.288806
1	-5.212983	-0.187650	-1.025423	8	-2.745594	-3.534036	-0.584792
6	-3.385607	0.266287	0.017692	1	-2.435665	-2.863277	-1.222228
8	-1.422456	1.022794	1.681963	1	-2.484297	-3.076830	0.238006
8	-1.563878	-1.546213	1.097932	8	1.604401	3.532853	0.270833
8	-3.316402	-0.497609	2.742943	1	1.867590	2.863486	-0.411649
8	-1.202052	1.397512	-1.263361				
8	-1.497553	-1.127521	-1.531738	H2C	Ru3-Ru3OOHM3	1	
8	-3.160220	0.487099	-2.797696	44	0.168710	1.165580	0.202971
8	-3.795268	1.632989	0.249307	15	-2.365025	-0.003859	1.544599
1	-3.004707	2.049128	0.637117	15	-2.342564	0.440951	-1.534874
8	0.393604	2.915585	0.777555	6	-4.506918	-0.716827	-0.161296
44	-0.050296	-1.368909	-0.179047	1	-4.097507	-1.711150	-0.352484
15	2.405879	-0.026462	-1.509919	1	-5.111265	-0.758088	0.752981
15	2.381823	-0.715533	1.544299	1	-5.137245	-0.424806	-1.008520
6	4.367860	0.784455	0.324496	6	-3.409249	0.343213	0.016177

8	-1.282931	1.173281	1.608675	1	-2.367342	-3.101843	0.269632
8	-1.577237	-1.390307	1.243958	8	1.665507	3.633926	-0.063607
8	-3.329496	-0.018841	2.724322	1	1.925751	2.880190	-0.644923
8	-1.212483	1.535525	-1.215359				
8	-1.612298	-1.013324	-1.512333	H20	DRu3-Ru3OOHM5	5	
8	-3.177656	0.693551	-2.773272	44	0.174389	1.157109	0.164256
8	-4.050238	1.615933	0.258335	15	-2.365804	0.032750	1.538031
1	-4.162291	1.639694	1.223204	15	-2.352884	0.418957	-1.545943
8	0.458344	3.112771	0.532498	6	-4.513057	-0.714182	-0.144760
44	-0.124254	-1.302445	-0.152862	1	-4.102261	-1.711520	-0.316170
15	2.410896	-0.138175	-1.512770	1	-5.115873	-0.737629	0.771220
15	2.378333	-0.669944	1.548828	1	-5.145878	-0.440387	-0.996221
6	4.421680	0.714913	0.246450	6	-3.416636	0.351120	0.008359
1	3.879724	1.636601	0.471905	8	-1.269894	1.202961	1.568876
1	5.033311	0.865802	-0.652082	8	-1.591418	-1.363305	1.264622
1	5.070272	0.468016	1.094180	8	-3.322564	0.061709	2.723668
6	3.452622	-0.457942	0.015180	8	-1.224110	1.518433	-1.243170
8	1.269849	-1.280349	-1.555498	8	-1.620088	-1.033584	-1.495960
8	1.659999	1.255514	-1.254979	8	-3.187730	0.648198	-2.788783
8	3.375660	-0.214547	-2.692519	8	-4.058118	1.627037	0.228641
8	1.296864	-1.802944	1.175743	1	-4.165733	1.668080	1.193625
8	1.611025	0.750053	1.553137	8	0.473475	3.126189	0.416944
8	3.214347	-0.949008	2.781094	44	-0.130448	-1.290744	-0.136843
8	4.216463	-1.647860	-0.275544	15	2.408080	-0.190165	-1.522105
1	4.348047	-1.588630	-1.239311	15	2.373162	-0.637588	1.552530
8	-2.534355	-3.537240	-0.584609	6	4.406569	0.731213	0.218177
1	-2.325448	-2.792715	-1.184969	1	3.856491	1.654064	0.418463

1	5.017620	0.862812	-0.683744	8	1.573597	-1.139846	-1.477087
1	5.056988	0.512941	1.072380	8	3.295276	0.518290	-2.681024
6	3.448920	-0.456624	0.017245	8	1.242599	1.304924	1.493755
8	1.273947	-1.335037	-1.540187	8	1.572535	-1.257244	1.290052
8	1.651286	1.209248	-1.294200	8	3.194675	0.121748	2.846609
8	3.378033	-0.282649	-2.696213	8	4.060681	1.619380	0.032950
8	1.288122	-1.772243	1.201512	1	4.157827	1.821795	-0.912809
8	1.599980	0.783775	1.529115	8	-0.393999	3.202618	0.153107
8	3.204733	-0.886601	2.793533	44	0.103910	-1.280606	-0.076745
8	4.223039	-1.648281	-0.236149	15	-2.396697	-0.438644	1.502209
1	4.359264	-1.615082	-1.200422	15	-2.403193	-0.307437	-1.607739
8	-2.533481	-3.543424	-0.498158	6	-4.371438	0.834609	-0.010236
1	-2.330682	-2.820878	-1.125675	1	-3.783202	1.755925	-0.024014
1	-2.362874	-3.076686	0.339271	1	-4.973282	0.804661	0.906615
8	1.757720	3.583783	-0.079359	1	-5.035078	0.810289	-0.882409
1	1.994423	2.840995	-0.681123	6	-3.453782	-0.400715	-0.051160
				8	-1.284835	-1.602146	1.287410
H2OF	Ru3-Ru4OOM2			8	-1.616799	0.951942	1.527911
44	-0.200681	1.153377	0.068449	8	-3.360810	-0.761880	2.640024
15	2.342485	0.287490	-1.514072	8	-1.287099	-1.480332	-1.465739
15	2.349515	0.157349	1.590928	8	-1.620115	1.079482	-1.358536
6	4.492797	-0.754266	0.005899	8	-3.233716	-0.377446	-2.870476
1	4.075391	-1.763413	0.014327	8	-4.253358	-1.600963	-0.016260
1	5.086347	-0.630993	-0.908028	1	-4.370011	-1.748372	0.940350
1	5.136033	-0.629422	0.883920	8	2.499301	-3.586670	-0.149862
6	3.406453	0.330605	0.040396	1	2.302044	-3.005493	0.609211
8	1.242962	1.432369	-1.329739	1	2.327870	-2.960256	-0.876863

8	-1.597528	3.700050	0.173741	6	3.456260	-0.403480	0.050850
				8	1.293655	-1.615278	-1.288692
H2OR	u3-Ru4OOM4			8	1.610929	0.941443	-1.521485
44	0.194417	1.134405	-0.069945	8	3.363521	-0.755746	-2.642753
15	-2.345649	0.278695	1.512521	8	1.295526	-1.488512	1.469864
15	-2.351961	0.143599	-1.592076	8	1.614277	1.072656	1.349149
6	-4.496235	-0.759465	-0.006948	8	3.235100	-0.363430	2.870159
1	-4.079183	-1.768855	-0.012852	8	4.260890	-1.600865	0.018391
1	-5.091138	-0.633775	0.905815	1	4.380573	-1.749005	-0.937529
1	-5.138535	-0.635557	-0.885854	8	-2.499103	-3.583889	0.153696
6	-3.408454	0.324278	-0.042384	1	-2.298270	-3.002463	-0.604711
8	-1.241028	1.423972	1.323453	1	-2.323603	-2.958020	0.880494
8	-1.579402	-1.145114	1.481854	8	1.591362	3.718713	-0.180220
8	-3.296893	0.526903	2.677291				
8	-1.239747	1.292245	-1.491951	H2C	DRu3-Ru4OOM6		
8	-1.579412	-1.267619	-1.293664	44	0.192405	1.132670	-0.069762
8	-3.194831	0.123428	-2.849594	15	-2.344101	0.276812	1.512146
8	-4.059848	1.614227	-0.035826	15	-2.349480	0.142645	-1.592570
1	-4.157237	1.816164	0.910148	6	-4.490189	-0.771282	-0.007717
8	0.391168	3.223725	-0.162150	1	-4.069409	-1.779106	-0.013122
44	-0.101196	-1.275582	0.076514	1	-5.086016	-0.647662	0.904683
15	2.397564	-0.450223	-1.501653	1	-5.132545	-0.650058	-0.886922
15	2.403665	-0.314251	1.606806	6	-3.406896	0.316863	-0.042881
6	4.370796	0.833755	0.008230	8	-1.241785	1.423512	1.322197
1	3.780996	1.753950	0.021502	8	-1.571975	-1.145594	1.481873
1	4.972177	0.804610	-0.908951	8	-3.295659	0.519843	2.677209
1	5.034699	0.812035	0.880258	8	-1.239922	1.293283	-1.489968

8	-1.570348	-1.267055	-1.295689	8	1.614918	1.073170	1.348494
8	-3.191650	0.118734	-2.850130	8	3.234714	-0.365972	2.869511
8	-4.063461	1.603915	-0.037662	8	4.258318	-1.602379	0.017105
1	-4.160133	1.808677	0.907690	1	4.378675	-1.749896	-0.938825
8	0.366140	3.251496	-0.153176	8	-2.484671	-3.589895	0.158298
44	-0.098096	-1.274715	0.076406	1	-2.288419	-3.013969	-0.605035
15	2.397025	-0.447335	-1.502802	1	-2.310546	-2.957877	0.880176
15	2.403618	-0.312105	1.606416	8	1.576412	3.741153	-0.178214
6	4.369560	0.833159	0.007535				
1	3.779425	1.753243	0.020539	H2O			
1	4.971290	0.803964	-0.909395	8	0.000000	0.000000	0.118847
1	5.033255	0.811538	0.879697	1	0.000000	0.760065	-0.475390
6	3.455021	-0.404382	0.049994	1	-0.000000	-0.760065	-0.475390
8	1.289948	-1.612612	-1.290417				
8	1.610604	0.942797	-1.521655	02			
8	3.361388	-0.757094	-2.643745	8	-0.485856	0.006402	0.000000
8	1.292520	-1.486714	1.470811	8	-1.700072	0.006402	0.000000

References

- S1 X. Y. Yi, L. M. Zheng, W. Xu and S. Feng, *Inorg. Chem.*, 2003, **42**, 2827.
- S2 X. Y. Yi, B. Liu, R. Jiménez-Aparicio, F. A. Urbanos, S. Gao, W. Xu, J. S. Chen, Y. Song andL. M. Zheng, *Inorg. Chem.*, 2005, 44, 4309.
- S3 F. Yu, F. Li, J. Hu, L. Bai, Y. Zhu and L. Sun, Chem. Commun., 2016, 52, 10377.
- S4 A. J. Bard and L. R. Faulkner, *Electrochemical methods: fundamental and applications*, Wiley, New York, 2001.
- S5 S. M. George, Acta. Cryst., 2015, A71, 3.
- M. J.Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji;
 M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Jr. Mont-gomery, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T.Keith, R. Koba-yashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, *Gaussian 16, Revision B.01*, Gaussian, Inc., Wallingford CT, 2016.
- S7 (a) A. D. Becke, J. Chem. Phys., 1993, 98, 5648-5652; (b) C. Lee, W. Yang and G.
 Parr, Phys. Rev. B., 1988, 37, 785; (c) P. J. Stephens, F. J. Devlin and C. F.
 Chaobalowski, J. Phys. Chem., 1994, 98, 11623.

- S8 (a) M.Dolg, U. Wedig, H. Stoll, H. Preuss, J. Chem. Phys., 1987, 86, 866; (b) P.
 Schwerdtfeger, M. Dolg, W. H. E. Schwarz, G. A. Bowmaker and P. D. W. Boyd, J.
 Chem. Phys., 1989, 91, 1762.
- S9 (a) A. W. Ehlers, M. Böhme, S. Dapprich, A. Gobbi, A. Höllwarth, V. Jonas, K. F. Köhler, R. Stegmenn and G. Frenking, *Chem. Phys. Lett.*, 1993, **208**, 111; (b) A. Höllwarth, M. Böhme, S. Dapprich, A. W. Ehlers, A. Gobbi, V. Jonas, K. F. Köhler, R. Stegmenn, A. Veldkamp and G. Frenking, *Chem. Phys. Lett.*, 1993, **208**, 237.
- S10 (a) Y. Zhao and D. G. Truhlar, *Theor. Chem. Acc.*, 2008, **120**, 215; (b) Y. Zhao and
 D. G. Truhlar, *Acc. Chem. Res.*, 2008, **41**, 157.
- S11 A. A. Isse and A. Gennaro, J. Phys. Chem. B, 2010, 114, 7894.
- S12 J. A. Gilbert, D. S. Eggleston, W. R. Murphy, J. D. A. Geselowitz, S. W. Gersten, D.J. Hodgson and T. J. Meyer, *J. Am. Chem. Soc.*, 1985, **107**, 3855.
- S13 T. Funaioli, C. Cavazza, F. Marchetti and G. Fachinetti, *Inorg. Chem.*, 1999, **38**, 3361.
- S14 M. F. Mahon, M. K. Whittlesey and P. T. Wood, Organometallics, 1999, 18, 4068.
- S15 A. V. Marenich, C. J. Cramer and D. G. Truhlar, J. Phys. Chem. B, 2009, 113, 6378.