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SUPPLEMENTARY INFORMATION



1. Syntheses of azacryptands

For the syntheses of azacryptands, two different approaches were followed (see Route A and B
in the Scheme below).! Route A) consisted in the Schiff base condensation of tren with the
chosen dialdehyde, mixed in a 2:3 molar ratio. The obtained polyimine intermediate product
was then reduced to the corresponding polyamine with either NaBH,; or NaBH3CN. This method
was employed in the syntheses of Lcage, Furane and TRIF. In the case of TRIF, Ag(l) was
employed as templating agent in the Schiff condensation step. Route B) consisted in the reaction
of a p-xylyl-based macrocyclic compound with the chosen dialdehyde. As for Route A), the
polyimine intermediate was then reduced with NaBH, or NaBHs;CN, to obtain the final
azacryptand. Route B) was followed for MOH, 20H, 1-ARM and PEG cages.
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A solution of 2-hydroxy-1,4-benzenedicarboxaldehyde? (0.256 g, 1.71 mmol) in MeOH (100 mL) was
added dropwise, under vigorous stirring, to a solution of the preformed macrocycle? (0.85 g, 1.71
mmol) in MeOH (200 mL). The mixture was then stirred at room temperature for 24 h. The reaction
advancement was monitored through ESI-MS spectrometry.

The product of the Schiff condensation was then reduced by addition of NaBH, in excess (1.3 g,
34 mmol) to the reaction mixture, in small portions under reflux. After 4 h, an additional portion of
NaBH,; was added and the mixture was stirred overnight at 50°C. The solvent was finally removed
under reduced pressure, 30 mL of brine was added and the aqueous phase was extracted with
dichloromethane (7x30 mL). The collected organic phases were dried over anhydrous Na,SO,. The
product is an orange oil, that becomes a yellowish filterable solid (0.66 g; yield: 63%) under
treatment with diethyl ether.

ESI-MS in MeOH, m/z: 308.66 [M + 2H]?*, 616.76 [M + H]*. TH-NMR (400 MHz) in D,0 + CF3SO3H,
ppm: 7.39 (s, 8H, al-a2), 7.24 (m, 1H, a3), 6.88 (d, 1H, a4), 6.86 (s, 1H, a5), 4.17 (m, 12H, 3), 3.11
(m, 12H, 2), 2.71 (m, 12H, 1).13C-NMR (400 MHz) in D,0 + CF3SO3H, ppm: 155.47 (g3), 133.31 (q4),
132.48 (a3), 131.50 (q1), 130.65 (al-a2), 124.31-114.85 (q, 8,,= 119.58 U = 317.33 Hz, -CF5 group
of triflic acid), 121.57 (a4), 118.38 (q2), 113.98 (a5), 70.55 (5), 67.78 (4), 58 30 (6), 51.28 (3), 50.10
(1), 47.30 (3"), 44.62(2).

1.2.  Synthesis of 1-ARM
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A solution of 2-(2-methoxyethoxy)-1,4-benzenedicarboxaldehyde3 (0.19 g, 0.9 mmol) in 100 mL
MeOH was added dropwise, under vigorous stirring, to a solution of the preformed macrocycle?
(0.453 g, 0.9 mmol) in 250 mL MeOH. The mixture was stirred at room temperature, under inert
atmosphere for 24 h. The polyimine product was then reduced under reflux by addition of NaBH, in
excess (0.7 g, 18 mmol). The reaction advancement was monitored through ESI-MS spectrometry.
The reducing agent was added in small portions. After reacting under stirring overnight at 50°C, the
solvent was removed by evaporation under reduced pressure and 20 mL of brine were added. The
aqueous phase was extracted with DCM (7x30 mL) and the collected organic phases were dried over
anhydrous Na,S0O,. The polyamine product was purified by precipitation as polyammonium salt. This
latter was obtained by treatment of a solution of the azacryptand in ethanol with nitric acid (0.55 g;
yield 91%).

ESI-MS in MeOH, m/z: 337.55 [M+2H]?*, 673.55 [M+H]*. TH-NMR (400 MHz) in D,0 + CF3SOsH , ppm:
7.39 (s, 8H, al+a2); 7.30 (d, 1H, a3); 7.04 (s, 1H, a5); 6.98 (d, 1H, a4); 4.20 (m, 12H + 2H, 3 + 4), 3.84
(m, 2H, 5), 3.39 (m, 3H, 6); 3.12 (m, 12H, 2); 2.71 (m, 12H, 1).13C-NMR (400 MHz) in D,0 + CF5SO;H,
ppm: 157.22 (q3), 133.64 (q4), 132.61 (a3), 131.49 (q1), 130.59 (al+a2), 124.32-114.86 (q, &5, =
119.60, Y = 317.42 Hz, -CF; group of triflic acid), 122.76 (a4), 121.17 (g2), 113.98 (a5), 70.55 (5),
67.78 (4), 58.33 (6), 51.28 (3), 50.10 (1), 47.30 (3’), 44.75(2).
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A solution of 2,5-bis(2-methoxyethoxy)-1,4-benzenedicarboxaldehyde* (0.3064 g, 0.827 mmol) in
100 mL MeOH was added dropwise, under vigorous stirring, to a solution of the preformed
macrocycle?(0.41 g, 0.825 mmol) in 250 mL MeOH. The mixture was stirred at room temperature,
under inert atmosphere for 24 h. The reaction advancement was monitored through ESI-MS
spectrometry.

The reduction of the polyimine intermediate product was obtained by addition of NaBH, in excess
(0.7 g, 18.5 mmol) to the reaction mixture at 50°C. After stirring overnight, an additional portion of
NaBH, was added to the solution. The solvent was then evaporated under reduced pressure and the
residue was dissolved in brine. The aqueous phase was then extracted with DCM (7x30 mL) and the
collected organic phases were then dried over anhydrous Na,SO,. The final product is a gluey yellow
solid (0.66 g; yield: 95%).
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ESI-MS in MeOH, m/z: 419.27 [M+2H]?*, 835.91 [M+H]*. H-NMR (400 MHz) in D,0 + CF5SOsH, ppm:
7.36 (s, 8H, al+a2); 7.00 (s, 2H, a3); 4.20 (m, 16H, 3 + 4); 3.80 (m, 4H, 5); 3.64 (m, 4H, 6); 3.52 (m,
4H, 7); 3.24 (s, 6H, 8); 3.09 (m, 12H, 2), 2.69 (m, 12H, 1). 3C-NMR (400 MHz) in D,0 + CF3SOsH,
ppm:151.3 (g3), 131.50 (q1), 130.54 (al+a2), 124.33-114.87 (q, 8, = 119.58, Uer = 317.33 Hz, -CF3
group of triflic acid), 121.89 (q2), 117.27(a3), 70.76 (7), 69.53 (6), 68.94 (5), 68.77 (4), 58.02 (8),
51.23 (3), 50.03 (1), 47.53 (3), 45 (2).
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A solution of 2,5-bishydroxy-1,4-benzenedicarboxaldehyde* (0.340 g, 2.0 mmol) in 250 mL MeOH
was added dropwise, under vigorous stirring, to a solution of the preformed macrocycle?(1.01 g,
2.0 mmol) in 150 mL MeOH. The mixture was stirred at room temperature, under inert atmosphere
for three days. The reaction advancement was monitored through ESI-MS spectrometry.

The reaction mixture was concentrated under reduced pressure and 20 mL of glacial CH;COOH were
added; reduction of the imine bonds was obtained by addition of NaBH3CN in excess (2.52 g,
40 mmol). The reaction mixture was stirred overnight at 50°C. MeOH was finally evaporated under
reduced pressure and the aqueous phase was basified with NaOH. The basic agqueous solution was
then extracted with DCM (5x 50 mL). The collected organic phases were dried over anhydrous
Na,SO,. The crude azacryptand (0.8 g; yield 63%) is a red oil that becomes a filterable solid by drying
under vacuum. The product was purified by preparative HPLC on an Agilent system SERIES 1260
combining a preparative PUMP, a Diode array system and an automatic fraction Collector. The
preparative column was XSelect CSH Prep Phenyl-Hexyl 5um (150 x 30 mm, Waters). The solvent
used for the HPLC purification was a mixture 0.1 % trifluoroacetic acid in acetonitrile/water (gradient
elution: from 5% to 70% v/v acetonitrile/water). The purification yielded 0.19 g of 20H (yield after
purification: 15%).

ESI-MS in MeOH, m/z: 316.39 [M + 2H]?*, 631.42 [M + H]*. 'H-NMR (400 MHz) in CD;0D, ppm: 7.55
(s, 8H, a2+al), 6.87 (s, 2H, a3), 4.27 (m, 12H, 3), 3.21 (m, 12H, 2), 2.85 (m, 12H, 1), 2.05 (residual
CH5CN). 33C-NMR (100 MHz) in CDs0D, ppm: 161.37 (-CF; group of TFA acid), 148.90 (q3), 132.15
(g1), 130.37 (al+a2), 119.94 (g2), 118.16 (a3), 115.14 (-C=0 group of TFA acid), 50.78 (3), 49.82 (1),
44.46 (2).



1.5. Synthesis of TRIF
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Chemical Formula: CagH45F45Ng
Molecular Weight: 814.75

To a solution of AgNO3 (170 mg, 1.0 mmol) in 100 ml MeOH, 206 mg of dialdehyde (1.0 mmol) in
100 mL MeOH were added, under stirring and N, flux, at 50°C. A solution of tren (0.10 mL;
0.65 mmol) in 120 mL MeOH was then added over a period of 1 h. After the addition, the mixture
was stirred overnight. The polyimine intermediate compound was reduced using an excess of NaBH,
(1.5 g) and the reaction mixture was refluxed overnight. Ag(0) was filtered off and the solution was
evaporated to dryness. The residue was dissolved in 50 ml 10% NaOH(aq.) and extracted in
dichloromethane (5x50 mL). The collected organic phases were dried over anhydrous Na,SO,. The
final product is a white powder (550 mg, yield: 40%).

ESI-MS in MeOH, m/z: 408.22 [M + 2H]%*. TH-NMR (400 MHz) in D,0 + CF3SO3H, ppm: 4.48 (s, 12H,
3); 3.19 (t, 12H, 2); 2.81 (t, 12H, 1).13C-NMR (400 MHz) in D,0 + CF3SOsH, ppm: 146.77-144.29 (d,
8= 145.53, Ucr = 249.58 Hz, q2), 124.32-114.85 (q, 5., = 119.59, Ucr = 317.47 Hz, -CF5 group of
triflic acid), 111.46 (q1), 50.98 (1), 45.68 (2), 38.75 (3). 19F-NMR (400 MHz) in CDCl3, ppm: -145.91



2. Characterization by NMR spectroscopy
e NMR spectra of MOH cage
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Figure S1: NMR characterization of MOH cage (400 MHz, 298K, D,0 + CF3SOsH): a) 'H-NMR; b) 13C-NMR; ¢) HSQC; d) HSQC zoomed
in the aliphatic zone; e) HSQC zoomed in the aromatic zone.



NMR spectra of 1-ARM cage
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Figure S2: NMR characterization of 1-ARM cage (400 MHz, 298K, D,0 + CF3SOsH): a) *H-NMR; b) 13C-NMR; c) HSQC; d) HSQC zoomed
in the aliphatic zone; e) HSQC zoomed in the aromatic zone.



NMR spectra of PEG cage
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Figure S3: NMR characterization of PEG cage (400 MHz, 298K, D,0 + CF3SOzH): a) H-NMR; b) 3C-NMR; c) HSQC; d) HSQC zoomed in
the aliphatic zone; e) HSQC zoomed in the aromatic zone.



NMR spectra of TRIF cage
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Figure S4: NMR characterization of TRIF cage (400 MHz, 298K, D,0 + CF3SO3H): a) 1H-NMR; b) 13C-NMR; ¢) HSQC; d) HSQC zoomed in
the aliphatic zone.



NMR spectra of 2-OH cage
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Figure S5: NMR characterization of 2-OH cage (400 MHz, 298K, CD;0D): a) 'H-NMR; b) 13C-NMR; c¢) HSQC; d) HSQC zoomed in the
aliphatic zone; e) HSQC zoomed in the aromatic zone.



3. Structural characterizations

e Characterizations of Lcage precipitate obtained in solvent extraction
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Figure S6: Infrared spectrum of the precipitate obtained with the Lcage derivative during liquid-liquid extraction tests (red
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spectrum, V%= 0.5 M, CTeVin = 0.3 gL, Cleage = 100 mM, ~ 2°™Te = 10 kBg-mL, CUMD = 30 gL, Cyoma = 1.4 M in isane,

T =25°C, Vaq/Vorg = 1, agitation time = 15 min)®> compared to a reference of a Lcage-nitrate single cristal (black spectrum).

e Characterizations with rhenium
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Figure S7: Infrared (left) and Raman (right) spectra of the complexes obtained for all the derivatives with the perrhenate anion (solid
state except for PEG — Re in the Raman spectrum).
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Figure S9: Infrared (left) and Raman (right) spectra of the mixe
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complexes (solvent extraction conditions: ~Re(VI) =100 g-L't, “U(VD =60 g-L?,
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3=0.7 M, Cyoena = 1.4 Min isane, V,q/Vorg = 2, T = 25°C respectively).



e Characterizations with technetium
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Figure S10: Infrared (left) and Raman (right) spectra of the complexes obtained for all the derivatives with the pertechnetate anion
(solid state except for PEG — Re in the Raman spectrum).
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Figure S11: Infrared (left) and Raman (right) spectra of the mixed U0,(NO3)(Tc0,)(MOEHA), and (HTc0,)(MOEHA),

C.ag,ini aq,ini CI‘-ZI(II\}Z“
complexes (solvent extraction conditions: ~Tc(VID) =50g-L1, “U(V) =60gL?, 3=15M, Cmoena=1.4M in isane,
C aq,ini fll}\}gli

Vag/Vorg =2, T=25°C, and ~Te(VIl) = 50 g-L1, 3=1.5M, Cymoena = 1.4 M in isane, Vao/Vorg = 2, T = 25°C respectively).



4. Thermodynamic studies

a)

Figure S12: Thermograms and fit of the titration curve obtained for 39 x 1uL injections of: (a) HReO,4 (54.8 mM) in 0.5 M HNOs in a
PEG (1.7 mM) solution in 0.5 M HNO3, and (b) HReO,4 (40.0 mM) in 0.5 M HNO3 in 2-OH (1.7 mM) solution in 0.5 M HNOs.

a)

Figure S13: Thermograms and fit of the titration curve obtained for 39 x 1uL injections of: (a) HReO4 (58.7 mM) in 0.5 M HNOs in a
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Figure S14: Thermograms and fit of the titration curve obtained for 39 x 1pL injections of: (a) HReO4 (40.0 mM) in 0.5 M HNOs in a
MOH (1.1 mM) solution in 0.5 M HNOs3, and (b) HReO,4 (79.6 mM) in 0.5 M HNO3 in TRIF (4.7 mM) solution in 0.5 M HNOs.
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Figure S15: Thermogram ant fit obtained for 20 x 5uL injections of 0.15 M HTcO, in 0.5 M HNOs in a PEG azacryptand solution in
0.5M HNO3 (CPEG= 7.7 mM)
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Figure S16: Thermogram and fit obtained for 20 x 5uL injections of 0.15 M HTcO,4 in 0.5 M HNO; in a 1-ARM azacryptand solution in
0.5M HNO3 (Cl-ARM =77 mM)



5. SC-XRD

Table S1: Features of hydrogen bond interactions involving the protonated amines and several acceptor O atom species in the

[HeTRIF(ReO4)](CF3S03)s°5(H,0) crystal.

Donor group DA (A) HA (A) D-H*A (°) Acceptor atom
N(2)-H(2A) 2.79(1) 1.92(1) 168.4(4) O(6)xrifiate
N(2)-H(2B) 2.82(1) 1.94(1) 170.4(5) O(13)sriate
N(3)-H(3A) 2.89(1) 2.05(1) 156.3(4) O(4W)yaer
N(3)-H(3B) 2.96(1) 2.08(1) 168.6(4) O(2W)ymter
N(4)-H(4A) 2.96(1) 2.14(1) 152.4(4) O(4)perrhenate
N(4)-H(4B) 2.74(1) 1.86(1) 171.7(4) O(1W)yaer
N(5)-H(5A) 3.08(1) 2.47(1) 126.2(4) O(3)perrhenate
N(5)-H(5A) 2.91(1) 2.15(1) 142.5(4) 0(2W)ymer
N(5)-H(5B) 2.87(1) 2.03(1) 156.3(4) O(16)srfiate
N(6)-H(6A) 2.98(1) 2.32(1) 131.5(4) O(4)perrhenate
N(6)-H(6A) 2.99(1) 2.46(1) 118.6(4) O(5)uitinte
N(6)-H(6B) 2.98(1) 2.14(1) 157.0(4) O(8)uritinte
N(7)-H(7A) 2.82(1) 1.99(1) 153.3(5) O(A4W).yater
N(7)-H(78B) 2.97(1) 2.17(1) 149.3(4) O(3)perrhenate
o(1w) 2.92(1) n.d. n.d. O(L)perrhenate

o(2w) 2.85(1) n.d. n.d. O(1) perrhenate
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