Chemosensing of Neurotransmitters with Selectivity and Naked Eye Detection of L-DOPA Based on Fluorescent Zn(II)-Terpyridine Bearing

Boronic Acid Complexes

Iván J. Bazany-Rodríguez,^a María K. Salomón-Flores,^a Alejandro O. Viviano-Posadas,^a Marco A. García-

Eleno,^b Joaquín Barroso-Flores^{c*} Diego Martínez-Otero,^c and Alejandro Dorazco-González^{a*}

^aInstituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, México, 04510, D.F., México.

^bCentro Conjunto de Investigación en Química Sustentable, UAEM-UNAM, Carretera Toluca-Atlacomulco Km 14.5, C. P. 50200, Toluca, Estado de México, México. Facultad de Química, Universidad Autónoma del Estado de México. ^cCentro Conjunto de Investigación en Química Sustentable, UAEM-UNAM, Carretera Toluca-Atlacomulco Km 14.5, C. P. 50200, Toluca, Estado de México, México. Instituto de Química, Universidad Nacional Autónoma de México. Corresponding author: E-mail: adg@unam.mx

Electronic Supporting Information

Table S1	Crystallographic data for 4.Zn and 5.Zn
Table S2	Hydrogen bonds for 4.Zn [Å and °].
Fig. S1	¹ H NMR spectrum of 1 in CDCl ₃ .
Fig. S2	¹³ C NMR spectrum of 1 in CDCl ₃ .
Fig. S3	Positive scan MS-EI spectrum of 1.
Fig. S4	¹ H NMR spectrum of 2 in DMSO- d_6 .
Fig. S5	¹³ C NMR spectrum of 2 in DMSO- d_6 .
Fig. S6	¹¹ B NMR spectrum of 2 in DMSO- d_6 .
Fig. S7	Positive scan MS-ESI spectrum of 2 .
Fig. S8	IR (ATR) spectrum of 2 .
Fig. S9	¹ H NMR spectrum of 3 in DMSO- d_6 .
Fig. S10	¹³ C NMR spectrum of 3 in DMSO- d_6 .
Fig. S11	¹¹ B NMR spectrum of 3 in DMSO- d_6 .
Fig. S12	Positive scan MS-ESI spectrum of 3 .
Fig. S13	IR (ATR) spectrum of 3 .
Fig. S14	¹ H NMR spectrum of 4 in DMSO- d_6 .
Fig. S15	¹³ C NMR spectrum of 4 in DMSO- d_6 .
Fig. S16	¹¹ B NMR spectrum of 4 in DMSO- d_6 .
Fig. S17	Positive scan MS-ESI spectrum of 4.
Fig. S18	IR (ATR) spectrum of 4.
Fig. S19	¹ H NMR spectrum of 5 in DMSO- d_6 .
Fig. S20	¹³ C NMR spectrum of 5 in DMSO- d_6 .
Fig. S21	Positive scan APCI-ESI spectrum of 5.
Fig. S22	IR (ATR) spectrum of 5.
Fig. S23	¹ H NMR spectrum of 2.Zn in DMSO- d_6 .
Fig. S24	¹³ C NMR spectrum of 2.Zn in DMSO- d_6 .
Fig. S25	¹¹ B NMR spectrum of 2.Zn in DMSO- d_6 .
Fig. S26	Positive scan MS-ESI spectrum of 2.Zn .
Fig. S27	¹ H NMR spectrum of 3.Zn in DMSO- d_6 .
Fig. S28	¹³ C NMR spectrum of 3.Zn in DMSO- d_6 .
Fig. S29	¹¹ B NMR spectrum of 3.Zn in DMSO- d_6 .
Fig. S30	Positive scan MS-ESI spectrum of 3.Zn .
Fig. S31	¹ H NMR spectrum of 4.Zn in DMSO- d_6 .
Fig. S32	¹³ C NMR spectrum of 4.Zn in DMSO- d_6 .
Fig. S33	¹¹ B NMR spectrum of 4.Zn in DMSO- d_6 .
Fig. S34	Positive scan MS-ESI spectrum of 4.Zn .
Fig. S35	¹ H NMR spectrum of 5.Zn in DMSO- d_6 .
Fig. S36	¹³ C NMR spectrum of 5.Zn in DMSO- d_6 .
Fig. S37	Fluorescence pH-titration of buffered aqueous solution of 3.Zn (20 µM).
Fig. S38	Fluorescence pH-titration of buffered aqueous solution of 4.Zn (20 µM).
Fig. S39	Changes of emission spectra ($\lambda_{ex} = 330$ nm) of buffered aqueous solutions at pH 7.4 of 4.Zn (10
	μM) upon addition of increasing amounts of L-DOPA.
Fig. S40	Stoichiometric analysis of 2.Zn by Job plot with L-DOPA at 305 nm.
Fig. S41	Stern–Volmer plot of 2.Zn upon addition of L-DOPA at 409 nm ($\lambda_{ex} = 330$ nm) at pH= 7.4.

Crystal data ^[a]	4.Zn	5.Zn	
Formula	$C_{31}H_{23.81}B_{0.81}Br_3N_4O_{1.63}Zn$	$C_{33}H_{29}Br_5N_4OSZn_2$	
MW (g mol ⁻¹)	792.27	1059.95	
Temperature (K)	100(2)	100(2)	
Crystal system	Monoclinic Monoclin		
Space group	P21/c P21/n		
<i>a</i> (Å)	14.9965(3)	11.8967(3)	
<i>b</i> (Å)	13.1054(2)	13.6816(3)	
<i>c</i> (Å)	17.7644(3)	22.4595(5)	
α (°).	90°	90°	
β (°)	109.7882(7)°	98.2926(10)°.	
γ (°)	$\gamma = 90^{\circ}$	90°	
V(Å ³)	3285.17(10)	3617.42(15)	
Z	4	4	
P_{calcd} (g cm ⁻³)	1.602	1.946	
μ (mm ⁻¹)	5.566	8.905	
$R \left[I \!\!>\!\! 2\sigma(I)\right]^{[b]}$	0.0747	0.0446	
$\mathbf{R}_{w}^{[d]}$	0.2299	0.1175	

Table S1Crystallographic data for **4.Zn** and **5.Zn**.

[a] $\lambda_{CuK\alpha} = 1.54178 \text{ Å}$; [b] $F_o > 4\sigma(F_o)$. [c] $R = \Sigma \|\underline{F_o}\| - |F_c|| / \Sigma |F_o|$ [d] all data.

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
O(1)-H(1)Br(3)	0.84	2.61	3.269(8)	136.7
O(2)-H(2A)Br(3)	0.84	2.45	3.230(8)	153.9

Table S2. Hydrogen bonds for 4.Zn [Å and °].

Fig. S2 13 C NMR spectrum of **1** in CDCl₃.

Fig. S3 Positive scan MS-EI spectrum of 1. Inset: theoretically calculated MS isotopic patterns.

Fig. S4 ¹H NMR spectrum of **2** in DMSO- d_6 .

Fig. S11 ¹¹B NMR spectrum of **3** in DMSO- d_6 .

Fig. S12

Positive scan MS-ESI spectrum of 3. Inset: theoretically calculated MS isotopic patterns.

Fig. S13 IR (ATR) spectrum of 3.

Fig. S16 ¹¹B NMR spectrum of **4** in DMSO- d_6 .

Fig. S17 Positive scan MS-ESI spectrum of 4. Inset: theoretically calculated MS isotopic patterns.

Fig. S20 13 C NMR spectrum of **5** in DMSO- d_6 .

S13

10.17 3.95 8.94 8.76

¹H NMR spectrum of **2.Zn** in DMSO-*d*₆.

¹¹B NMR spectrum of **2.Zn** in DMSO-*d*₆.

S15

Fig. S29 ¹¹B NMR spectrum of **3.Zn** in DMSO- d_6 .

Fig. S30 Positive scan MS-ESI spectrum of **3.Zn**. Inset: theoretically calculated MS isotopic patterns.

Fig. S31 ¹H NMR spectrum of **4.Zn** in DMSO- d_6 .

Fig. S33

¹¹B NMR spectrum of **4.Zn** in DMSO-*d*₆.

Fig. S34 Positive scan MS-ESI spectrum of 4.Zn. Inset: theoretically calculated MS isotopic patterns.

Fig. S36 13 C NMR spectrum of **5.Zn** in DMSO- d_6 .

Fig. S37 Fluorescence pH-titration of buffered aqueous solution of **3.Zn** (20 μM). The inset show pH-titration profile observed at emission maxima.

Fig. S38 Fluorescence pH-titration of buffered aqueous solution of **4.Zn** (20 μM). The inset show pH-titration profile observed at emission maxima.

Fig. S39 Changes of emission spectra ($\lambda_{ex} = 330 \text{ nm}$) of buffered aqueous solutions at pH 7.4 of **4.Zn** (10 μ M) upon addition of increasing amounts of L-DOPA. The inset shows the profile at 402 nm. The solid line was obtained by fitting to Eq. (1).

Fig. S40 Stoichiometric analysis of 2.Zn by Job plot with L-DOPA at 305 nm

Fig. S41 Stern–Volmer plot of 2.Zn upon addition of L-DOPA at 409 nm ($\lambda_{ex} = 330$ nm) at pH= 7.4.