Electronic Supplementary Information (ESI) for:

High denticity oxinate-linear-backbone chelating ligand for diagnostic radiometal ions [¹¹¹In]In³⁺ and [⁸⁹Zr]Zr⁴⁺

Lily Southcott^{a,}, Xiaozhu Wang^a, Luke Wharton^{a,}, Hua Yang^b, Valery Radchenko^{b,}, Manja Kubeil^a, Holger

Stephan⁴, María de Guadalupe Jaraquemada-Peláez⁴ and Chris Orvig⁴

^{*a*} Medicinal Inorganic Chemistry Group, Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada E-mails: orvig@chem.ubc.ca; mdgjara@chem.ubc.ca

^b Life Sciences Division, TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia, V6T 2A3, Canada

^c Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada

^d Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden Rossendorf, Bautzner Landstrasse 400, 01328 Dresden, Germany

*Corresponding Authors: Chris Orvig (<u>orvig@chem.ubc.ca</u>) and María de Guadalupe Jaraquemada-Peláez (<u>mdgjara@chem.ubc.ca</u>)

Table of Contents

NMR spectra of compounds 2 – 7	
NMR spectra of metal complexes	
Concentration dependent radiolabeling	
Solution thermodynamics results	
Density functional theory (DFT) calculations	S23

Figure S2. ¹³C{¹H} NMR spectrum (CDCl₃, RT, 75 MHz) of 2-(hydroxymethyl)quinolin-8-ol (2).

Figure S6. ¹³C{¹H} NMR spectrum (CD₃CN, RT, 100 MHz) of *N*,*N*'-(2-nitrobenzensulfonamide)-1,2-triaminodiethane (4).

Figure S7. ¹H NMR spectrum (CDCl₃, RT, 400 MHz) of di-tert-butyl2,2'-((((2-(tert-butoxy)-2-oxoethyl)azanediyl))bis(ethane-2,1-diyl))bis((phenylsulfonyl)azanediyl))diacetate (5).

Figure S8. ¹³C{¹H} NMR spectrum (CDCl₃, RT, 100 MHz) of di-tert-butyl2,2'-((((2-(tert-butoxy)-2-oxoethyl)azanediyl))bis(ethane-2,1-diyl))bis((phenylsulfonyl)azanediyl))diacetate (5).

Figure S9. ¹H NMR spectrum (CDCl₃, RT, 400 MHz) of di-tert-butyl 2,2'-((((2-(tert-butoxy)-2-oxoethyl)azanediyl))bis(ethane-2,1-diyl))bis(azanediyl))diacetate (6).

Figure S10. ¹³C{¹H} NMR spectrum (CDCl₃, RT, 100 MHz) of di-tert-butyl 2,2'-(((((2-(tert-butoxy)-2-oxoethyl)azanediyl))bis(ethane-2,1-diyl))bis(azanediyl))diacetate **(6).**

Figure S13. $^{1}H^{-1}H$ COSY NMR spectrum (D₂O, RT, 300 MHz) of H₅decaox (7).

NMR spectra of metal complexes

Figure S15. ¹H-¹H COSY NMR spectrum (D₂O, RT, 400 MHz, pH=6.9) of [In(H_xdecaox)]^{5-x}.

Figure S17. ¹H-¹H COSY NMR spectrum (D₂O, RT, 300 MHz, pH=2.7) of [Zr(Hxdecaox)]^{5-x}.

Figure S18. ¹H NMR spectrum (D₂O, RT, 300 MHz, pH=7.3) of [La(H_xdecaox)]^{5-x}.

Figure S19. ¹H-¹H COSY NMR spectrum (D₂O, RT, 300 MHz, pH=7.3) of [La(H_xdecaox)]^{5-x}.

Concentration dependent radiolabeling

Ligand Concentration (M)	[¹¹¹ In]In ³⁺	[⁸⁹ Zr]Zr ⁴⁺
1×10^{-4}	97.9 ± 0.3	99 ± 1
1 × 10 ⁻⁵	98 ± 1	96.4 ± 0.4
1×10^{-6}	99 ± 2	89 ± 4
1×10^{-7}	88.8 ± 0.7	21 ± 4
1×10^{-8}	2.0 ± 0.7	ND

Table S1. Radiolabeling yields (%) of H5decaox at decreasing concentrations.

Figure S20. Radio-HPLC traces of [⁸⁹Zr]Zr(decaox) at decreasing ligand concentrations. Reaction conditions: NaOAc (0.1 M, pH 7) buffer, RT, 30 minutes, 2 MBq of [⁸⁹Zr]ZrCl₄.

Figure S21. Radio-HPLC traces of free [¹¹¹In]InCl₃ control (top) and [¹¹¹In]In(decaox) (bottom). Reaction conditions: NaOAc (0.1 M, pH 7) buffer, RT, 30 minutes, 3 MBq of [¹¹¹In]InCl₃.

Figure S22. Radio-HPLC traces of [¹¹¹In]In(decaox) at decreasing ligand concentrations. Reaction conditions: NaOAc (0.1 M, pH 7) buffer, RT, 30 minutes, 3 MBq of [¹¹¹In]InCl₃.

UIB1 B, Analog In (LSIM18D5.D)

Solution thermodynamics

Ligand protonation constants

Figure S23. Representative spectra of H₅decaox during (A/B) acidic in-batch UV spectrophotometric titration $[L] = 2.25 \times 10^{-5}$ M, T = 25 °C, l = 1 cm, I = 0.16 M NaCl when possible; (C-E) combined UV-potentiometric titration $[L] = 9.62 \times 10^{-4}$ M, T = 25 °C, l = 0.2 cm, I = 0.16 M NaCl.

Figure S24. (A) Electronic spectra of the nine absorbing species in H₅decaox; (B) speciation plot of H₅decaox calculated with protonation constants in Table 1, $[H_5 decaox] = 1 \times 10^{-4} \text{ M}.$

Metal complexation with Zr⁴⁺, In³⁺ and La³⁺

Figure S25. Representative spectra of In^{3+} -H₅decaox during (A-B) UV-acidic batch titration $[In^{3+}] = [L] = 2.25 \times 10^{-5}$ M, T = 25 °C, l = 1 cm, *I* = 0.16 M NaCl; (C-D) Change of absorbance in the same UV-acidic batch experiment at 322 nm and 385 nm; blue dots are original data points and red dots represents the fit versus data points (upper and lower left). Obtained (blue) and fitted (red) spectra for pH = 0.99 and 0.85 specific data points (upper and lower right).

Figure S26. Representative spectra of $In^{3+}-H_5$ decaox during (A-C) UV-potentiometric titration [In^{3+}] = [L] = 7.67 × 10⁻⁴ M, T = 25 °C, 1 = 0.2 cm, *I* = 0.16 M NaCl.

Figure S27. Representative spectra of Zr^{4+} -H₅decaox during (A-E) UV-batch titration $[Zr^{4+}] = [L] = 2.0 \times 10^{-5}$ M, T = 25 °C, l = 1 cm, *I* = 0.16 M NaCl.

Figure S28. Change of absorbance of Zr^{4+} -H₅decaox during the UV-acidic batch experiment at 321 nm and 386 nm; blue dots are original data points and red dots represents the fit versus data points (upper and lower left). Obtained (blue) and fitted (red) spectra for pH = 0 specific data point (upper and lower right).

Figure S29. Representative spectra of La³⁺-H₅decaox during (A-E) combined UV-potentiometric titration $[La^{3+}] = [L] = 8.31 \times 10^{-4} \text{ M}, T = 25 \text{ °C}, l = 0.2 \text{ cm}, I = 0.16 \text{ M NaCl}.$

Figure S30. Change of absorbance of La^{3+} -H₅decaox during the UV-potentiometric experiment at 321 nm and 335 nm; blue dots are original data points and red dots represents the fit versus data points (upper and lower left). Obtained (blue) and fitted (red) spectra for pH = 1.86 and 7.74 specific data points (upper and lower right).

Figure S31. DFT calculated [In(decaox)]²⁻ structures.

Table S2. Bond lengths	from DFT-calculated	[In(decaox)] ²⁻	structures
------------------------	---------------------	----------------------------	------------

	M-O (ligand) distances (Å)						M-N (Ligand) Distances (Å)				
	СООН	СООН	СООН	Ox 1	Ox 2	Ox 1	Ox 2	3° N	3° N	3° N	Free Energy
	03	04	05	01	02	N1	N2	N3	N4	N5	(Ha)
[In(decaox)] ²⁻ A	2.17	2.163	2.196	2.203	2.179	2.602	2.761	3.366	3.571	3.41	-2224.178
[In(decaox)] ²⁻ B	2.187	2.185	2.163	2.184	out	2.329	out	2.561	2.436	3.287	-2224.210
[In(decaox)] ²⁻ A·4H ₂ O	2.194	2.169	2.277	2.206	2.186	2.676	2.4	3.685	4.546	2.921	-2529.678
[In(decaox)] ²⁻ B·4H ₂ O	2.186	2.185	2.176	2.203	out	2.33	out	2.572	2.413	3.158	-2529.709

Figure S32. DFT calculated [Zr(decaox)]⁻ structures.

		M-O (lig	M-N (Ligand) Distances (Å)								
	СООН	СООН	СООН	Ox 1	Ox 2	Ox 1	Ox 2	3° N	3° N	3° N	Free Energy
	03	04	05	01	02	N1	N2	N3	N4	N5	(Ha)
[Zr(decaox)] ⁻ A	2.082	2.074	2.147	2.085	2.139	2.728	2.448	3.66	3.768	2.997	-2081.153
[Zr(decaox)]⁻B	2.22	2.136	2.123	2.158	2.231	2.38	2.659	2.675	2.829	3.249	-2081.148
[Zr(decaox)] ⁻ A·4H ₂ O	2.098	2.084	2.195	2.108	2.148	2.642	2.391	3.741	4.507	2.75	-2386.646
[Zr(decaox)] ⁻ B·4H ₂ O	2.208	2.121	2.122	2.175	2.267	2.382	2.671	2.657	2.79	3.253	-2386.651

 Table S3. Bond lengths from DFT-calculated [Zr(decaox)]⁻ structures

Figure S33. DFT calculated [La(decaox)]²⁻ structures.

Table S4. Bond lengths from DFT-calculated [La(decaox)]²⁻ structures

	M-O (ligand) distances (Å)						M-N (Ligand) Distances (Å)				
	СООН	СООН	СООН	Ox 1	Ox 2	Ox 1	Ox 2	3° N	3° N	3° N	Free Energy
	03	04	05	01	02	N1	N2	N3	N4	N5	(Ha)
[La(decaox)] ²⁻ A	2.483	2.502	2.545	2.474	2.481	2.828	2.797	3.104	3.146	3.096	-2469.802
[La(decaox)] ²⁻ B	2.562	2.477	2.483	2.504	2.58	2.666	2.835	2.888	2.925	3.079	-2469.797
[La(decaox)] ²⁻ A·4H ₂ O	2.484	2.506	2.565	2.592	2.469	2.816	2.774	3.044	3.123	3.080	-2775.883 ^a
[La(decaox)] ²⁻ B·4H ₂ O	2.569	2.546	2.442	2.516	2.605	2.695	2.811	2.88	2.985	3.099	-2775.884 ^a
^a Potential energy (RPBE1PBE energy calculation)											