Ultrafine CoRu alloy nanoparticles in situ embedded in Co₄N porous nanosheets as high-efficient hydrogen evolution electrocatalysts

Meilin Zhang,^a Jinlei Wang,^a Yeqing Zhang,^a Lei Ye,^a Yaqiong Gong,^{a*}

^a School of Chemical Engineering and Technology, North University of China, Taiyuan, Shanxi 030051

* Corresponding author: Yaqiong Gong: gyq@nuc.edu.cn

Fig. S1 XRD pattern and SEM image of α-Co(OH)₂.

Fig. S2 (a) SEM image of Ru(OH)₃@Co(OH)₂ and corresponding (b) EDS mapping.

Fig. S3 LSV curves of CoRu_{0.5}@Co₄N, CoRu@Co₄N and CoRu₂@Co₄N tested in 1 M KOH, 1 M PBS and 0.5 M H₂SO₄.

Fig. S4 LSV curves of CoRu@Co₄N, Ru/C and Ru/C-Co₄N tested in 1 M KOH, 1 M PBS and 0.5 M H₂SO₄.

Fig. S5 CVs for HER in 1.0 M KOH.

Fig. S6 ECSA-normalized LSV curves in 1.0 M KOH.

Fig. S7 Multi-current process of CoRu@Co₄N in 1.0 M KOH.

Fig. S8 SEM images of CoRu@Co4N after stability test in 1.0 M KOH.

Fig. S9 CVs for HER in 1 M PBS.

Fig. S10 CVs for HER in 0.5 M H_2SO_4 .

Fig. S11 ECSA-normalized LSV curves in 1M PBS and 0.5 M H₂SO₄.

Fig. S12 ADT cyclic stability and time-dependent current density curve of CoRu@Co₄N in 1 M PBS and 0.5 M H_2SO_4 .

Catalyst	Electrolyte	η ₁₀ (mV)	Reference
	1 M KOH	13	
CoRu@Co ₄ N	0.5 M H ₂ SO ₄	15	This work
	1M PBS	44	
Ru@MWCNT	$0.5 \text{ M} \text{ H}_2 \text{SO}_4$	13	Nat. Commun., 2020, 11, 1278.
	1 M KOH	17	
RuP ₂ @NPC	1 M KOH	52	Angew. Chem. Int. Ed., 2017, 56, 11559-11564.
	$0.5 \text{ M H}_2\text{SO}_4$	38	
	1M PBS	57	
Ru@C ₂ N	1 M KOH	17	Nat. Nanotechnol., 2018, 12, 441-446.
	$0.5 \text{ M H}_2\text{SO}_4$	13.5	
Co ₁ /PCN	$0.5 \text{ M H}_2 \text{SO}_4$	151	Nat. Catal., 2019, 2, 134-141.
	1 M KOH	89	
L-Ag	$0.5 \text{ M} \text{H}_2 \text{SO}_4$	32	Nat. Catal., 2019, 2, 1107-1114.
Ru-NC-700	$0.5 \text{ M H}_2\text{SO}_4$	29	Nat. Commun., 2019, 10, 631.
		12	
Ru-MoO ₂	$0.5 \text{ M H}_2 \text{SO}_4$	29	J. Mater. Chem. A, 2017, 5, 5475-5485.
Pt_GT_1		18	Nat Energy 2018 3 773-782
Ni-FeP/C	$0.5 \text{ M H}_2 \text{SO}_4$	72	Sci. Adv., 2019, 5, eaav6009.
	1 M KOH	95	
Pt@PCM	$0.5 \text{ M} \text{H}_2\text{SO}_4$	105	Sci. Adv., 2018, 4, eaao6657.
	1 M KOH	139	
Ru/GLC	0.5 M H 60	25	ACS Appl. Mater. Interfaces, 2016, 8, 35132- 35137.
	$0.5 \text{ M H}_2\text{SO}_4$	35	
Ru/C ₃ N ₄ /C	$0.5 \text{ M} \text{H}_2 \text{SO}_4$	70	J. Am. Chem. Soc., 2016, 138, 16174-16181.
	1 M KOH	79	
PtRu@RFCS	$0.5 \ M \ H_2 SO_4$	20	Energy Environ. Sci., 2018, 11, 1232-1239.
RuCoP	$0.5 \text{ M} \text{ H}_2 \text{SO}_4$	11	Energy Environ. Sci., 2018, 11, 1819-1827.
	1 M KOH	23	
Ru@CN-0.16	$0.5 \text{ M} \text{H}_2 \text{SO}_4$	126	Energy Environ. Sci., 2018, 11, 800-806.
	1 M KOH	32	
Ru-MoO ₂	$0.5 \text{ M} \text{H}_2 \text{SO}_4$	29	J. Mater. Chem. A, 2017, 5, 5475-5485.
	1 M KOH	55	
L-RuP	$0.5 \text{ M H}_2\text{SO}_4$	19	Adv. Mater., 2018, 30, 1800047.
	1 M KOH	18	
_	1 M PBS	95	
PtNi-O/C	1 M KOH	40	J. Am. Chem. Soc., 2018, 140, 9046-9050.
Ni@Ni ₂ P-Ru	$0.5 \text{ M H}_2\text{SO}_4$	51	J. Am. Chem. Soc., 2018, 140, 2731-2734.
	1 M KOH	31	

Table. S1 A performance comparison of CoRu@Co₄N to reported HER electrocatalysts recently.