Supplementary Data

A copper(II)-based porous metal-organic framework for efficient and rapid capture of toxic oxo-anion pollutants from water

Yang Li, Jin Yang,* and Jian-Fang Ma*

Key Lab for Polyoxometalate Science, Department of Chemistry, Northeast Normal University, Changchun 130024, China

* Correspondence authors E-mail: yangj808@nenu.edu.cn (J. Yang) E-mail: majf247@nenu.edu.cn (J.-F. Ma) **Material and methods.** Chemicals were received commercially. 1,4,8,11-Tetraazacyclotetradecane-*N*,*N'*,*N''*,*N'''*-tetramethylenecinnamic acid (H₄L) was synthesized by following the reported method.^{1,2} A Mattson Alpha Centauri spectrometer was used to determine FT-IR spectra. UV/vis spectrum was conducted with a Cary TU-1900 double beam UV/vis spectrophotometer. Elemental analyses (C, H and N) were recorded on a Euro vector EA3000 elemental analyzer. A Rigaku Dmax 2000 X-ray diffractometer with graphite monochromatized CuK α radiation (λ = 0.154 nm) was utilized to measure PXRD pattern. Thermogravimetric curve was determined on a Perkin-Elmer Model TG-7 analyzer. ICP data was conducted on a Leeman Laboratories Prodigy inductively coupled plasma-optical atomic emission spectrometry (ICP-AES). Scanning electron microscopy (SEM) was tested on Hitachi SU8010. Energy dispersive X-ray Spectroscopy (EDS) (EDX spectra and EDX mapping) was recorded on Hitachi SU8010 EDAX.

X-Ray crystallography. Crystallographic data was achieved on an Oxford Diffraction Gemini R Ultra diffractometer with graphite-monochromated MoK α radiation ($\lambda = 0.71073$ Å). Crystal structure was solved by the direct methods with SHELXS-2018, and refined with SHELXL-2018 program within WINGX.³⁻⁵ Absorption corrections were accomplished with a multi-scan technique. Non-hydrogen atoms were refined anisotropically. Disordered solvents were removed with the SQUEEZE in PLATON.⁶ Selected bond lengths and angles, and crystallographic data were summarized in Tables S1and S2.

Synthesis of 1. $CuCl_2 \cdot 2H_2O$ (7 mg, 0.04 mmol) and H₄L (8 mg, 0.01 mmol) were dissolved in a mixture of DMA (3 mL) and water (1 mL). The mixture was sealed in a Teflon reactor (15 mL) and heated at 80 °C for two days. After cooling to room temperature, green block-shaped crystals were achieved in a 65% yield. Anal. Calcd for $C_{66}H_{116}Cl_2Cu_3N_8O_{22}$ (*Mr* = 1635.18): C, 48.48; H, 7.15; N, 6.85. Found: C, 48.95; H, 7.77; N, 7.06. IR data (KBr, cm⁻¹): 3444.87 (w), 2935.40 (w), 1638.56 (s), 1510.96 (m), 1387.88 (s), 1267.77 (m), 1187.83 (w), 1063.12 (w), 1016.04 (w), 983.50 (w), 921.25 (w), 840.82 (w), 813.78 (w), 722.37 (w), 593.01 (w), 498.56 (w).

Anion exchange procedure. The sample of 1 (30 mg) was soaked in 5 mL aqueous

solution of KMnO₄ (3 mM, 4 mM, 5 mM and 6 mM) with stirring at room temperature. Anion exchange was monitored with UV/vis spectroscopy (545.5 nm). Similar $Cr_2O_7^{2-}$ exchange experiments were also determined in aqueous solutions of $K_2Cr_2O_7$ (1 mM, 2 mM and 3 mM) (352 nm). The sample of **1** (20 mg) was added to aqueous solution of $Cr_2O_7^{2-}$ (0.4 mM, 3 mL).

Anion selectivity. The sample of 1 (10 mg) was immersed in an aqueous solution of KMnO₄ (4 mM, 5 mL). NaClO₄, NaNO₃, NH₄PF₆ or KH₂PO₄ (4 mM/40 mM) was added to the mixture, respectively. After 5 h, the solution was monitored with UV/vis absorption spectroscopy. Similarly, the sample of 1 (10 mg) was soaked in an aqueous solution of K₂Cr₂O₇ (0.5 mM, 3 mL). NaClO₄, NaNO₃, NH₄PF₆ or KH₂PO₄ (0.5 mM/5 mM) was added to the mixture, respectively. After 9 h, the solution was monitored with UV/vis absorption spectroscopy.

Scheme S1 Synthetic procedure for H₄L.

Fig. S1 Thermogravimetric curve of 1.

The weight loss before 156 °C is probably ascribed to the removal of four DMA molecules and ten water molecules (calculated: 34.75%, observed: 34.49%).

Fig. S2 (a) Coordination environments of Cu(II). (b) Structure of $[Cu_2(COO)_4(H_2O)_2]$ unit. (c) 1D nanotubular channel. (d) Packing structure of **1**.

Fig. S3 The simulated (red) and experimental (black) PXRD patterns of **1** and the one after immersion in water (blue).

Fig. S4 IR spectra of 1 and N₃@1.

Fig. S5 PXRD patterns of the simulated (red), the experimental (black) and the anion exchange with N_3^- (blue).

Fig. S6 Uv-vis adsorption spectra of MnO_4^- in the anion exchange process (3 mM (a), 4 mM (b), 5 mM (c) and 6 mM (d)).

Fig. S7 PXRD patterns of the simulated (red), the experimental (black) and after anion exchange with MnO_4 - (blue).

Fig. S8 EDX spectra of 1 (a) and $MnO_4@1$ (b).

Fig. S9 Uv-vis adsorption spectra of $Cr_2O_7^{2-}$ in the anion exchange process (1 mM (a), 2 mM (b) and 3 mM (c)).

Fig. S10 PXRD patterns of the simulated (red), the experimental (black) and after $Cr_2O_7^{2-}$ exchange (blue).

Fig. S11 EDX spectra of 1 (a) and $Cr_2O_7@1$ (b).

Fig. S12 (a) UV/vis absorption spectra of Cr_2O_7 ²⁻ removed by 1 at different time intervals. (b) Absorption kinetics of Cr_2O_7 ²⁻ (0.4 mM).

Fig. S13 (a) Calibration plot of standard MnO_4^- determined by UV/vis spectra. (b) Fitting plot of MnO_4^- concentration *vs* Abs value.

Fig. S14 (a) Calibration plot of standard $Cr_2O_7^{2-}$ determined by UV/vis spectra. (b) Fitting plot of $Cr_2O_7^{2-}$ concentration *vs* Abs value.

	1		
Cu(1)-N(1)	2.116(4)	O(1) ^{#2} -Cu(2)-O(1)	90.3(2)
Cu(1)-N(2)	2.135(4)	O(1)-Cu(2)-O(4) ^{#2}	171.2(2)
Cu(1)-Cl(1)	2.432(2)	O(1) ^{#2} -Cu(2)-O(4)	171.2(2)
Cu(2)-O(1)	1.931(3)	O(1) ^{#2} -Cu(2)-O(4) ^{#2}	89.52(15)
Cu(2)-O(4)	1.959(3)	O(4)-Cu(2)-O(4) ^{#2}	89.4(2)
Cu(2)-O(2W)	2.188(5)	O(1)-Cu(2)-O(2W)	95.30(18)
Cu(3)-O(2)	1.997(4)	O(1) ^{#2} -Cu(2)-O(2W)	95.30(18)
Cu(3)-O(3)	1.971(3)	O(4)-Cu(2)-O(2W)	93.44(16)
Cu(3)-O(1W)	2.163(7)	O(4)#2-Cu(2)-O(2W)	93.43(16)
N(1)-Cu(1)-N(2)	87.95(17)	O(2)-Cu(3)-O(2) ^{#2}	89.6(2)
N(1)-Cu(1)- N(2) ^{#1}	160.0(2)	O(3)-Cu(3)-O(2)	88.73(15)
N(1)-Cu(1)-N(1) ^{#1}	87.6(2)	O(3) ^{#2} -Cu(3)- O(2)	167.8(2)
N(1)#1-Cu(1)-N(2)	160.0(2)	O(3)-Cu(3)-O(2) ^{#2}	167.8(2)
N(1) ^{#1} -Cu(1)-N(2) ^{#1}	87.95(17)	O(3) ^{#2} -Cu(3)-O(2) ^{#2}	88.72(15)
N(2)-Cu(1)- N(2) ^{#1}	89.6(3)	O(2)-Cu(3)-O(1W)	96.2(2)
N(1)-Cu(1)-Cl(1)	101.70(15)	O(2) ^{#2} -Cu(3)-O(1W)	96.2(2)
N(1) ^{#1} -Cu(1)-Cl(1)	101.70(15)	O(3)-Cu(3)-O(1W)	96.01(19)
N(2)-Cu(1)-Cl(1)	98.29(19)	O(3) ^{#2} -Cu(3)-O(1W)	96.01(19)
N(2) ^{#1} -Cu(1)-Cl(1)	98.30(19)	O(3) ^{#2} -Cu(3)-O(3)	90.4(2)
O(1)-Cu(2)-O(4)	89.52(15)		

Table S1 Selected Bond Distances (Å) and Angles (°) for 1.

Symmetry transformations used to generate equivalent atoms:

 ${}^{\#_1}-y+1, -x+1, z; {}^{\#_2}-x+y, y, z; {}^{\#_3}-y+2/3, x-y+1/3, z+1/3; {}^{\#_4}-x+y+1/3, -x+2/3, z-1/3.$

Adsorbents	Q _t (mg/g)	Selectivity	Ref.
1	106	ClO_4^- , NO_3^- , PF_6^- , $H_2PO_4^-$	This work
$[Ag_4(L_1)_6](BF_4)_4$	75.2	Cl ⁻ ,Br ⁻ ,NO ₃ ⁻	7
$\{[Ag_2(H_2O)(L_2)_2] \cdot (BF_4)_2\}_n$	83.4	Cl ⁻ ,Br ⁻ ,NO ₃ ⁻	7
$\{[Zn_2(BDC)_{1.5}(L_3)(DMF)]NO_3\}_n$	104	various anions	8
${[Cd(L_5)_2] \cdot (ClO_4)_2}_n$ (IPM-206)	113	PF_6^- , $CF_3SO_3^-$	9
$[Ag(L_4)](NO_3)(H_2O)(CH_3CN) (1 \cdot NO_3)$	297.9	various anions	10

Table S2 A comparison of the adsorption capacity of 1 for the MnO_4^- anion with other reported adsorbents.

Table S3 A comparison of the adsorption capacity of **1** for the $Cr_2O_7^{2-}$ anion with other reported adsorbents.

Adsorbents	Q _t (mg/g)	Selectivity	Ref.
1	70	ClO_4 , NO_3 , PF_6 , H_2PO_4	This work
Cu-BTC	48	_	11
Zr ₆ O ₄ (OH) ₄ (BPYDC) ₆ (MOF-867)	53.4	-	12
[Zn ₂ (Tipa) ₂ (OH)]·3NO ₃ ·12H ₂ O (FIR-53)	74.2	Cl ⁻ ,Br ⁻ ,NO ₃ ⁻	13
$[Ag(L_4)](CF_3CO_2)(H_2O)$	207	various anions	14
TJNU-243	273	various anions	15
TJNU-244	269	various anions	15
TJNU-334	293	various anions	15

Τa	ıble	S4	Crysta	allograp	ohic	Data	and	Structural	Refinement	for 1	

Compound	1
Formula	$C_{66}H_{116}Cl_2Cu_3N_8O_{22}$
Mr	1635.18
Crystal system	Trigonal
Space group	<i>R-3m</i>
<i>a</i> (Å)	38.907(3)
<i>b</i> (Å)	38.907(3)

<i>c</i> (Å)	44.043(3)
α(°)	90
$\beta(^{\circ})$	90
γ(°)	120
$V(Å^3)$	57737(9)
Ζ	18
D_{calc} (g cm ⁻³)	0.847
<i>F</i> (0 0 0)	15570
R _{int}	0.118
GOF on F^2	0.969
$R1^{a}$ [I>2 σ (I)]	0.1076
wR_2^b (all data)	0.3465

 ${}^{a}R_{1} = \Sigma ||F_{o}| - |F_{c}|| / \Sigma |F_{o}|. {}^{b}wR_{2} = \{\Sigma [w(F_{o}^{2} - F_{c}^{2})^{2}] / \Sigma w(F_{o}^{2})^{2}]\}^{1/2}$

References

- 1 L. Ma, J. Yang, B.-B. Lu, C.-P. Li and J.-F. Ma, *Inorg. Chem.*, 2018, 57, 11746–11752.
- 2 M. Shi, J. Yang, Y.-Y. Liu and J.-F. Ma, Dyes Pigments, 2016, 129, 109-120.
- 3 G. M. Sheldrick, SHELXS-2018, Program for the crystal structure solution, University of Göttingen: Göttingen, Germany, 2018.
- 4 G. M. Sheldrick, SHELXL-2018, Program for the crystal structure refinement, University of Göttingen: Göttingen, Germany, 2018.
- 5 L. J. Farrugia, WINGX: A windows program for crystal structure analysis, University of Glasgow: Glasgow, UK, 1988.
- 6 A. L. Spek, Acta Crystallogr., Sect. C: Struct. Chem., 2015, 71, 9-18.
- 7 B. Ding, J. Z. Huo, Y. Y. Liu, X. G. Wang, X. M. Su, X. X. Wu, Z. Z. Zhu and J. Xia, *RSC Adv.*, 2015, 5, 83415–83426.
- 8 M. Ghorbanloo, M. Saffari, M. Asadi, M. Klopotowski, C. Janiak and A. Morsali, *Appl. Organomet. Chem.*, 2020, **34**, 5768–5780.

- 9 A. V. Desai, S. Sharma, A. Roy and S. K. Ghosh, *Cryst. Growth Des.*, 2019, **19**, 7046–7054.
- 10 C.-P. Li, B.-L. Liu, L. Wang, Y. Liu, J.-Y. Tian, C.-S. Liu and M. Du, *ACS Appl. Mater. Interfaces*, 2017, **9**, 7202–7208.
- 11 A. Maleki, B. Hayati, M. Naghizadeh and S. W. Joo, *J. Ind. Eng. Chem.*, 2015, **28**, 211–216.
- 12 Q. Zhang, J. Yu, J. Cai, L. Zhang, Y. Cui, Y. Yang, B. Chen and G. Qian, *Chem. Commun.*, 2015, **51**, 14732–14734.
- 13 H.-R. Fu, Z.-X. Xu and J. Zhang, Chem. Mater., 2015, 27, 205-210.
- 14 C.-P. Li, H. Zhou, S. Wang, J. Chen, Z.-L. Wang and M. Du, *Chem. Commun.*, 2017, **53**, 9206–9209.
- 15 C.-P. Li, H. Zhou, J.-J. Wang, B.-L. Liu, S. Wang, X. Yang, Z.-L. Wang, C.-S. Liu,
 M. Du and W. Zhou, *ACS Appl. Mater. Interfaces*, 2019, **11**, 42375–42384.