Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2020

Supporting Information

Treating Octasilanol [Si₈O₁₂][OH]₈ with Tetramethoxysilane and Trimethoxyvinylsilane: A Halogen-free Synthetic Route to Alkoxysilyl-substituted Double-four-ring Siloxanes

Takeshi Nozawa, Toshiaki Kobayashi, Tomohiro Matsumoto, Fujio Yagihashi, Kazuhiko Sato, and Masayasu Igarashi*

E-mail: masayasu-igarashi@aist.go.jp

Interdisciplinary Research Center for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan

Table of Contents

1. General Information	S2
2. Experimental Details	S2-S6
3. Single-crystal X-ray diffraction analysis of [Si ₈ O ₁₂][OSi(OMe) ₃] ₈ (4a)	S7-S8
4. References	S8

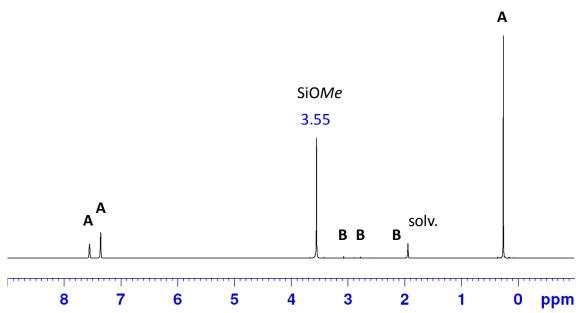
1. General Information

¹H NMR (600 MHz), ¹³C NMR (150 MHz), and ²⁹Si NMR (119 MHz) spectra were recorded at room temperature on a Bruker AVANCE III spectrometer. Chemical shifts (δ) are reported in parts per million (ppm) relative to an internal standard [Me₃Si-C₆H₅: 0.24 ppm (¹H NMR) and -1.1 ppm (¹³C NMR), -4.0 ppm (²⁹Si NMR) for **4a,b** in CD₃CN (Figures S1-S6); 0.27 ppm (¹H NMR), -1.2 ppm (¹³C NMR), and -4.2 ppm (²⁹Si NMR) for analysis of the reaction mixture in DMF-*d*₇ (Figures 1, S7)]. High-resolution time-of-flight (TOF) mass spectra (electrospray-ionization (ESI)) were recorded on a Bruker micrOTOF II spectrometer operating in negative-ion mode.

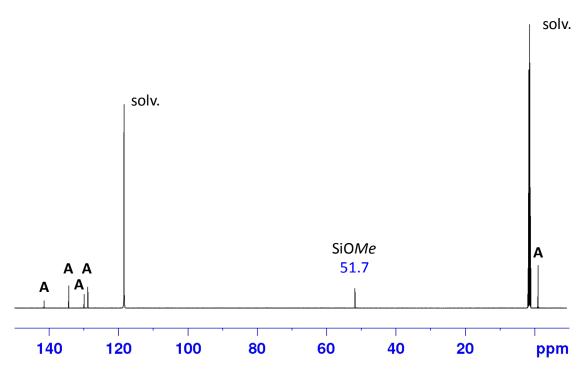
All manipulations were performed under an argon atmosphere using Schlenk-line techniques or an argon-filled glove box. [Si₈O₁₂][OH]₈ was prepared by our previously reported method.¹ QuadraPureTM EDA was obtained from Aldrich Chemical Co. Tetramethoxysilane, trimethoxyvinylsilane, and trimethylphenylsilane were obtained from Tokyo Chemical Industry Co., Ltd. Tetramethoxysilane and trimethoxyvinylsilane were distilled before use. *N,N*-dimethylformamide (DMF; super dehydrated grade), hexane (super dehydrated grade), and conc. sulfuric acid (>95%) were obtained from FUJIFILM Wako Pure Chemical Co. AmberlystTM 15 (JS-HG·DRY) was obtained from ORGANO Co.

2. Experimental Details

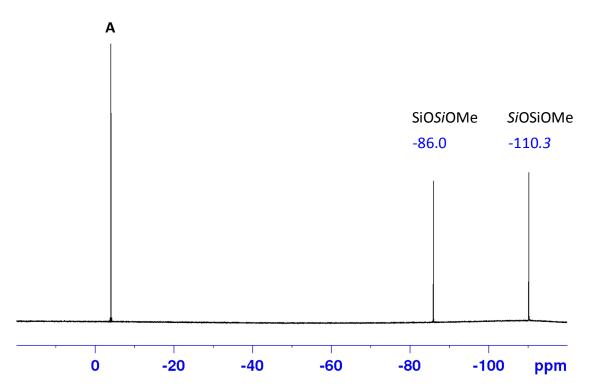
H₂SO₄-catalyzed synthesis of [Si₈O₁₂][OSi(OMe)₃]₈ (4a). In a vial equipped with a magnetic stirring bar, [Si₈O₁₂][OH]₈(3)·11.46DMAc (29.0 mg, 0.0200 mmol) and tetramethoxysilane (100.1 mg, 0.658 mmol) were dissolved in DMF (0.3 mL). To the mixture, a DMF (0.1 mL) solution of H₂SO₄ (0.0020 mmol, 1.25 mol% based on the amount of SiOH moieties in 3) was added. After stirring at room temperature for 24 h, Quadra PureTM EDA (5.0 mg, 4-8 eq. for H₂SO₄) was added and stirring was continued at room temperature for 5 min. Then, the reaction mixture was filtered to remove the Quadra PureTM EDA, before the solvent was removed from the filtrate *in vacuo*. The thus obtained solid was decantated with hexane to afford 4a as a colorless solid (22.5 mg, 74.3%).

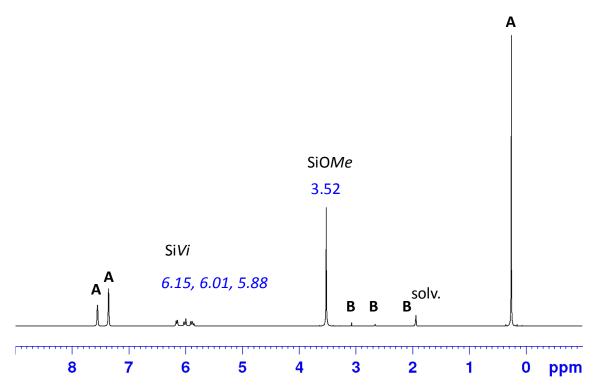

 $[Si_8O_{12}][OSi(OMe)_3]_8$. ¹H NMR (600 MHz, CD₃CN): 3.55 (s, 72H, O*CH*₃); ¹³C NMR (150 MHz, CD₃CN): 51.7 (O*Me*); ²⁹Si NMR (119 MHz, CD₃CN): -86.0 (SiO*Si*OMe), -110.3 (*Si*OSiOMe); HRMS (ESI): m/z calcd. for C₂₄H₇₆NO₄₄Si₁₆⁺ 1530.0043 [M+NH₄]⁺, found 1530.0038.

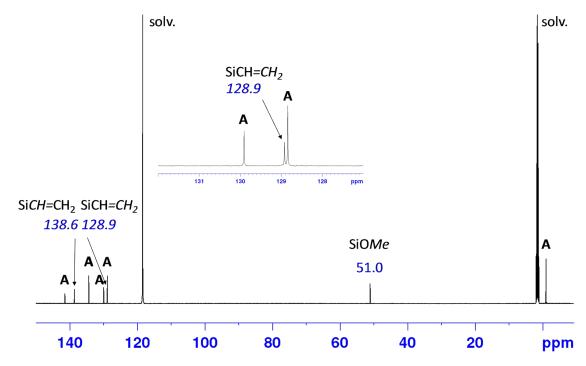
AmberlystTM 15-catalyzed synthesis of [Si₈O₁₂][OSi(OMe)₃]₈ (4a). In a Schlenk tube equipped with a magnetic stirring bar, [Si₈O₁₂][OH]₈(3)·11.46DMAc (29.0 mg, 0.0200 mmol), tetramethoxysilane (98.7 mg, 0.648 mmol), and AmberlystTM 15 (JS-HG·DRY) (5.2 mg, 0.024 mmol, 15 mol% based on the amount of SiOH moieties in 3) were added to DMF (0.5 mL). After stirring at 60 °C for 24 h, AmberlystTM 15 was separated from the reaction mixture by filtration, and the solvent was removed from the filtrate *in vacuo*. The thus obtained solid was decantated with hexane to afford 4a as a colorless solid (27.8 mg, 91.8%).

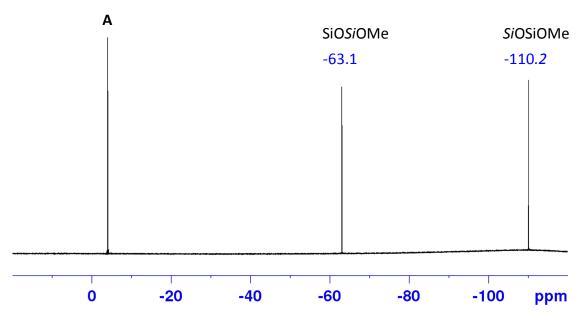

Synthesis of [Si₈O₁₂][OSiVi(OMe)₂]₈ (**4b**). In a Schlenk tube equipped with a magnetic stirring bar, $[Si_8O_{12}][OH]_8(3)\cdot 11.46DMAc$ (29.0 mg, 0.0200 mmol), trimethoxyvinylsilane (95.2 mg, 0.642 mmol), and AmberlystTM 15 (JS-HG·DRY) (5.0 mg, 0.023 mmol, 14 mol% based on the amount of SiOH moieties in **3**) were added to DMF (0.5 mL). After stirring at 60 °C for 24 h, AmberlystTM 15 was separated from the reaction mixture by filtration, and the solvent was removed from the filtrate *in vacuo*. The thus obtained solid was decantated with hexane to afford **4b** as a colorless solid (17.6 mg, 59.4%).

[Si₈O₁₂][OSiVi(OMe)₂]₈. ¹H NMR (600 MHz, CD₃CN): 3.52 (s, 48H, O*CH*₃), 5.88 (dd, 8H, ${}^{3}J$ = 19.0, 13.5 Hz, C*H*=CH₂), 6.01 (d, 8H, ${}^{3}J$ = 19.0 Hz, CH=C*H*₂), 6.15 (d, 8H, ${}^{3}J$ = 13.5 Hz, CH=C*H*₂); ¹³C NMR (150 MHz, CD₃CN): 51.0 (O*Me*), 128.9 (SiCH=*CH*₂), 138.6 (Si*CH*=CH₂); ²⁹Si NMR (119 MHz, CD₃CN): -63.1 (SiO*Si*Vi(OMe)₂), -110.2 (*Si*OSiVi(OMe)₂); HRMS (ESI): m/z calcd. for C₃₂H₇₂O₃₆Si₁₆Na⁺ 1503.0004 [M+Na]⁺, found 1502.9990.


NMR spectra of 4a and 4b


Figure S1. ¹H NMR spectrum of [Si₈O₁₂][OSi(OMe)₃]₈ (**4a**) in CD₃CN. **A**: signals corresponding to the internal standard trimethylsilylbenzene; **B**: signals corresponding to *N,N*-dimethylacetamide (DMAc).


Figure S2. 13 C NMR spectrum of $[Si_8O_{12}][OSi(OMe)_3]_8$ **(4a)** in CD₃CN. **A**: signals corresponding to the internal standard trimethylsilylbenzene.


Figure S3. ²⁹Si NMR spectrum of $[Si_8O_{12}][OSi(OMe)_3]_8$ **(4a)** in CD₃CN. **A**: signals corresponding to the internal standard trimethylsilylbenzene.

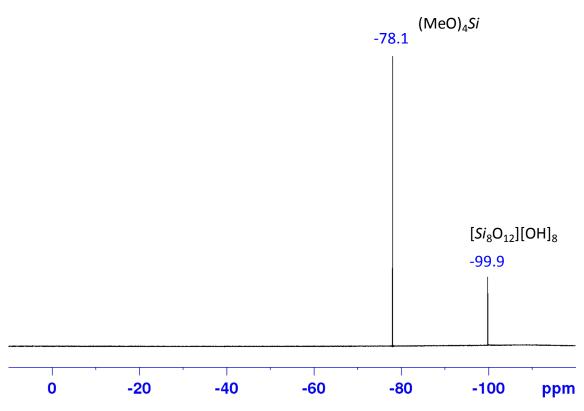

Figure S4. ¹H NMR spectrum of [Si₈O₁₂][OSiVi(OMe)₂]₈ **(4b)** in CD₃CN. **A**: signals corresponding to the internal standard trimethylsilylbenzene; B: signals corresponding to DMAc.

Figure S5. ¹³C NMR spectrum of [Si₈O₁₂][OSiVi(OMe)₂]₈ **(4b)** in CD₃CN. **A**: signals corresponding to the internal standard trimethylsilylbenzene. Inset: magnification of the 127-132 ppm region.

Figure S6. ²⁹Si NMR spectrum of $[Si_8O_{12}][OSiVi(OMe)_2]_8$ **(4b)** in CD₃CN. **A**: signals corresponding to the internal standard trimethylsilylbenzene.

Figure S7. ²⁹Si NMR spectrum of the mixture of silanol [Si₈O₁₂][OH]₈(**3**) (0.02 mmol) and tetramethoxysilane (0.66 mmol) without an acidic catalyst in DMF- d_7 (after stirring for 24 h at RT). The starting materials remained unreacted.

3. Single-crystal X-ray diffraction analysis of [Si₈O₁₂][OSi(OMe)₃]₈ (4a)

Alkoxysilane **4a** (509 mg, 0.336 mmol) was dissolved in a mixture of toluene (1.5 mL) and hexane (0.5 mL). Keeping the solution at -30 °C for one day afforded single crystals of **4a**. X-ray diffraction data for **4a** were collected on a Rigaku XtaLAB P200 diffractometer with a Pilatus 200K detector using multi-layer mirror monochromatic Mo K α radiation (λ = 0.71075 Å) under a stream of N₂ at 93 K. A thermal ellipsoid plot is shown in Figure 2, and the crystal data and structure-refinement parameters are listed in Table S1.

Data collection, cell refinement, and data reduction were conducted using the CrystalClear-SM Expert 2.0 software. The structure was solved by direct methods using the program SHELXT-2015 and refined by full-matrix least-squares methods on F^2 using SHELXL-2015. All materials for publication were prepared using the Olex2 software. All non-hydrogen atoms were refined anisotropically. The H atoms were calculated geometrically and refined in riding mode using $U_{\rm iso}({\rm H})$ values of $1.5U_{\rm eq}({\rm C})$.

Table S1. Crystal data and structure refinement parameters for 4a

Moiety formula	$C_{24}H_{72}O_{44}Si_{16}$	
Sum formula	$C_{24}H_{72}O_{44}Si_{16}$	
Formula weight	1514.25	
Temperature	93 K	
Wavelength	0.71075 Å	
Crystal system	Monoclinic	
Space group	Cc	
Unit cell dimensions	a = 14.713(3) Å	$\alpha = 90^{\circ}$
	b = 16.575(4) Å	$\beta = 90.201(5)^{\circ}$
	c = 26.663(6) Å	$\gamma = 90^{\circ}$
Volume	6503(2) $Å^3$	
Z	4	
Density (calculated)	$1.547~\mathrm{Mg/m}^3$	
Absorption coefficient	0.413 mm ⁻¹	
F(000)	3168	
Crystal size	$0.23 \times 0.14 \times 0.04 \text{ mm}^3$	
Theta range for data collection	3.056 to 27.478°	
Index ranges	-19≤ <i>h</i> ≤18, -21≤ <i>k</i> ≤21, -34≤ <i>l</i> ≤34	
Reflections collected	40200	
Independent reflections	14534 [R(int) = 0.1161]	

Completeness to $\theta = 25.242^{\circ}$ 99.7%

Refinement method Full-matrix least-squares on F^2

Data / restraints / parameters 14534 / 2 / 808

Goodness-of-fit on F^2 0.967

4. References

- T. Nozawa, T. Matsumoto, F. Yagihashi, T. Beppu, K. Sato, M. Igarashi, *Chem. Lett.* 2018, 47, 1530-1533.
- 2 CrystalClear-SM Expert: Rigaku Corporation, Tokyo, Japan, 2011.
- 3 SHELXT–2015: G. M. Sheldrick, Program for the Solution of Crystal Structures; *Acta Crystallogr*. *A* 2015, **71**, 3–8.
- 4 SHELXL-2015: G. M. Sheldrick, Program for the Refinement of Crystal Structures; Acta Crystallogr. C 2015, 71, 3-8.
- O. V. Dolomanov, L. J. Bourhis, R.J. Gildea, J.A.K. Howard, H. Puschmann, *OLEX2: A complete structure solution, refinement and analysis program. J. Appl. Cryst.* 2009, 42, 339-341.