Macrocyclic squaramides as ion pair receptors and fluorescent sensors selective towards sulfates

Marta Zaleskaya, Damian Jagleniec and Jan Romański*

*Faculty of Chemistry, University of Warsaw, Pasteura 1, PL 02-093 Warsaw, Poland *jarom@chem.uw.edu.pl

Table of Contents

1.	General information	S1
2.	NMR titration experiments	S2
3.	DOSY, ROESY and HSQC experiments	S10
4.	UV-Vis and Emission spectra	S12
5.	Molecular modelling	S15
6.	NMR spectra of newly synthesised compounds	S22

General information

Unless specifically indicated, all other chemicals and reagents used in this study were purchased from commercial sources and used as received. If necessary purification of products was performed using column chromatography on silica gel (Merck Kieselgel 60, 230-400 mesh) with mixtures of chloroform/methanol. Thin-layer chromatography (TLC) was performed on silica gel plates (Merck Kieselgel 60 F254).

¹H and ¹³C NMR spectra used in the characterization of products were recorded on Bruker 300 spectrometer using a residual protonated solvent as internal standard.

¹H NMR DOSY, ROESY and HSQC experiments were conducted at 298 K on Varian VNMRS 600 MHz instruments with a residual solvent signal as an internal standard.

Mass spectra were measured on Quattro LC Micromass or Shimadzu LCMS-IT-TOF unit.

UV-vis analyses were performed using Thermo Spectronic Unicam UV500 Spectrophotometer.

NMR titration experiments

The ¹H NMR titration was conducted at 298K in DMSO-d₆. In each case, a 500 μ L of freshly prepared 2.0 mM solution of **R1** (1.6 mM of **R3**; 1.7 mM of **R4**) was added to a 5 mm NMR tube. In the case of ion pair titration receptor was firstly pretreated with one or three equivalent of KPF₆ or NaClO₄. Then small aliquots of solution of TBAX, containing receptor at constant concentration, were added and a spectrum was acquired after each addition. The resulting titration data were analyzed using BindFit (v0.5) package, available online at http://supramolecular.org. Each titration was carried out in duplicate. Reported values are calculated as weighted arithmetic mean, where the weights were the errors obtained for each value separately. The given uncertainty of the association constants is the largest of the variance (external or internal).

Fig. S1. Typical ¹H NMR spectra recorded upon titration of **R1** in DMSO-d₆ with TBACI.

Fig. S2. ¹H NMR titration binding isotherms of **R1** in DMSO-d₆ upon addition of increasing amounts of TBACI (a) and of TBACI in the presence of 1 equiv. NaClO₄ (b).

Fig. S3. ¹H NMR titration binding isotherms of **R1** in DMSO-d₆ upon addition of increasing amounts of TBACI in the presence of 1 equiv. KPF_6 (a) and of TBACI in the presence of 3 equiv. KPF_6 (b).

Fig. S4. ¹H NMR titration binding isotherms of **R1** in DMSO-d₆ upon addition of increasing amounts of TBABr (a) and of TBABr in the presence of 1 equiv. KPF₆ (b).

Fig. S5. ¹H NMR titration binding isotherms of **R1** in DMSO-d₆ upon addition of increasing amounts of TBANO₂ (a) and of TBANO₂ in the presence of 1 equiv. KPF_6 (b).

Fig. S6. ¹H NMR titration binding isotherms of **R1** in DMSO-d₆ upon addition of increasing amounts of TBAPhCOO (a) and of TBAPhCOO in the presence of 1 equiv. KPF_6 (b).

Fig. S7. ¹H NMR titration binding isotherms of **R1** in DMSO-d₆ upon addition of increasing amounts of NaClO₄ (a) and of KPF₆ (b).

Fig. S8. Partial ¹HNMR spectra recorded upon titration of **R1** in DMSO-d₆ with TBA₂SO₄ (signals corresponding to amide and phenyl protons).

Fig. S9. ¹H NMR spectra recorded upon titration of **R1** in DMSO-d₆ with TBACH₃COO.

Fig. S10. Typical ¹H NMR spectra recorded upon titration of R3 in DMSO-d₆ with TBACI.

Fig. S11. ¹H NMR titration binding isotherms of **R3** in DMSO-d₆ upon addition of increasing amounts of TBACI (a) and of TBACI in the presence of 1 equiv. KPF_6 (b).

Fig. S12. ¹H NMR titration binding isotherms of **R3** in DMSO-d₆ upon addition of increasing amounts of TBABr (a) and of TBANO₂ (b).

Fig. S13. ¹H NMR titration binding isotherms of **R3** in DMSO-d₆ upon addition of increasing amounts of TBAPhCOO.

Fig. S14. Partial ¹HNMR spectra recorded upon titration of **R3** in DMSO-d₆ with TBA₂SO₄ (signals corresponding to amide and phenyl protons).

Fig. S15. ¹H NMR spectra recorded upon titration of **R3** in DMSO-d₆ with TBACH₃COO.

Fig. S16. ¹H NMR titration binding isotherms of **R4** in DMSO-d₆ upon addition of increasing amounts of TBACI (a) and of TBACI in the presence of 1 equiv. KPF_6 (b).

DOSY, ROESY and HSQC experiments

Fig. S17. DOSY experiment of R1 (1.5 mM) + 3.2 eq. TBA₂SO₄ in DMSO-d₆.

Fig. S18. ROESY NMR spectrum of R1 (1.5 mM) + 3.2 eq. TBA₂SO₄ in DMSO-d₆.

Fig. S19. HSQC NMR spectrum of R1 (1.5 mM) + 3.2 eq. TBA₂SO₄ in DMSO-d₆.

UV-Vis and Emission spectra

UV-vis experiments were performed on a Thermo Spectronic Unicam UV 500 spectrophotometer in DMSO solution at 298K. To 10 mm cuvette was added 2.5 mL of freshly prepared solution of **R4** (c=1.0 $\times 10^{-5}$ M) and small aliquots of TBAX solution containing **R4** at the same concentration as in cuvette, were added and a spectrum was acquired after each addition.

Fluorescence emission spectra were measured on a Hitachi F-7100 Fluorescence Spectrophotometer. Solution of **R4** (c=1.0 × 10⁻⁵ M) in DMSO were titration with small aliquots of TBAX solution containing **R4** at the same concentration as in cuvette. Successive scans were performed measuring fluorescence (λ_{ex} = 340 nm) emission between 355 and 650 nm.

Fig. S20. Dilution curve of R4 in DMSO.

Fig. S21. UV-Vis absorption spectra of R4 (1.0×10^{-5} M) and upon addition of TBA salts.

Fig. S22. Emission spectra of R4 (1.0×10^{-5} M) and upon addition of TBA salts (excitation at 300 nm).

Fig. S23. Emission spectra of R4 (1.0×10^{-5} M) and upon addition of TBA salts (excitation at 340 nm).

Fig. S24. Emission spectra of R4 (1.0 × 10⁻⁵ M) λ excitation = 300 nm.

Fig. S25. UV-Vis absorption and emission (excitation at 300 nm) spectra of **R4** (1.0×10^{-5} M) and upon addition of TBA salts in DMSO.

Fig. S26. Emission spectra of A3 $(1.0 \times 10^{-5} \text{ M})$ in DMSO.

Molecular modelling

Molecular modelling of receptor **R3** was performed using Spartan 10 for Windows (Wavefunction, Inc. Irvine, CA). The structure of receptor **R3** was energy minimized using molecular mechanics and Cl^2 , $SO_4^{2^2}$ and PhCOO⁻ molecule was placed into the center of macrocycle and the optimized by density functional theory (DFT) calculations was performed at B3LYP/6-31G* level of theory.

Atom	Х	Y	Z	26H	1,80796	-4,08323	1,990317
10	5,67984	-2,71472	1,136771	27C	-2,41642	3,493534	1,648313
20	6,246003	0,547883	1,033326	28H	-2,08956	3,986783	2,574314
3N	2,519691	-2,12896	1,755624	29H	-3,4329	3,836314	1,436272
4H	1,626888	-1,62565	1,801118	30C	-1,51759	4,028645	0,523257
5N	3,056433	1,082999	1,691543	310	-1,35265	5,228986	0,383273
6H	2,053331	0,905071	1,785223	32C	3,175064	2,928259	-0,01579
7C	3,614795	-1,37721	1,562325	33C	2,015541	-3,62581	-0,14286

8C	3,85002	0,012406	1,53926	340	4,056371	3,23689	-0,81068
9C	5,294664	-0,18425	1,255996	350	2,819466	-3,61617	-1,07289
10C	5,032412	-1,68791	1,29815	36N	1,841762	2,98381	-0,29282
110	-6,14548	-0,5807	0,817483	37H	1,197306	2,719754	0,440589
120	-5,48069	2,699489	0,843396	38N	0,660624	-3,66419	-0,2967
13N	-3,11808	-1,16205	1,848738	39H	0,091987	-3,56248	0,53756
14H	-2,1495	-1,04835	2,140213	40C	-3,65183	-2,49882	1,632225
15N	-2,44566	2,052222	1,813517	41H	-3,51315	-3,1162	2,528985
16H	-1,59206	1,563987	2,070267	42H	-4,72821	-2,41802	1,456029
17C	-3,81281	-0,05566	1,525127	43C	-3,08298	-3,29213	0,441042
18C	-3,53114	1,310156	1,517362	440	-3,6095	-4,33659	0,094205
19C	-4,90177	1,658065	1,071191	45N	-0,92771	3,077442	-0,28233
20C	-5,20921	0,153726	1,068002	46H	-1,15586	2,099555	-0,1128
21C	3,516799	2,439752	1,408424	47N	-1,94969	-2,77483	-0,15758
22H	4,603566	2,466025	1,490075	48H	-1,61778	-1,86176	0,149427
23H	3,086988	3,125368	2,149155	49H	-0,76087	4,515044	-4,65585
24C	2,477163	-3,52426	1,323388	50C	-0,21293	4,202594	-3,7706
25H	3,482675	-3,94453	1,389021	51C	1,199067	3,401879	-1,47707
52C	1,181669	4,17763	-3,77025				
53C	-0,90182	3,830982	-2,61598				
54C	-0,21237	3,430761	-1,47309				
55C	1,892381	3,783559	-2,63646				
56H	1,731942	4,481699	-4,66006				
57H	-1,98886	3,855604	-2,58182				

58H	2,974179	3,779471	-2,62542		
59C	-0,09502	-3,66784	-1,48843		
60C	-1,74886	-3,77226	-3,75128		
61C	0,42365	-4,09252	-2,71954		
62C	-1,44486	-3,26905	-1,40054		
63C	-2,26329	-3,33996	-2,53006		
64C	-0,40441	-4,13641	-3,84227		
65H	1,461284	-4,39272	-2,77904		
66H	-3,30453	-3,04974	-2,43939		
67H	0,006448	-4,47871	-4,78863		
68H	-2,3925	-3,81631	-4,62418		
69Cl	-0,00958	-0,11118	1,546503		

 Table S2:
 Atomic coordinates for complex R3 and TBAPhCOO.

Atom	Х	Y	Z	310	-6,19197	-0,26908	-0,37784
10	4,830755	2,931988	-2,40522	32C	-1,96229	2,484849	-1,71448
20	1,813263	3,919161	-3,48091	33C	4,947466	-0,51323	-0,34943
3N	3,370045	1,416938	0,120149	340	-3,03133	3,058478	-1,60076
4H	2,659195	1,204268	0,8288	350	6,053465	-0,84538	-0,7514
5N	0,442102	2,258938	-1,00853	36N	-1,82113	1,206937	-2,22309
6H	0,391254	1,763861	-0,11032	37H	-0,86425	0,913589	-2,38902
7C	2,96099	2,102155	-0,96487	38N	3,837789	-1,31779	-0,34073
8C	1,704775	2,510653	-1,42748	39H	3,001498	-0,95081	0,100263
9C	2,27675	3,241744	-2,57917	40C	0,741501	-2,73832	2,797403

10C	3,667052	2,793972	-2,07917	41H	1,109238	-2,28119	3,722382
110	-1,74379	-4,93033	2,42917	42H	0,374492	-3,74197	3,039686
120	-4,72368	-3,51451	1,849549	43C	1,954995	-2,92291	1,878846
13N	-0,35329	-1,96706	2,230002	440	3,058761	-3,16982	2,333654
14H	-0,28855	-0,94115	2,27687	45N	-3,96327	-0,01185	-0,902
15N	-3,24187	-0,57934	1,725565	46H	-3,05518	0,114657	-0,46996
16H	-2,57873	0,145037	2,014851	47N	1,679183	-2,83902	0,527879
17C	-1,60713	-2,45523	2,154675	48H	0,699741	-2,72918	0,29038
18C	-2,85045	-1,85863	1,909941	49H	-5,7465	-1,00023	-5,02203
19C	-3,56308	-3,16188	1,957065	50C	-4,93224	-0,56084	-4,45159
20C	-2,19241	-3,8149	2,221741	51C	-2,86694	0,580069	-2,97059
21C	-0,64956	3,171848	-1,32629	52C	-3,81172	-0,05215	-5,11048
22H	-0,34088	3,791376	-2,1761	53C	-5,02224	-0,52699	-3,06241
23H	-0,87524	3,843322	-0,48906	54C	-3,97871	0,025681	-2,30407
24C	4,725226	0,901625	0,225719	55C	-2,78841	0,527113	-4,36295
25H	5,405608	1,556011	-0,32329	56H	-3,74167	-0,08689	-6,19393
26H	5,030957	0,894566	1,278529	57H	-5,88644	-0,92362	-2,54728
27C	-4,63207	-0,25204	1,446042	58H	-1,92189	0,964453	-4,85219
28H	-4,87254	0,716718	1,89746	59C	3,704331	-2,6195	-0,8477
29H	-5,29207	-1,00397	1,884698	60C	3,21522	-5,15884	-1,9514
30C	-5,01834	-0,18524	-0,04599	61C	4,604499	-3,17712	-1,76834
62C	2,574523	-3,36586	-0,45431				
63C	2,33548	-4,62107	-1,01384				
64C	4,353919	-4,43587	-2,30992				

65H	5,484999	-2,6135	-2,04411		
66H	1,459404	-5,17618	-0,68899		
67H	5,058183	-4,85	-3,02695		
68H	3,021776	-6,1379	-2,38037		
69H	0,549749	6,470878	4,328306		
70C	0,455857	5,462476	3,932249		
71C	0,211803	2,864507	2,905168		
72C	-0,59136	4,638478	4,353258		
73C	1,382208	4,987899	3,001079		
74C	1,261445	3,694941	2,491996		
75C	-0,71191	3,34795	3,841309		
76H	-1,31397	5,003868	5,079021		
77H	2,199075	5,62504	2,67113		
78H	1,982582	3,318453	1,774487		
79H	-1,51576	2,689905	4,153981		
80C	0,059672	1,459852	2,357614		
810	-0,93109	0,785991	2,752724		
820	0,923834	1,032895	1,524794		

Table S3: Atomic coordinates for complex R3 and TBA_2SO_4 .

Atom	Х	Y	Z	310	-3,25698	4,384861	-0,60838
10	5,96567	-1,65861	0,046258	32C	2,646957	3,545584	0,018678
20	5,96255	1,68571	0,050655	33C	2,549519	-3,62118	0,149596
3N	3,098534	-1,6151	1,615586	340	3,256424	4,366762	-0,63876

4H	2,285752	-1,25449	2,15821	350	2,989639	-4,64407	-0,34152
5N	3,090632	1,632789	1,60996	36N	1,430556	2,985422	-0,3138
6H	2,291287	1,280687	2,161869	37H	0,987113	2,400344	0,40653
7C	3,926633	-0,70289	1,136766	38N	1,447997	-2,93187	-0,28854
8C	3,925338	0,722016	1,135055	39H	1,116202	-2,1272	0,250642
9C	5,246142	0,787612	0,424634	40C	-3,25878	-3,05509	1,396877
10C	5,248528	-0,7627	0,424142	41H	-2,89875	-3,59217	2,279949
110	-5,95442	-1,68499	0,043928	42H	-4,31543	-3,28281	1,250437
120	-5,96116	1,660193	0,042234	43C	-2,53364	-3,63156	0,148479
13N	-3,09097	-1,63028	1,618139	440	-2,96775	-4,65707	-0,34259
14H	-2,28099	-1,26725	2,162561	45N	-1,44835	2,976275	-0,30925
15N	-3,09782	1,618944	1,614892	46H	-1,00672	2,379845	0,4026
16H	-2,29828	1,270746	2,16896	47N	-1,43836	-2,93386	-0,29184
17C	-3,92165	-0,72085	1,138109	48H	-1,10705	-2,13141	0,251382
18C	-3,92595	0,704024	1,136276	49H	-1,27043	4,065748	-4,74684
19C	-5,24412	0,76442	0,42091	50C	-0,71989	3,84597	-3,83724
20C	-5,24116	-0,786	0,422152	51C	0,703561	3,274343	-1,48133
21C	3,238133	3,060631	1,372635	52C	0,683922	3,848404	-3,84049
22H	4,29527	3,327095	1,341404	53C	-1,41165	3,557057	-2,67293
23H	2,752388	3,593341	2,195179	54C	-0,72584	3,270658	-1,47854
24C	3,272938	-3,03954	1,396677	55C	1,382681	3,56298	-2,67951
25H	4,330478	-3,26199	1,249382	56H	1,229423	4,070534	-4,75255
26H	2,916994	-3,57697	2,281018	57H	-2,49276	3,561693	-2,66276
27C	-3,25441	3,046305	1,380282	58H	2,463608	3,573237	-2,67459

28H	-2,7797	3,580857	2,207844	59C	0,714479	-3,29778	-1,44427
29H	-4,31343	3,304194	1,342343	60C	-0,69137	-4,03872	-3,75599
30C	-2,65749	3,544949	0,034073	61C	1,401537	-3,66428	-2,61155
62C	-0,70144	-3,29829	-1,44574				
63C	-1,38591	-3,66463	-2,61475				
64C	0,70948	-4,0388	-3,75422				
65H	2,484147	-3,66577	-2,60019				
66H	-2,46859	-3,66602	-2,60573				
67H	1,259373	-4,3264	-4,64505				
68H	-1,23922	-4,32494	-4,64866				
69S	-0,0004	0,161963	2,070529				
700	0,000522	-0,72914	0,851481				
710	-0,00435	1,626805	1,656487				
720	-1,25085	-0,08549	2,883953				
730	1,253309	-0,07926	2,881118				

NMR spectra of new compounds

Fig. S27. ¹H NMR spectrum of D1 in DMSO-d₆.

Fig. S28. ¹³C NMR spectrum of D1 in DMSO-d₆.

Fig. S29. ¹H NMR spectrum of D3 in DMSO-d₆.

Fig. S30. ¹³C NMR spectrum of D3 in DMSO-d₆.

Fig. S31. ¹H NMR spectrum of **A1** in DMSO-d₆.

Fig. S32. ¹³C NMR spectrum of A1 in DMSO-d₆.

Fig. S33. ¹H NMR spectrum of A2 in DMSO-d₆.

Fig. S34. ¹³C NMR spectrum of A2 in DMSO-d₆.

Fig. S35. ¹H NMR spectrum of **A3** in DMSO-d₆.

Fig. S36. ¹³C NMR spectrum of A3 in DMSO-d₆.

Fig. S37. ¹H NMR spectrum of E1 in DMSO-d₆ (80°C).

Fig. S38. 13 C NMR spectrum of E1 in DMSO-d₆ (80°C).

Fig. S39. ¹H NMR spectrum of **E2** in DMSO-d₆ (80°C).

Fig. S40. ¹³C NMR spectrum of E2 in DMSO-d₆ (80°C).

Fig. S41. ¹H NMR spectrum of **R1** in DMSO-d₆.

Fig. S42. ¹³C NMR spectrum of R1 in DMSO-d₆.

Fig. S43. ¹H NMR spectrum of R2 in DMSO-d₆.

Fig. S44. ¹H NMR spectrum of R3 in DMSO-d₆.

Fig. S45. ¹H NMR spectrum of **R4** in DMSO-d₆.