Electronic Supporting Information for

Insights into the Charge-Transfer Character of Electronic Transitions in ^RCp₂Ti(C₂Fc)₂ Complexes Using Solvatochromism, Resonance Raman Spectroscopy, and TDDFT

Elizabeth S. Carlton,^a Joshua J. Sutton,^b Ariel G. Gale,^a George C. Shields,^a Keith C. Gordon,^b and Paul S. Wagenknecht^{a,*}

^a Department of Chemistry, Furman University, Greenville, SC, 29613 USA ^b Department of Chemistry, University of Otago, P.O. Box 56, Dunedin, New Zealand

	page
Figure S1. Overlay of UV-Vis with TDDFT data for various computational models	S2
Figure S2. Comparison of B3PW91/6-311+G(d) with B3LYP/6-31G(d)	S3
Figure S3 . Solvatochromic data for $Cp_2Ti(C_2Fc)_2$	S4
Figure S4. Solvatochromic data and goodness of fit plot for Cp* ₂ Ti(C ₂ Fc) ₂	S4
Figure S5. Solvatochromic data and goodness of fit plot for MeOOCCp2Ti(C2Fc)2	S4
Table S1. TDDFT output for key excited states for Cp ₂ Ti(C ₂ Fc) ₂	S5
Table S2. Orbitals involved in key excited states for $Cp_2Ti(C_2Fc)_2$	S6
Figure S6. RRS, vibrational, and TDDFT data for Cp* ₂ Ti(C ₂ Fc) ₂	S 7
Table S3 . Key electronic transitions of $Cp*_2Ti(C_2Fc)_2$ with associated changes in electron density	S 7
Figure S7. RRS, vibrational, and TDDFT data for MeOOCCp2Ti(C2Fc)2	S 8
Table S4 . Key electronic transitions of $^{MeOOC}Cp_2Ti(C_2Fc)_2$ with associated changes in electron density	S 8
Table S5. TDDFT output for key excited states for $Cp*_2Ti(C_2Fc)_2$	S9
Table S6. Orbitals involved in key excited states for Cp* ₂ Ti(C ₂ Fc) ₂	S10
Table S7. TDDFT output for key excited states for ^{MeOOC} Cp ₂ Ti(C ₂ Fc) ₂	S11
Table S8. Orbitals involved in key excited states for $^{MeOOC}Cp_2Ti(C_2Fc)_2$	S12
Table S9. TDDFT output for key excited states for Cp ₂ Ti(C ₂ Fc) ₂ CuI	S13
Table S10. Orbitals involved in key excited states for Cp ₂ Ti(C ₂ Fc) ₂ CuI	S14

Figure S1. Overlay of experimental spectra and TDDFT predicted vertical transitions and oscillator strengths for various computational models. All computational models utilize solvent=thf. Optimization and TDDFT were performed within the same computational model.

Figure S2. Overlay of experimental spectra and TDDFT predicted vertical transitions and oscillator strengths (B3PW91/6-311+G(d) (left) vs B3LYP/6-31G(d) (right)) for ^{MeOOC}Cp₂Ti(C₂Fc)₂ (top), Cp₂Ti(C₂Fc)₂ (middle), and Cp*₂Ti(C₂Fc)₂ (bottom). Comparison of. The experimental spectra were recorded in THF. Optimization and TDDFT employed a THF solvent model.

Figure S3. Solvatochromic data for remaining solvents not shown in manuscript Figure 5 for $Cp_2Ti(C_2Fc)_2$. Absorbance is scaled to allow observation of all peaks.

Figure S4. Solvatochromic data (left) for $Cp*_2Ti(C_2Fc)_2$ along with a representation of the goodness of fit to equation 1 (right). Absorbance is scaled to allow observation of all peaks. Wavelengths recorded in manuscript Table 1.

Figure S5. Solvatochromic data (left) for $^{MeOOC}Cp_2Ti(C_2Fc)_2$ along with a representation of the goodness of fit to equation 1 (right). Absorbance is scaled to allow observation of all peaks. Wavelengths recorded in manuscript Table 1.

Excited State 149 ->160 150 ->161 151 ->154 151 ->162 152 ->157 152 ->159 153 ->160	1: Singlet-A 0.11398 -0.15130 -0.10597 -0.15164 0.15329 -0.21372 0.52541 0.22823	2.1531 eV 575.83 nm f=0.1641 <s**2>=0.000</s**2>
Excited State 145 ->154 145 ->160 146 ->159 148 ->154 149 ->154 150 ->161 151 ->154 151 ->154 151 ->162 152 ->159 153 ->160	5: Singlet-A 0.11302 0.14732 -0.11019 -0.14690 -0.20214 0.32404 -0.10063 0.31696 0.11317 0.30064 -0.11676	2.5271 eV 490.61 nm f=0.1154 <s**2>=0.000</s**2>
Excited State 148 ->154 149 ->154 150 ->161 151 ->162	15: Singlet-A -0.31042 0.56369 0.10714 0.12056	2.9409 eV 421.58 nm f=0.1393 <s**2>=0.000</s**2>
Excited State 144 ->154 147 ->154 152 ->160 153 ->159	18: Singlet-A 0.62626 0.13737 0.10680 -0.10839	3.4794 eV 356.34 nm f=0.0807 <s**2>=0.000</s**2>

Table S1. TDDFT output for key excited states for $Cp_2Ti(C_2Fc)_2$

Table S2. Orbitals involved in key excited states for $Cp_2Ti(C_2Fc)_2$

Figure S6. Top Left: Resonance Raman spectra for $Cp*_2Ti(C_2Fc)_2$ in CH_2Cl_2 , at the wavelengths listed (solvent bands are marked with *). Top Right: Key vibrational modes. Bottom: Overlay of experimental UV-Vis in CH_2Cl_2 with TDDFT predicted vertical transitions. Vibrational modes and TDDFT vertical transitions modelled in CH_2Cl_2 using B3LYP/6-31G(d).

Table S3. Key electronic transitions of Cp*2Ti(C2Fc)2 with associated changes in electron density.^a

λ (nm)	Oscillator	Ti	Cp* _{Ti}	Fe	C ₂ Cp _{Fe}	CpFe
	Strength					
557	0.099	1→33 (32)	6→8 (2)	58→29 (-29)	27→22 (-5)	8→9 (1)
483	0.120	2→27 (25)	11→6 (-5)	60→36 (-24)	20→21 (1)	7→10 (3)
435	0.082	5→52 (47)	24→9 (-15)	39→12 (-27)	28→24 (-4)	5→3 (-2)
393	0.107	8→54 (46)	40→10 (-30)	18→9 (-9)	29→24 (-5)	4→3 (-1)
345	0.076	5→54 (49)	11→10 (-1)	33→9 (-24)	43→24 (-19)	8→3 (-5)

^a Calculated from a Mulliken population analysis from the TDDFT data calculated at the B3LYP/6-31G(d) level using solvent = CH_2Cl_2 .

Figure S7. Top Left: Resonance Raman spectra for $^{MeOOC}Cp_2Ti(C_2Fc)_2$ in CH₂Cl₂, at the wavelengths listed (solvent bands are marked with *). Top Right: Key vibrational modes. Bottom: Overlay of experimental UV-Vis in CH₂Cl₂ with TDDFT predicted vertical transitions. Vibrational modes and TDDFT vertical transitions modelled in CH₂Cl₂ using B3LYP/6-31G(d).

Table S4 . Key electronic transitions of ^{MeOOC} Cp ₂ T	i(C ₂ Fc) ₂ with associated	changes in electron density. ^a
--	---	---

λ (nm)	Oscillator	Ti	MeOOC CpTi	Fe	C ₂ Cp _{Fe}	CpFe
	Strength					
622	0.177	0→53 (53)	2→13 (11)	66→9 (-57)	23→23 (0)	9→2 (-7)
510	0.079	1→32 (31)	5→11 (6)	55→28 (-27)	31→21 (-10)	8→8 (0)
439	0.108	2→45 (43)	16→11 (-5)	42→16 (-26)	36→22 (-14)	4→5 (1)
376	0.063	5→56 (51)	12→17 (5)	18→5 (-13)	55→22 (-33)	9→1 (-8)

^a Calculated from a Mulliken population analysis from the TDDFT data calculated at the B3LYP/6-31G(d) level using solvent = CH_2Cl_2 .

Excited State	1: Singlet-B	2.2242 eV 557.43 nm f=0.0991 <s**2>=0.000</s**2>
188 ->199	0.14367	
190 ->197	0.10008	
190 ->201	0.18408	
191 ->197	-0.21223	
191 ->200	0.19439	
192 ->202	0.18314	
193 ->194	0.43787	
193 ->199	0.25319	
Excited State	6: Singlet-B	2.5629 eV 483.77 nm f=0.1201 <s**2>=0.000</s**2>
183 ->194	-0.14183	
183 ->199	-0.19244	
184 ->197	0.13123	
184 ->200	-0.12561	
188 ->194	-0.22344	
189 ->202	0.13482	
190 ->201	-0.23857	
191 ->201	-0.19030	
192 ->202	-0.28147	
193 ->194	0.34073	
Excited State	12: Singlet-B	2.8500 eV 435.03 nm f=0.0819 <s**2>=0.000</s**2>
183 ->194	-0.17627	
183 ->199	-0.14851	
186 ->194	0.35299	
188 ->194	-0.29949	
193 ->194	-0.34280	
193 ->199	0.16542	
Excited State	17: Singlet-B	3.1487 eV 393.76 nm f=0.1069 <s**2>=0.000</s**2>
186 ->194	0.52378	
188 ->194	0.39168	
190 ->201	-0.10880	
192 ->202	-0.12284	
Excited State	20: Singlet-A	3.5858 eV 345.77 nm f=0.0758 <s**2>=0.000</s**2>
181 ->194	-0.14808	
182 ->194	0.54852	
184 ->194	-0.13901	
185 ->194	-0.14871	
190 ->199	-0.10657	
192 ->201	-0.10050	
193 ->197	-0.11328	

Table S5. TDDFT output for key excited states for $Cp*_2Ti(C_2Fc)_2$

Table S6. Orbitals involved in key excited states for $Cp*_2Ti(C_2Fc)_2$

Excited State 181 ->184 182 ->189 182 ->192 183 ->184 183 ->191	1: Singlet-B 0.20862 0.12784 -0.14716 0.59217 0.12769	1.9940 eV 621.80 nm f=0.1767 <s**2>=0.000</s**2>
Excited State 176 ->184 177 ->184 179 ->184 180 ->193 181 ->191 181 ->194 182 ->189 182 ->192 183 ->184 183 ->191 183 ->194	5: Singlet-B -0.12795 0.17243 0.36707 -0.25942 0.10204 -0.24097 0.14558 -0.18574 -0.20219 -0.10263 0.16791 0.10034	2.4317 eV 509.87 nm f=0.0792 <s**2>=0.000</s**2>
Excited State 175 ->193 176 ->184 176 ->194 177 ->184 177 ->194 178 ->193 179 ->184 180 ->192 180 ->193 181 ->184 181 ->191	15: Singlet-B -0.11076 -0.24695 -0.13414 0.41789 -0.10709 -0.13685 -0.30583 0.10488 -0.10354 0.14646 -0.12814	2.8211 eV 439.48 nm f=0.1081 <s**2>=0.000</s**2>
Excited State 174 ->184 175 ->184 182 ->185	20: Singlet-A 0.54697 0.30066 0.20372	3.2990 eV 375.83 nm f=0.0629 <s**2>=0.000</s**2>

Table S7. TDDFT output for key excited states for $^{MeOOC}Cp_2Ti(C_2Fc)_2$

Table S8. Orbitals involved in key excited states for $^{MeOOC}Cp_2Ti(C_2Fc)_2$

Excited State 1: Singlet-A 2.1136 eV 586.60 nm f=0.1266 <s< td=""> 168 ->175 -0.10974 168 ->178 0.19668 169 ->180 0.12006 170 ->179 -0.12088 171 ->172 0.58028 171 ->177 0.20527</s<>	S**2>=0.000
Excited State 5: Singlet-A 2.4592 eV 504.16 nm f=0.0514 <s< td=""><td>S**2>=0.000</td></s<>	S**2>=0.000
167 ->172 0.35043	
168 ->178 0.16426	
169 ->179 -0.10802	
169 ->180 0.28360	
170 ->179 -0.28454	
170 ->180 -0.11127	
171 ->172 -0.23988	
171 ->177 0.17710	
Excited State 17: Singlet-A 3.0628 eV 404.81 nm f=0.1563 <	<s**2>=0.000</s**2>
162 ->172 0.16985	
164 ->172 -0.10581	
165 ->172 0.64539	
Excited State 21: Singlet-A 3.3528 eV 369.79 nm f=0.2367 <	<s**2>=0.000</s**2>
161 ->172 0.66693	
163 ->172 0.10231	

Table S9. TDDFT output for key excited states for $Cp_2Ti(C_2Fc)_2CuI$

Table S10. Orbitals involved in key excited states for Cp₂Ti(C₂Fc)₂CuI