Supporting Information

Investigation of Vanadium(III) and Vanadium(IV) Compounds Supported by the Linear Diaminebis(aryloxido) Ligands. Correlation Between Structures and Magnetic Properties.

Zofia Janas, ${ }^{*}$ Julia Jezierska, ${ }^{\text {a }}$ Andrew Ozarowski,* ${ }^{\text {b }}$ Alina Bieńko, ${ }^{* a}$ Tadeusz Lis, ${ }^{a}$ Adam Jezierskia and Marta Krawczyk ${ }^{\text {c }}$
${ }^{\text {a }}$ Faculty of Chemistry, University of Wrocław, 14, F. Joliot-Curie, 50-383 Wrocław, Poland, e-mail:zofia.janas@chem.uni.wroc.pl
${ }^{\mathrm{b}}$ National High Magnetic Field Laboratory, Florida State University, 1800 E. Paul Dirac Drive, Tallahassee, FL 32310 USA, e-mail: ozarowski@magnet.fsu.edu
${ }^{\text {c }}$ Faculty of Pharmacy, Wroctaw Medical University, 211 Borowska, 50-556 Wroctaw, Poland

Figure S1. Arrangement of molecules of $\mathbf{1}$ forming a chain stretching along [001] direction.
Figure S2. Packing diagram for 2.
Figure S3. Fragment of parking diagram for $\mathbf{2}$ shoving $\mathrm{C}-\mathrm{H} \cdots \pi$ intermolecular interactions.
Figure S4. The molecular structure of $\mathbf{3}$.
Figure S5. Arrangement of molecules of $\mathbf{3}$ viewed down [010] direction.
Figure S6. Packing diagram presenting selected molecules of $\mathbf{4}$ arranged in layers parallel to the (010) plane.

Figure S7. The molecular structure of $\mathbf{5} \cdot 2 \mathrm{CH}_{3} \mathrm{CN}$.
Figure S8. Arrangement of molecules of $\mathbf{5}$ viewed down [001] direction.
Figure S9. A chain of molecules of $\mathbf{5}$ held together by C-H $\cdots \pi$ interactions and hydrogen bonds.
Figure S10. Packing diagram for $\mathbf{6}$ viewed down [010] direction.
Figure S11. C-H $\cdots \pi$ interactions in 6.
Figure S12. EPR frozen solution spectra (at 77 K) of compounds 3-7
Figure S13. The $\chi_{\mathrm{M}} \mathrm{T}$ vs T product after subtracting TIP from the experimental data.
Figure S14. Dihedral angle between the two $\mathrm{V}_{2} \mathrm{O}_{2}$ planes for complexes 3-5.
Figure S15. The HFEPR spectrum of $\mathbf{1}$.

Figure S16. DC magnetic data for 1, 2 and 6, 7. Left - () \square MT and (○) \square M. Right - field dependence of the magnetization per formula unit. The solid lines are calculated using the PHI program.

Table S1. Crystal and structure refinement data for $\mathbf{1 , 2} \mathbf{2} \cdot 0.25 \mathrm{CH}_{3} \mathrm{CN}, \mathbf{3}, \mathbf{4} \cdot 2 \mathrm{CH}_{3} \mathrm{CN}, \mathbf{5} \cdot 2 \mathrm{CH}_{3} \mathrm{CN}$ and 6.

Table S2. Selected Bond Lengths (\AA) and Angles $\left({ }^{\circ}\right)$ for $\mathbf{1}$ and $\mathbf{2} \cdot 0.25 \mathrm{CH}_{3} \mathrm{CN}$.
Table S3. Selected Bond Lengths (\AA) and Angles $\left({ }^{\circ}\right)$ for 3, 4•2CH3${ }_{3} \mathrm{CN}, 5 \cdot 2 \mathrm{CH}_{3} \mathrm{CN}$ and $\mathbf{6}$.
Table S4. Geometry of the intermolecular hydrogen bonds in 2.
Table S5. Geometry of C-H $\cdots \pi$ interactions in 2.
Table S6. Geometry of the intermolecular hydrogen bonds in 1.
Table S7. Geometry of C $-\mathrm{H} \cdots \pi$ interactions in $\mathbf{1}$.
Table S8. Geometry of $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions in 3.
Table S9. Geometry of intermolecular hydrogen bonds in 4.
Table S10. Geometry of $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions in 4.
Table S11. Geometry of C-H $\cdots \pi$ interactions in 5 .
Table S12. Geometry of intermolecular hydrogen bonds in 5 .
Table S13. Geometry of $\pi \cdots \pi$ interactions in 6 .
Table S14. Geometry of $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions in 6 .

Table S1. Crystal and structure refinement data for $\mathbf{1}, \mathbf{2} \cdot 0.25 \mathrm{CH}_{3} \mathrm{CN}, \mathbf{3}, \mathbf{4} \cdot 2 \mathrm{CH}_{3} \mathrm{CN}, \mathbf{5} \cdot 2 \mathrm{CH}_{3} \mathrm{CN}$ and $\mathbf{6}$.

symbol of the structure	1	$2 \cdot 0.25 \mathrm{CH}_{3} \mathrm{CN}$	3	$4 \cdot 2 \mathrm{CH}_{3} \mathrm{CN}$	$5 \cdot 2 \mathrm{CH}_{3} \mathrm{CN}$	6
empirical formula	$\mathrm{C}_{25} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~V}$	$\mathrm{C}_{27} \mathrm{H}_{37} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~V} \cdot 0.25 \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{~N}$	$\mathrm{C}_{68} \mathrm{H}_{108} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{~V}_{2}$	$\mathrm{C}_{44} \mathrm{H}_{58} \mathrm{~N}_{6} \mathrm{O}_{6} \mathrm{~V}_{2}$	$\mathrm{C}_{40} \mathrm{H}_{46} \mathrm{Cl}_{4} \mathrm{~N}_{6} \mathrm{O}_{6} \mathrm{~V}_{2}$	$\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~V}$
formula weight	476.47	514.79	1179.46	868.84	950.51	421.42
crystal size [mm^{3}]	$0.49 \times 0.23 \times 0.06$	$0.60 \times 0.13 \times 0.06$		0.28x0.13x0.08	0.18 x 0.27 x 0.43	$0.60 \times 0.53 \times 0.40$
crystal system	monoclinic	monoclinic	monoclinic	monoclinic	monoclinic	monoclinic
space group	$P 2_{1} / c$	$P 2_{1} / n$	$P 2{ }_{1} / n$	$P 2{ }_{1} / n$	$P 2_{1} / n$	$P 2{ }_{1} / n$
a $[\AA]$	12.011(3)	13.237(3)	20.300(9)	13.687(4)	13.557(4)	13.376(5)
b [\AA]	14.728(3)	15.650(4)	8.107(2)	11.336(5)	11.269(3)	11.010(3)
c [\AA]	13.307(3)	25.711(7)	22.043(10)	13.947(4)	13.829(5)	15.427(6)
$\left.\beta{ }^{\circ}{ }^{\circ}\right]$	97.28(2)	99.83(3)	112.25(5)	94.91(3)	94.93(3)	113.00(4)
$\mathrm{V}\left[\AA^{3}\right]$	2335.0(9)	5248(2)	3358(3)	2156.0(13)	2104.9(11)	2091.3(14)
Z	4	8	2	2	2	4
density (calcd) [g.m]	1.355	1.303	1.167	1.338	1.500	1.338
$\mathrm{F}(000)$	1008	2188	1276	916	980	892
coeff. μ [mm^{-1}]	0.459	0.414	0.329	0.487	0.752	0.499
T [K]	100(2)	103(2)	150(2)	125(2)	90(2)	101(2)
$\lambda[\AA$]	0.71073	0.71073	0.71073	0.71073	0.71073	0.71073
reflections coll., independ.	6668, 15428	12638, 42392	7341,26589	6054, 12067	5777,10198	10167, 34826
$\mathrm{R}_{\text {int }}$	0.028	0.083	0.12	0.097	0.12	0.056
data/restraints/parameters	6668/0/295	12638/0/651	7341/0/389	6054/0/267	5777/0/265	10167/0/259
final R indices	0.039	0.051	0.074	0.057	0.046	0.048
($\mathrm{I}>2 \mathrm{\sigma}(\mathrm{I})$)	0.087	0.113	0.166	0.098	0.095	0.138
final R_{1}, wR (all data)	0.055, 0.094	0.089, 0.120	0.125, 0.200	0.097, 0.112	0.071, 0.108	0.055, 0.143
GOF on F^{2}	1.021	1.004	1.038	1.032	1.026	1.093
CCDC numbers	1997038	1997039	1997040	1997041	1997042	1997043

Table S2. Selected Bond Lengths (\AA) and Angles $\left({ }^{\circ}\right)$ for 2 and $\mathbf{2} \cdot 0.25 \mathrm{CH}_{3} \mathrm{CN}$.

	1	2^{a}	$2^{\text {b }}$
V-O1	1.9317(12)	1.9314(18)	1.9425(17)
V-O2	1.9263(12)	1.9315(17)	1.9282(17)
V-O3	2.0072(11)	1.9717(17)	1.9945(17)
V-O4	1.9817(11)	2.0176(18)	1.9837(19)
V-N1	2.2253(13)	2.231(2)	2.189(2)
V-N2	$2.1850(13)$	2.173(2)	2.205(2)
O2-V-O1	171.85(5)	171.09(7)	171.94(8)
O2-V-O4	96.47(5)	87.49(7)	91.92(7)
O1-V-O4	91.67(5)	91.20(8)	96.14(7)
O2-V-O3	89.75(4)	97.67(7)	89.58(7)
O1-V-O3	90.65(5)	91.14(7)	90.64(7)
O4-V-O3	89.95(5)	89.85(7)	90.76(7)
O2-V-N2	88.39(5)	87.59(8)	86.25(7)
O1-V-N2	91.14(5)	94.06(8)	85.72(7)
O4-V-N2	90.57(5)	174.41(8)	172.13(7)
$\mathrm{O} 3-\mathrm{V}-\mathrm{N} 2$	178.12(5)	88.19(7)	96.88(8)
$\mathrm{O} 2-\mathrm{V}-\mathrm{N} 1$	85.82(5)	86.53(7)	93.13(8)
O1-V-N1	86.05(5)	85.06(7)	86.48(7)
O4-V-N1	172.20(5)	100.84(7)	90.53(7)
O3-V-N1	97.52(5)	168.71(8)	176.96(7)
N2-V-N1	82.03(5)	81.49(8)	81.94(8)

Table S3. Selected Bond Lengths ((\AA) and Angles (${ }^{\circ}$) for $\mathbf{3}, \mathbf{4} \cdot 2 \mathrm{CH}_{3} \mathrm{CN}, \mathbf{5} \cdot 2 \mathrm{CH}_{3} \mathrm{CN}$ and $\mathbf{6}$.

	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$
V1-O1	$1.921(2)$	$1.9148(16)$	$1.9268(16)$	$1.8983(12)$
V1-O2	$1.607(2)$	$1.6115(19)$	$1.6108(15)$	$1.6025(9)$
V1-O3	$2.017(2)$	$2.0174(16)$	$2.0236(16)$	$1.9219(10)$
V1-O3	$2.046(2)$	$2.0377(16)$	$2.0476(16)$	-
V1-N1	$2.225(3)$	$2.2166(19)$	$2.210(2)$	$2.2003(9)$
V1-N2	$2.440(3)$	$2.417(2)$	$2.3979(18)$	$2.1672(9)$
V․-Vi	$3.2433(18)$	$3.2488(12)$	$3.2540(13)$	-
O2-V1-O1	$104.06(11)$	$103.77(8)$	$103.06(7)$	$113.00(5)$
O2-V1-O3	$104.10(11)$	$103.96(7)$	$103.68(7)$	$109.04(5)$
O1-V1-O3	$88.13(10)$	$87.83(7)$	$88.21(7)$	$83.57(5)$
O1-V1-O3	$154.85(9)$	$154.84(7)$	$155.90(6)$	-
O3-V1-O3	$74.11(10)$	$73.52(7)$	$73.88(7)$	-
O2-V1-N1	$87.36(12)$	$88.34(8)$	$88.34(7)$	$99.63(5)$
O1-V1-N1	$89.44(11)$	$90.01(7)$	$90.06(7)$	$88.49(4)$
O3-V1-N1	$168.53(9)$	$167.68(7)$	$167.94(6)$	$151.13(3)$
O3-V1-N1	$104.41(10)$	$104.58(7)$	$104.05(7)$	-
O2-V1-N2	$160.97(12)$	$162.25(7)$	$163.02(7)$	$105.99(5)$
O1-V1-N2	$84.31(10)$	$84.55(7)$	$84.77(6)$	$140.81(3)$
O3-V1-N2	$93.10(10)$	$91.86(7)$	$91.48(6)$	$87.54(4)$
O3-V1-N2	$79.14(10)$	$79.46(6)$	$79.81(6)$	-
N1-V1-N2	$75.51(10)$	$75.86(7)$	$76.48(6)$	$81.23(4)$
V1-O3-V1	$105.89(10)$	$106.48(7)$	$106.12(7)$	-

Figure S1. Arrangement of molecules 1 forming a chain stretching along [001] direction. $\mathrm{C} 24-\mathrm{H} 24 \mathrm{C} \cdots \mathrm{O} 1^{\mathrm{i}}$ hydrogen bonds are marked by yellow dashed lines. For $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions of C9-H9B $\cdots \mathrm{Cg} 66^{\mathrm{i}}$ the centroid of the aromatic ring are shown as a light green dummy atom and the ring along with the $\mathrm{H}^{\cdots} \pi$ distance are marked by green line. Symmetry codes: [i] x, $1 / 2-\mathrm{y}, 1 / 2+\mathrm{z}$.

Figure S2. Packing diagram for 2. H atoms engaged in the intermolecular hydrogen bond interactions are marked. The remaining hydrogen atoms and molecules of acetonitrile have been
removed from the drawing for clarity. Symmetry codes: [i] $1 / 2-x, 1 / 2+y, 1 / 2-z$; [ii] $1 / 2-x,-1 / 2+y$, $1 / 2-z ;$ [iii] $-1 / 2+x, 1 / 2-y,-1 / 2+z$.

Figure S3. Fragment of packing diagram for 2 shoving the $\mathrm{C}-\mathrm{H} \cdots \pi$ intermolecular interactions (marked by yellow dashed line; centroids of aromatic rings are shown as light-green dummy atoms). H atoms engaged in the intermolecular hydrogen bond interactions are marked. The remaining hydrogen atoms and molecules of acetonitrile have been removed from the drawing for clarity. Symmetry codes: [i] $1 / 2-x, 1 / 2+y, 1 / 2-z$; [ii] $1 / 2-x,-1 / 2+y, 1 / 2-z ;$ [iii] -1/2+x, $1 / 2-y,-1 / 2+z$.

Table S4. Geometry of the intermolecular hydrogen bonds in 2.

$\mathrm{D}-\mathrm{H} \cdots \mathrm{A}$	$\mathrm{D}-\mathrm{H}(\AA)$	$\mathrm{H} \cdots \mathrm{A}(\AA)$	$\mathrm{D} \cdots \mathrm{A}(\AA)$	$<(\mathrm{D}-\mathrm{H} \cdots \mathrm{A})\left({ }^{\circ}\right)$
$\mathrm{C} 23 \mathrm{~B}-\mathrm{H} 23 \mathrm{D} \cdots \mathrm{O}^{\mathrm{O}} \mathrm{A}^{\mathrm{ii}}$	0.98	2.48	$3.350(3)$	147

Symmetry codes: [ii] $1 / 2-\mathrm{x},-1 / 2+\mathrm{y}, 1 / 2-\mathrm{z}$

Table S5. Geometry of C-H $\cdots \pi$ interactions in 2.

$\mathrm{C}-\mathrm{H} \cdots \pi$	$\mathrm{H} \cdots \mathrm{Cg}(\AA)$	$\mathrm{C} \cdots \mathrm{Cg}(\AA)$	$<\left(\mathrm{C}-\mathrm{H}^{\cdots} \mathrm{Cg}\right)\left(^{\circ}\right)$
$\mathrm{C} 7 \mathrm{~A}-\mathrm{H} 7 \mathrm{~A} 2 \cdots \mathrm{Cg} 11^{\mathrm{i}}$	2.75	3.58	142
$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A} \cdots \mathrm{Cg} 12$	2.60	3.35	133
$\mathrm{C} 2-\mathrm{H} 2 \mathrm{C} \cdots \mathrm{Cg} 12^{\mathrm{ii}}$	2.88	3.54	125
$\mathrm{C} 10 \mathrm{~B}-\mathrm{H} 10 \mathrm{D} \cdots \mathrm{Cg} 4$	2.96	3.52	116
$\mathrm{C} 12 \mathrm{~B}-\mathrm{H} 12 \mathrm{D} \cdots \mathrm{Cg} 6$	2.88	3.64	135

Symmetry codes: [i] 1+x, y, z; [ii] 1-x, -y, 1-z
Cg4 [V1/O3A/C24A/C25A/C26A/O4A]; Cg6 [C13/C14/C15/C16/C17/C18];
Cg11 [C1B/C2B/C3B/C4B/C5B/C6B]; Cg12 [C13B/C14B/C15B/C16B/C17B/C18B].
$\mathrm{C} 2-\mathrm{a} \mathrm{C}$ atom of the methyl group from acetonitrile

Table S6. Geometry of the intermolecular hydrogen bonds in $\mathbf{1}$.

$\mathrm{D}-\mathrm{H} \cdots \mathrm{A}$	$\mathrm{D}-\mathrm{H}(\AA)$	$\mathrm{H} \cdots \mathrm{A}(\AA)$	$\mathrm{D} \cdots \mathrm{A}(\AA)$	$<(\mathrm{D}-\mathrm{H} \cdots \mathrm{A})\left({ }^{\circ}\right)$
$\mathrm{C} 24-\mathrm{H} 24 \mathrm{C} \cdots \mathrm{O} 1^{\mathrm{i}}$	0.98	2.51	$3.487(2)$	176

Symmetry codes: [i] x, 1/2-y, 1/2+z
Table S7. Geometry of $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions in 1.

$\mathrm{C}-\mathrm{H} \cdots \pi$	$\mathrm{H} \cdots \mathrm{Cg}(\AA)$	$\mathrm{C} \cdots \mathrm{Cg}(\AA)$	$<(\mathrm{C}-\mathrm{H} \cdots \mathrm{Cg})\left(^{\circ}\right)$
$\mathrm{C} 9-\mathrm{H} 9 \mathrm{~B} \cdots \mathrm{Cg}^{\mathrm{i}}$	2.73	3.66	157

Symmetry codes: [i] x, 1/2-y, 1/2+z
Cg6 [C13/C14/C15/C16/C17/C18]

Figure S4. The molecular structure of $\mathbf{3}$ with crystallographic numbering of the donor atoms. Only the higher occupation component of the disordered part was depicted. H atoms have been omitted for clarity.

Figure S5. Arrangement of molecules 3 viewed down [010] direction. Only the higher occupation component of the disordered part was depicted. H atoms have been omitted for clarity.

Table S8. Geometry of C-H $\cdots \pi$ interactions in 3.

$\mathrm{C}-\mathrm{H} \cdots \pi$	$\mathrm{H} \cdots \mathrm{Cg}(\AA)$	$\mathrm{C} \cdots \mathrm{Cg}(\AA)$	$<(\mathrm{C}-\mathrm{H} \cdots \mathrm{Cg})\left({ }^{\circ}\right)$
$\mathrm{C} 8-\mathrm{H} 8 \mathrm{C} \cdots \mathrm{Cg} 4$	2.83	3.75	158
$\mathrm{C} 11-\mathrm{H} 11 \mathrm{~B} \cdots \mathrm{Cg} 1$	2.98	3.33	102
$\mathrm{C} 11^{\mathrm{i}}-\mathrm{H} 11 \mathrm{~B} \cdots \mathrm{Cg} 1$	2.98	3.33	102

Symmetry codes: [i] 1-x, 1-y, 1-z
Cg1 [V1/O3/V1iº33i]; Cg4 [C13/C14/C15/C16/C17/C18]

Figure S6. Packing diagram presenting selected molecules of $4 \cdot 2 \mathrm{CH}_{3} \mathrm{CN}$ arranged in layers parallel to the (010) plane. Molecules of $\mathrm{CH}_{3} \mathrm{CN}$ are located between layers. H atoms have been omitted for clarity.

Table S9. Geometry of $\mathrm{C}-\mathrm{H}^{\cdots} \pi$ interactions in 4.

$\mathrm{C}-\mathrm{H} \cdots \pi$	$\mathrm{H} \cdots \mathrm{Cg}(\AA)$	$\mathrm{C} \cdots \mathrm{Cg}(\AA)$	$<(\mathrm{C}-\mathrm{H} \cdots \mathrm{Cg})\left(^{\circ}\right)$
$\mathrm{C} 8-\mathrm{H} 8 \mathrm{C} \cdots \mathrm{Cg} 4$	2.66	3.61	162
$\mathrm{C} 11-\mathrm{H} 11 \mathrm{~B} \cdots \mathrm{Cg} 1$	2.97	3.31	102
$\mathrm{C} 11-\mathrm{H} 11 \mathrm{~B} \cdots \mathrm{Cg} 1^{\mathrm{i}}$	2.97	3.31	102
$\mathrm{C} 2 \mathrm{X}-\mathrm{H} 22 \mathrm{~A} \cdots \mathrm{Cg} 4$	2.73	3.51	137

Symmetry codes: [i] 1-x, 1-y, 1-z
Cg1 [V1/O3/V1 ${ }^{\text {i }}$ /O3 ${ }^{\text {i }}$]; Cg4 [C13/C14/C15/C16/C17/C18

Table S10. Geometry of intermolecular hydrogen bonds in 4.

	$\mathrm{D}-\mathrm{H}(\AA)$	$\mathrm{H} \cdots \mathrm{A}(\AA)$	$\mathrm{D} \cdots \mathrm{A}(\AA)$	$<(\mathrm{D}-\mathrm{H} \cdots \mathrm{A})\left({ }^{\circ}\right)$
$\mathrm{C} 7-\mathrm{H} 7 \mathrm{~A} \cdots \mathrm{~N} 1 \mathrm{X}$	0.99	2.60	$3.519(3)$	155

Figure S7. The molecular structure of $\mathbf{5} \cdot 2 \mathrm{CH}_{3} \mathrm{CN}$ with crystallographic numbering of the donor atoms. Hydrogen atoms and $\mathrm{CH}_{3} \mathrm{CN}$ molecules are omitted for clarity.

Figure S8. Arrangement of molecules $\mathbf{5} \cdot 2 \mathrm{CH}_{3} \mathrm{CN}$ viewed down [001] direction. H atoms have been omitted for clarity.

Figure S9. A chain of molecules in $\mathbf{5}$ held together by $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions ($\mathrm{C} 2 \mathrm{x}-\mathrm{H} 2 \mathrm{~B} \cdots \mathrm{Cg} 6^{\mathrm{i}}$ and $\mathrm{C} 8-\mathrm{H} 8 \mathrm{C} \cdots \mathrm{Cg} 6, \mathrm{i}=1-\mathrm{x}, 1-\mathrm{y}, 1-\mathrm{z}$ and hydrogen bond (C7-H7A $\cdots \mathrm{N} 1 \mathrm{X}^{\mathrm{ii}}, \mathrm{ii}=-1 / 2+\mathrm{x}, 1 / 2-\mathrm{y}, 1 / 2+\mathrm{z}$) (marked by yellow dashed line). The centroids are shown as blue balls.

Table S11. Geometry of $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions in 5 .

$\mathrm{C}-\mathrm{H} \cdots \pi$	$\mathrm{H} \cdots \mathrm{Cg}(\AA)$	$\mathrm{C} \cdots \mathrm{Cg}(\AA)$	$<(\mathrm{C}-\mathrm{H} \cdots \mathrm{Cg})\left(^{\circ}\right)$
$\mathrm{C} 2 \mathrm{X}-\mathrm{H} 2 \mathrm{~B} \cdots \mathrm{Cg} 6^{\mathrm{i}}$	2.68	3.47	138
$\mathrm{C} 8-\mathrm{H} 8 \mathrm{C} \cdots \mathrm{Cg} 6$	2.63	3.57	162
$\mathrm{C} 11-\mathrm{H} 11 \mathrm{~B} \cdots \mathrm{Cg} 1$	2.97	3.31	101
$\mathrm{C} 11-\mathrm{H} 11 \mathrm{~B} \cdots \mathrm{Cg} 1^{\mathrm{i}}$	2.97	3.51	101

Symmetry codes: [i] 1-x, 1-y, 1-z
Cg1 [V1/O3/V1i/O3i]; Cg6 [C13/C14/C15/C16/C17/C18]

Table S12. Geometry of intermolecular hydrogen bonds in 5.

	$\mathrm{D}-\mathrm{H}(\AA)$	$\mathrm{H} \cdots \mathrm{A}(\AA)$	$\mathrm{D} \cdots \mathrm{A}(\AA)$	$<(\mathrm{D}-\mathrm{H} \cdots \mathrm{A})\left({ }^{\circ}\right)$
$\mathrm{C} 7-\mathrm{H} 7 \mathrm{~A} \cdots \mathrm{~N} 1 \mathrm{X}^{\mathrm{ii}}$	0.99	2.53	$3.456(3)$	155

Symmetry codes: [ii] -1/2+x, $1 / 2-\mathrm{y}, 1 / 2+\mathrm{z}$

Figure S10. Packing diagram in 6 viewed down the [010] direction. H atoms have been omitted for clarity.

Figure S11. C $-\mathrm{H} \cdots \pi$ interactions in 6 (marked by yellow dashed line). Centroids are shown as green balls.

Table S13. Geometry of $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions in 6.

$\mathrm{C}-\mathrm{H} \cdots \pi$	$\mathrm{H} \cdots \mathrm{Cg}(\AA)$	$\mathrm{C} \cdots \mathrm{Cg}(\AA)$	$<(\mathrm{C}-\mathrm{H} \cdots \mathrm{Cg})\left(^{\circ}\right)$
$\mathrm{C} 7-\mathrm{H} 7 \mathrm{~B} \cdots \mathrm{Cg} 5^{\mathrm{i}}$	2.63	3.44	139

Symmetry codes: [i] 1-x, 1-y, 1-z
Cg5 [C13/C14/C15/C16/C17/C18]

Table S14. Geometry of $\pi \cdots \pi$ interactions in 6 .

$\mathrm{C}-\mathrm{H} \cdots \pi$	$\mathrm{Cg} \cdots \mathrm{Cg}(\AA)$	$<($ Gamma $)\left({ }^{\circ}\right)$
$\mathrm{Cg} 4 \cdots \mathrm{Cg} 5^{\mathrm{i}}$	4.28	44
$\mathrm{Cg} 5 \cdots \mathrm{Cg} 4^{\mathrm{i}}$	4.28	33

Symmetry code: [i] 1-x, 1-y, 1-z
Cg4 [C1/C2/C3/C4/C5/C6]; Cg5 [C13/C14/C15/C16/C17/C18];
$<($ Gamma $)=44^{\circ}$ is the angle formed between the vector connecting centers of the rings $\mathrm{Cg}(4) \cdots \mathrm{Cg}(5)^{\mathrm{i}}$ and normal to the plane of Cg 5
$<($ Gamma $)=33^{\circ}$ is the angle formed between the vector connecting centers of the rings $\mathrm{Cg}(5) \cdots \mathrm{Cg}(4)^{\mathrm{i}}$ and normal to the plane of Cg 4

Figure S12. Frozen solution EPR spectra (at 77 K) of compounds 3-7 (4 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, 3a-5a correspond to $3-5$ in $\mathrm{CH}_{3} \mathrm{CN} ; 6$ and 7 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) together with the theoretical spectrum sim1, calculated by using the parameters given in the text.

Figure S13. The $\chi_{\mathrm{M}} \mathrm{T}$ vs T product after subtracting TIP from the experimental data for 3-5.

Figure S14. Dihedral angle between the two $\mathrm{V}_{2} \mathrm{O}_{2}$ planes for $\mathbf{3 - 5}$.

Table S15. Magnetic and structural parameters for binuclear octahedral oxidovanadium(IV) compounds.

Compound	$J / \mathrm{cm}^{-1}(T / \mathrm{K})$	$\mathrm{V} \cdots \mathrm{V}$ $/ \AA$	$\mathrm{V}-\mathrm{O}-\mathrm{V} /{ }^{\circ}$	$\tau /^{\circ}$	Ref.
$\left[\mathrm{Et}_{3} \mathrm{NH}\right]_{2}\left[(\mathrm{VO})_{2} \mathrm{~L}\right] \cdot 4 \mathrm{CH}_{2} \mathrm{Cl}_{2}{ }^{a}$	-167.9	3.125	98.6	180^{b}	24 a
$\left[(\mathrm{VO})_{2}\left(\mathrm{~L}^{2}\right)\left(\mathrm{OCH}_{3}\right)(\mathrm{DMSO})^{c}\right.$	-244^{d}	3.026	$94.3,101.8$	131.1^{b}	24 b
$\left[(\mathrm{VO})_{2}\left(\mathrm{~L}^{3}\right)(\mathrm{OH})_{2}\right] \mathrm{I}_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}^{e}$	-300^{d}	2.965	98.1	175.7^{b}	24 c
$\left[(\mathrm{VO})_{2}\left(\mathrm{~L}^{4}\right)(\mathrm{OH})_{2}\right] \mathrm{Br}_{2}{ }^{f}$	-354^{d}	3.033	101.2	180^{b}	24 d
$\mathbf{5}$	+0.40	3.243	106.9	180	This work
$\mathbf{6}$	+5.34	3.249	106.5	174.1	This work
$\mathbf{7}$	+3.22	3.254	106.1	180	This work
$\left[(\mathrm{VO})_{2}\left(\mathrm{HL}^{5}\right)_{2}\right]^{g}$	+3.1	-	107.0	0.0^{b}	2 c

${ }^{a} \mathrm{H}_{3} \mathrm{~L}^{1}=\left(N, N-b i s\left(2\right.\right.$-hydroxybenzyl)aminoacetic acid), ${ }^{b}$ Ref. 24a,
${ }^{c} \mathrm{~L}^{2}=2,6$-bis-(salicylideneaminomethyl)-4-methylphenol, ${ }^{d} J$ converted to the convention $-J S_{1} S_{2}$ used in this paper.
${ }^{e} \mathrm{~L}^{3}=N, N, N, N$-tetrakis(2-pyridylmethyl)-ethylenediamine, ${ }^{{ }_{\mathrm{L}}{ }^{4}=1,4,7 \text {-triazacyclononane, }, ~}$ ${ }^{g} \mathrm{H}_{3} \mathrm{~L}^{5}=N$-salicylidene-2-[bis(2-hydroxyethyl)amino]ethylamine.

Figure S15. Blue: HFEPR spectrum of 1. Red: integrated spectrum - absorption. Green: integrated absorption - intensity. The V(IV) contamination contributes 8% of the total EPR intensity (the vertical range of the intensity plot is 0 to 1).

Monomeric V(III) and V(IV) Compounds.

Magnetic properties for polycrystalline samples of monomeric non-oxidovanadium(III) 1, $\mathbf{2}$ and oxidovanadium(IV) 6, 7 are presented in Figure S16-S18.

Compounds 1 and 2 exhibit large zero-field splitting. To take this into account, the magnetic susceptibility may be calculated from the fundamental formula

$$
\begin{equation*}
x_{V(I I I)}=-\frac{\sum_{i} \frac{\partial E_{i}}{\partial B} e^{-\frac{E_{i}}{k T}}}{B} \sum_{i} e^{-\frac{E_{i}}{k T}}+T I P \tag{S1}
\end{equation*}
$$

The three energies E_{i} of the triplet state were determined by diagonalizing the matrix of the spin-Hamiltonian. The ${ }^{\partial E_{i} / \partial B}$ derivatives were calculated numerically, by evaluating energies $E_{i} 5$ Gauss below and 5 Gauss above the magnetic field of the the SQUID instrument (5000 G). Formula (S1) gives the magnetic susceptibility χ at an orientation (Θ, Φ) of a molecule versus the magnetic field and needs still to be averaged over all orientations, which is accomplished by numerical integration of $\chi(\Theta, \Phi) \sin \Theta d \Theta d \Phi$, in similar way as powder EPR spectra are calculated. Both V(III) complexes contain substantial V(IV) contamination seen in EPR (Figure S15) whose magnetic susceptibility was expressed as

$$
\begin{equation*}
\chi_{V(I V)}=\frac{N \mu_{B}^{2} g^{2}}{3 k T} \frac{3}{4} \tag{S2}
\end{equation*}
$$

The equation for total susceptibility was

$$
\begin{equation*}
\chi=(1-x) \chi_{V(I I I)}+x \chi_{V(I V)} \tag{S3}
\end{equation*}
$$

where x is the fraction of the $\mathrm{V}(\mathrm{IV})$ contamination.

Finally, the effect of the intermolecular interactions was taken into account by converting the susceptibility above to

$$
\begin{equation*}
\chi^{\prime}=\frac{\chi}{1-\frac{2 z J \chi}{N \mu_{B}^{2} g^{2}}} \tag{S4}
\end{equation*}
$$

The g, D and E parameters were not fitted, they were fixed at values found from EPR. Only the fraction of the $\mathrm{V}(\mathrm{IV})$ impurities, $z J$ and $T I P$ were allowed to vary. The results are presented in Figures S16 and S17.

Figure S16. Magnetic data for 1. Blue:experimental points. Red: calculated using $g_{\text {ave }}=1.94$, $D=5.29 \mathrm{~cm}^{-1}, E=1.68 \mathrm{~cm}^{-1}, 30 \%$ of the V(IV) impurity, $z J=0.0085 \mathrm{~cm}^{-1}, T I P=588 \cdot 10^{-6} \mathrm{~cm}^{3} \mathrm{~mol}^{-1} . D$ and E are the EPR values (see Figure 7, main text).

Figure S17. Magnetic data for 2. Blue:experimental points. Red: calculated using $g_{\text {ave }}=1.93, D=$ $5.26 \mathrm{~cm}^{-1}, E=1.67 \mathrm{~cm}^{-1}, 8.9 \%$ of the V(IV) impurity, $z J^{\prime}=-0.14 \mathrm{~cm}^{-1}, T I P=990 \cdot 10^{-6} \mathrm{~cm}^{3} \mathrm{~mol}^{-1} . D$ and E are the EPR values averaged for two species (see Figure 8, main text).

The simulation of magnetic data of $\mathbf{6}$ and 7, shown in Figure S18, was carried out using the PHI program, taking into account the exchange $\mathrm{z} J^{\prime}$ and the TIP parameter. The fitting leads to the following results: $g=1.94$ and $\mathrm{z} J^{\prime}=-0.01 \mathrm{~cm}^{-1}, T I P=598 \cdot 10^{-6}$ for $\mathbf{6}$ and $g=1.97$ and $\mathrm{z} J^{\prime}=-0.08$ $\mathrm{cm}^{-1}, T I P=441 \cdot 10^{-6}$ for 7 . Also as in case of $\mathbf{6}$ and 7, very weak antiferromagnetic interaction in
the crystal lattice exist, in agreement with the X-ray studies (Figure S10 and S11; Table S13 and S14.)

Figure S18. DC magnetic data for 6, 7. Left $-\left({ }^{(0)} \chi_{\mathrm{M}} \mathrm{T}\right.$ and (\circ) χ_{M}. Right - field dependence of the magnetization per formula unit. The solid lines are calculated using the PHI program.

