Supporting Information for

P-type doping in 2M-WS₂ for a complete phase diagram

Chendong Zhao,^{abe} Xiangli Che,^{ade} Zhuang Zhang^{ab}, Fuqiang Huang^{*acd}

^{a.} State Key Laboratory of High Performance Ceramics and Superfine Microstructure,

Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050,

P.R. China. E-mail: huangfq@mail.sic.ac.cn

^{b.} University of Chinese Academy of Sciences, Beijing, 100049, P. R. China

^{c.} State Key Laboratory of Rare Earth Materials Chemistry and Applications, College

of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R.

China

^{d.} CAS Center for Excellence in Superconducting Electronic (CENSE), Shanghai 200050, China.

^{e.} These authors contributed equally: Chendong Zhao, Xiangli Che.

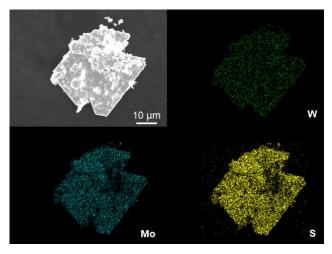


Figure S1. The elemental mapping of $W_{0.9}Mo_{0.1}S_2$.

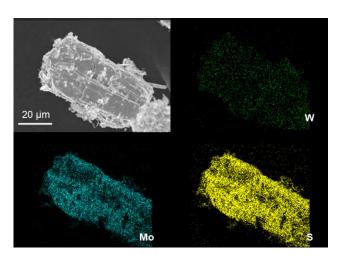


Figure S2. The elemental mapping of $W_{0.8}Mo_{0.2}S_2$.

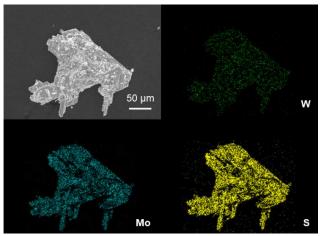


Figure S3. The elemental mapping of $W_{0.7}Mo_{0.3}S_2$.

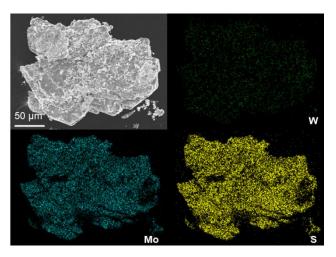


Figure S4. The elemental mapping of $W_{0.6}Mo_{0.4}S_2$.

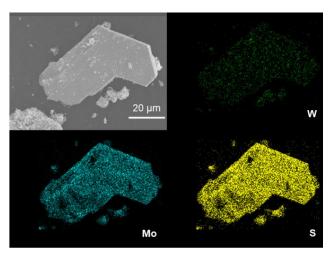


Figure S5. The elemental mapping of $W_{0.5}Mo_{0.5}S_2$.

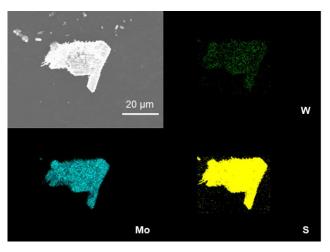
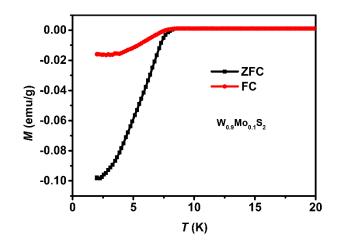



Figure S6. The elemental mapping of $W_{0.4}Mo_{0.6}S_2$.

Figure S9. Temperature dependence of magnetic susceptibility for $W_{0.9}Mo_{0.1}S_2$ under the magnetic field of 10 Oe with zero-field-cooling curve (black) and field-cooling curve (red).

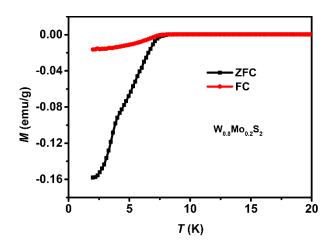
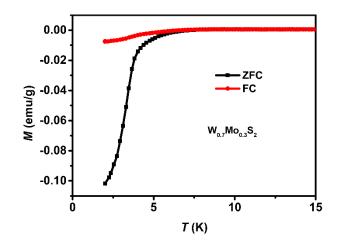



Figure S10. Temperature dependence of magnetic susceptibility for $W_{0.8}Mo_{0.2}S_2$ under the magnetic field of 10 Oe with zero-field-cooling curve (black) and field-cooling curve (red).

Figure S11. Temperature dependence of magnetic susceptibility for $W_{0.7}Mo_{0.3}S_2$ under the magnetic field of 10 Oe with zero-field-cooling curve (black) and field-cooling curve (red).

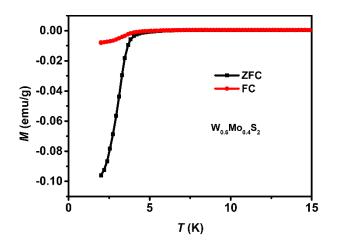


Figure S12. Temperature dependence of magnetic susceptibility for $W_{0.6}Mo_{0.4}S_2$ under the magnetic field of 10 Oe with zero-field-cooling curve (black) and field-cooling curve (red).

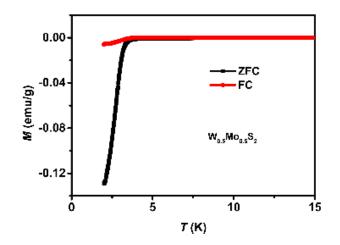


Figure S13. Temperature dependence of magnetic susceptibility for $W_{0.5}Mo_{0.5}S_2$ under the magnetic field of 10 Oe with zero-field-cooling curve (black) and field-cooling curve (red).

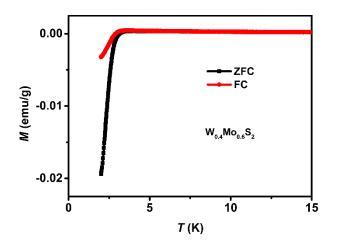


Figure S14. Temperature dependence of magnetic susceptibility for $W_{0.4}Mo_{0.6}S_2$ under the magnetic field of 10 Oe with zero-field-cooling curve (black) and field-cooling curve (red).

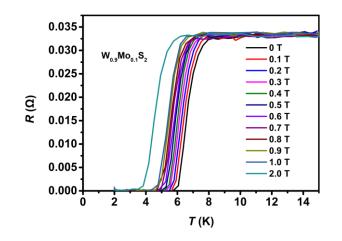


Figure S13. The temperature dependence of the resistances for $W_{0.9}Mo_{0.1}S_2$ under different magnetic fields.

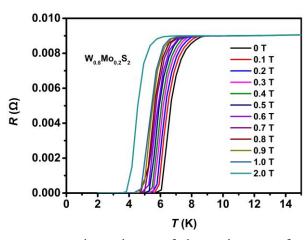


Figure S14. The temperature dependence of the resistances for $W_{0.8}Mo_{0.2}S_2$ under different magnetic fields.

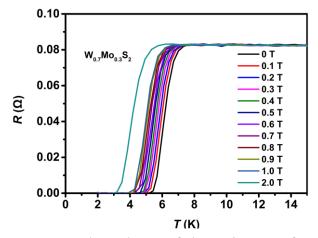


Figure S15. The temperature dependence of the resistances for $W_{0.7}Mo_{0.3}S_2$ under different magnetic fields.

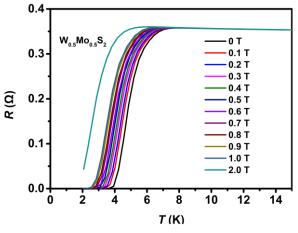


Figure S16. The temperature dependence of the resistances for $W_{0.5}Mo_{0.5}S_2$ under different magnetic fields.

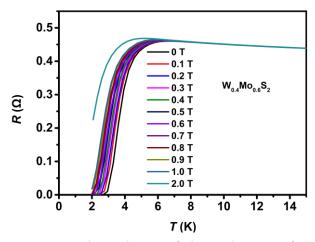


Figure S17. The temperature dependence of the resistances for $W_{0.4}Mo_{0.6}S_2$ under different magnetic fields.

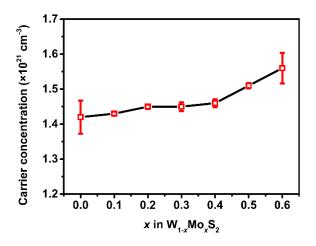


Figure S18. Bulk carrier concentration of W_{1-x}Mo_xS₂.

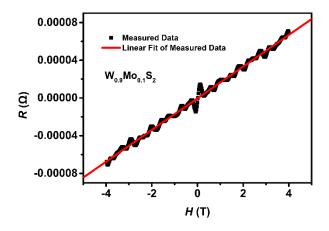


Figure S19. The curve of Hall resistance varies with the magnetic field for W_{0.9}Mo_{0.1}S₂.

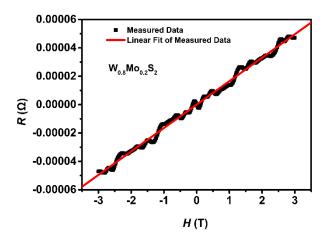


Figure S20. The curve of Hall resistance varies with the magnetic field for $W_{0.8}Mo_{0.2}S_2$.

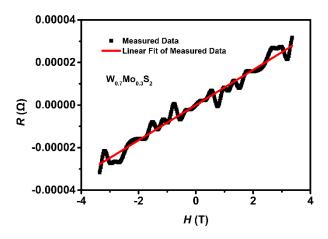


Figure S21. The curve of Hall resistance varies with the magnetic field for $W_{0.7}Mo_{0.3}S_2$.

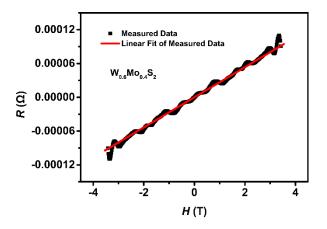


Figure S22. The curve of Hall resistance varies with the magnetic field for $W_{0.6}Mo_{0.4}S_2$.

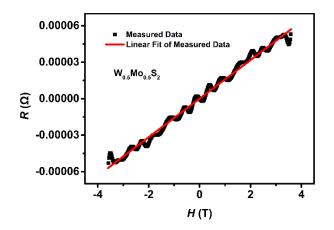


Figure S23. The curve of Hall resistance varies with the magnetic field for $W_{0.5}Mo_{0.5}S_2$.

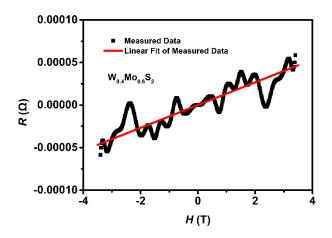


Figure S24. The curve of Hall resistance varies with the magnetic field for $W_{0.4}Mo_{0.6}S_2$.

$x \text{ in } W_{(1-x)} Mo_x S_2$	Slope(<i>R/H</i>)	The standard deviation of Slope	Thickness/cm
1	1.681×10 ⁻⁵	6.568×10 ⁻⁸	2.6×10 ⁻²
2	1.653×10^{-5}	7.080×10^{-8}	2.6×10 ⁻²
3	8.273×10 ⁻⁶	7.275×10^{-8}	5.2×10 ⁻²
4	2.670×10^{-5}	2.100×10^{-7}	1.6×10 ⁻²
5	1.588×10^{-5}	8.043×10 ⁻⁸	2.6×10 ⁻²
6	1.336×10 ⁻⁵	3.861×10 ⁻⁷	3.0×10 ⁻²

Table S1 Geometric dimension and R-H curve slope of $W_{1-x}Mo_xS_2$ samples in Hall measurement

$x \text{ in } W_{(1-x)} Mo_x S_2$	<i>n</i> (cm ⁻³)	The standard deviation of <i>n</i>
1	1.43×10 ²¹	5.90×10 ¹⁸
2	1.45×10^{21}	6.20×10^{18}
3	1.45×10^{21}	1.27×10^{19}
4	1.46×10^{21}	1.14×10^{19}
5	1.51×10^{21}	7.60×10^{18}
6	1.56×10 ²¹	4.37×10 ¹⁹