Carbazole effect on ground- and excited-state properties of rhenium(I) carbonyl complexes with extended terpy-like ligands

Katarzyna Choroba^a, Anna Maroń^a, Anna Świtlicka^a, Agata Szłapa-Kula^a, Mariola Siwy^b, Justyna Grzelak^c, Sebastian Maćkowski^c, Tomasz Pedzinski^d, Ewa Schab-Balcerzak^{a,b*} and Barbara Machura^{a*}

^{a.} Institute of Chemistry, University of Silesia, 9th Szkolna St., 40-006 Katowice, Poland.

^{b.} Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34th M. Curie-Sklodowska St., 41-819 Zabrze, Poland.

^c Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, 5th Grudziadzka St., 87-100 Torun, Poland.

^d Faculty of Chemistry, Adam Mickiewicz University in Poznań, 89b Umultowska, 61-614 Poznań, Poland

Electronic Supplementary Materials Table of Contents

	Identification	
1	Formulas of Re(I) carbonyl complexes discussed in the current work	Scheme S1
2	Preparation of ligands (L^1-L^3)	Scheme S2
3	FT-IR spectra of complexes	Figure S1
4	NMR spectra of complexes	Figures S2–S4
5	NMR spectra of ligands	Figures S5–S7
6	DSC thermograms of 1 registered during I and II heating scan	Figure S8
	X-Ray analysis	
7	Experimental and theoretical bond lengths and angles for 2, and calculated lengths and angles for 1 and 3	Table S1
8	Comparative structural analysis for discussed compounds	Table S2
9	Weak interactions and hydrogen bonds detected in the structure of 2	Table S3
10	Hirshfeld analysis for 2	Figures S9–S10
11	Weak interactions and supramolecular packing of complex 2.	Figure S11
	Frontier molecular orbital analysis	
12	Partial molecular orbital energy levels of 2 and 3 in comparison to 2A/3A and 2B/3B	Figure S12
13	Energy diagram for complexes 1A–3A , 1–3 , 1B–3B	Figure S13
14	Selected molecular orbitals of complexes 1-3 in comparison to those for 1A-	Figure S14
	3A and 1B-3B	
15	Percentage composition of selected molecular orbitals of complexes 1-3, 1A- 3A and 1B-3B	Figure S15
16	Calculated ionization potentials, electron affinities, energy gap, hole and	Table S4
	electrons reorganization energies and extraction potentials for 1-3, 1A-3A	
	and 1B-3B	
	Electrochemistry	
17	Cyclic voltammetry (CV, right side) and differential pulse voltammetry (DPV, left side) curves of 1–3	Figure S16
18	Comparison of electrochemical properties of 1–3 and 1A–3A	Table S5
	Absorption spectra and TDDFT calculations	
19	The absorption maxima and molar extinction coefficient values for 1–3, 1A–	Table S6
	3A and 1B–3B .	
20	UV-Vis spectroscopic properties of $1-3$ in comparison to the free ligands L^{1-} L^{3}	Figure S17
21	UV-Vis spectroscopic properties of 1–3 in comparison to the spectral profiles	Figure S18
	of 1A–3A and 1B–3B in CHCl ₃ and CH ₃ CN solutions.	
22	UV-vis spectra of 1 and 2 as thin films on glass substrate and	Figure S19
	photoluminescence spectrum of PVK:PBD.	

23	Experimental absorption spectra and calculated transitions of complexes 1-3, 1A-3A and 1B-3B	Figure S20					
24	The energies and characters of spin-allowed electronic transitions assigned to the lowest wavelength absorption bands of complexes 1–3, 1A–3A and 1B– 3B in acetonitrile	Table S7					
	Emission properties						
25	Comparison of emission spectra of 1-3 with their analogues (1A-3A and 1B- 3B) in different media.	Figure S21					
26	Emission spectra of L^1-L^3 in comparison to $1-3$.	Figure S22					
27	Summary of the photoluminescence properties of 1–3, 1A–3A and 1B–3B	Tables S8–S9					
28	PL spectra of investigated compounds in thin film and in blend with PVK:PBD deposited on glass	Figure S23					
29	Absorption, excitation and emission spectra of 1-3 in CH ₃ CN/H ₂ O mixture with different water fractions	Figure S24					
Electroluminescence							
30	Data obtained from EL spectra of diodes based on Re(I) complexes: position $af \lambda_{}$ under external voltage (V) and its maximal reached EL intensity	Table S10					
	Nano- and femtosecond transient absorption						
31	Nanosecond transient absorption spectra of complexes 1. 1A and 1B	Figure S25					
32	Femtosecond transient absorption spectra of 1 , 1A and 1B	Figure S26					
33	Comparison of fs-TA spectra of complexes 1, 1A, 1B and the corresponding ligands	Figure S27					
34	Fit of kinetic of selected wavelengths of 1 , 1A , 1B and L ^{1B}	Tables S11–S14					
35	Decay Associated Spectra of complexes 1, 1A, 1B and L ^{1B}	Figure S28					
	Energy diagrams						
36	Proposed energy level diagrams of the photophysical processes occurring in complexes 1 and 1B.	Figure S29					
37	Comparison between r.t. emission spectra of complexes 1 and 1B with 77 K phosphorescence of their respective ligands.	Figure S30					
	References						

Scheme S1. Formulas of Re(I) carbonyl complexes discussed in the current work. Complexes 1A–3A and 1B–3B are reported previously in ref. [1].

Preparation of ligands (L¹-L³)

Ketone (20 mmol) (2-acetylpyridine, 2-acetylthiazole or 2-acetylpyrazine) was added to the solution of N-(4-formylphenyl)carbazole (10 mmol) in EtOH (75 mL). KOH (1.54 g, 27.5 mmol) and NH₃ (aq) (35 mL) were then added. The solution was stirred at room temperature for 24 h. The solid was collected by filtration and washed with H₂O. Recrystallization from ethanol (L^1) or toluene ($L^{2,3}$) afforded a crystalline solid.

Scheme S2. Synthesis of the ligands L^1-L^3 .

L¹: Yield: 41%. NMR: ¹**H** NMR (400 MHz, CDCl₃) δ 8.91 (s, 2H, H^{B2}), 8.79 (d, J = 4.2 Hz, 2H, H^{A1}), 8.75 (d, J = 7.9 Hz, 2H, H^{A4}), 8.21 – 8.16 (m, 4H, H^{C2, D5}), 7.96 (t, J = 7.4 Hz, 2H, H^{A3}), 7.75 (d, J = 8.2 Hz, 2H, H^{C3}), 7.52 – 7.40 (m, 6H, H^{A2, D3, D2}), 7.35 – 7.30 (m, 2H, H^{D4}). ¹³C NMR (100 MHz, CDCl₃) δ 156.1 (C^{B1}), 149.6 (C^{B3}), 149.1 (C^{B5, A1}), 140.9 (C^{C4}), 138.7 (C^{C1}), 137.6 (C^{D1}), 137.4 (C^{A3}), 129.1 (C^{C2}), 127.6 (C^{C3}), 126.2 (C^{D3}), 124.2 (C^{A2}), 123.7 (C^{D6}), 121.7 (C^{A4}), 120.5 (C^{D5}), 120.3 (C^{D4}), 119.2 (C^{B2}), 110.0 (C^{D2}). Anal. calc. for N₄C₃₃H₂₂ (474.55 g mol⁻¹): C 83.52, H 4.67, N 11.81% found: C 83.82; H 4.69; N 12.03%.

L²: Yield: 46%. NMR: ¹H NMR (400 MHz, CDCl₃) δ 8.57 (s, 2H), 8.17 (d, J = 7.7 Hz, 2H), 8.09 (d, J = 8.5 Hz, 2H), 8.00 (d, J = 3.2 Hz, 2H), 7.75 (d, J = 8.5 Hz, 2H), 7.53 (d, J = 3.2 Hz, 2H), 7.51 – 7.43 (m, 4H), 7.35 – 7.30 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 168.8, 151.9, 149.9, 144.3, 140.7, 136.2, 128.9, 128.4, 127.6, 126.3, 123.8, 122.1, 120.5, 120.4, 117.9, 109.9. Anal. calc. for N₄S₂C₂₉H₁₈ (486.61 g mol⁻¹): C 71.58; H 3.73; N 11.51% found: C 71.19; H 3.73; N 11.21%.

L³: Yield: 51%. NMR: ¹H NMR (400 MHz, CDCl₃) δ 9.92 (s, 2H), 8.84 (s, 2H), 8.70 – 8.69 (m, 4H), 8.17 (d, J = 7.7 Hz, 2H), 8.12 (d, J = 8.2 Hz, 2H), 7.77 (d, J = 8.2 Hz, 2H), 7.52 – 7.43 (m, 4H), 7.33 (t, J = 7.3 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 154.8, 150.8, 150.0, 145.0, 143.8, 143.8, 140.7, 139.1, 136.9, 128.9, 127.7, 126.2, 123.8, 120.6, 120.4, 119.9, 109.9. Anal. calc. for N₆C₃₁H₂₀ (476.53 g mol⁻¹): C 78.13; H 4.23; N 17.64% found: C 78.60; H 4.54; N 18.12%.

(b)

(c)

Figure S1. FT-IR spectra of complexes 1-3 (a-c).

Figure S2. NMR spectra of complex 1 in DMSO-d⁶. ¹H (a), ¹³C (b), ¹H–¹H COSY (c), ¹H–¹³C HMQC (d), ¹H–¹³C HMBC (e).

Figure S3. NMR spectra of complex 2 in acetone-d⁶ ¹H

Figure S4. NMR spectra of complex 3 in DMSO-d⁶. ¹H (a), ¹³C (b).

Figure S5. NMR spectra of ligand L¹ in CDCl₃. ¹H (a), ¹³C (b), ¹H–¹H COSY (c), ¹H–¹³C HMQC (d), ¹H–¹³C HMBC (e).

Figure S6. NMR spectra of ligand L^2 in CDCl₃. ¹H (a), ¹³C (b).

Figure S7. NMR spectra of ligand L^3 in CDCl₃. ¹H (a), ¹³C (b).

Figure S8. DSC thermograms of complex 1 registered during I and II heating scan

X-Ray analysis

	$\operatorname{angles}[]$ for I and S .										
		Bond lengths									
	1		2	3							
	theoretical	experimental	theoretical	theoretical							
Re(1)-C(1)	1.923	1.916(4)	1.922	1.925							
Re(1)-C(2)	1.906	1.906(4)	1.904	1.909							
Re(1)-C(3)	1.901	1.916(4)	1.904	1.905							
Re(1) - N(1)	2.179	2.153(3)	2.169	2.172							
Re(1) - N(2)	2.239	2.243(3)	2.265	2.240							
$\operatorname{Re}(1)$ - $\operatorname{Cl}(1)$	2.499	2.4836(10)	2.496	2.492							
C(1)–O(1)	1.149	1.153(4)	1.149	1.148							
C(2) - O(2)	1.152	1.143(5)	1.151	1.150							
C(3)–O(3)	1.155	1.116(5)	1.154	1.154							
	Bond angles										
	1		2	3							
	theoretical	experimental	theoretical	theoretical							
C(1)-Re(1)-N(1)	175.02	173.48(13)	174.28	174.95							
C(1)-Re(1)-N(2)	102.13	99.76(13)	101.90	102.08							
C(2)-Re(1)-N(1)	97.32	96.85(14)	96.81	97.17							
C(2)-Re(1)-N(2)	170.11	169.67(13)	170.01	170.10							
C(3)-Re(1)-N(1)	93.96	92.26(14)	94.22	93.82							
C(3)-Re(1)-N(2)	97.22	98.38(13)	96.86	97.11							
C(1)-Re(1)-C(2)	85.87	88.70(16)	86.60	86.03							
C(2)-Re(1)-C(3)	88.52	87.24(16)	88.22	88.45							
C(1)-Re(1)-C(3)	89.94	91.43(16)	90.47	90.16							
N(1)-Re(1)-N(2)	74.32	74.37(11)	74.30	74.36							
C(1)-Re(1)-Cl(1)	91.81	90.83(12)	91.10	91.80							
C(2)-Re(1)-Cl(1)	92.19	92.47(12)	92.85	92.30							
C(3)-Re(1)-Cl(1)	178.15	177.72(12)	178.15	177.94							
N(1)-Re(1)-Cl(1)	84.26	85.53(8)	84.16	84.18							
N(2) = Re(1) = Cl(1)	81.84	81 57(8)	81.86	81.88							

Table S1. Experimental and theoretical bond lengths [Å] and angles [°] for 2, along with calculatedlengths [Å] and angles [°] for 1 and 3.

compound	2	2A	2B	1A	1B	3A	3B
Ligand core		dtpy		te	erpy	d	рру
substituent R	carbazole	phenyl	pyrrolidine	phenyl	pyrrolidine	phenyl	pyrrolidine
Re(1)–N(1) [Å]	2.153(3)	2.157(5)	2.151(4)	2.178(5)	2.171(3)	2.160(4)	2.159(4)
Re(1)–N(2) [Å]	2.243(3)	2.243(7)	2.236(4)	2.223(4)	2.204(4)	2.199(4)	2.213(4)
Re(1)–C(1) [Å]	1.916(4)	1.913(9)	1.916(6)	1.942(8)	1.915(5)	1.934(6)	1.917(6)
Re(1)–C(2) [Å]	1.906(4)	1.912(9)	1.890(5)	1.887(6)	1.895(8)	1.896(6)	1.897(8)
Re(1)–C(3) [Å]	1.916(4)	1.911(8)	1.903(6)	1.883(7)	1.889(4)	1.888(5)	1.896(4)
Re(1)–Cl(1) [Å]	2.4836(10)	2.480(2)	2.487(1)	2.486(2)	2.490(1)	2.499(1)	2.482(1)
N(1)-Re(1)-N(2) [°]	74.37(11)	74.9(2)	74.1(1)	74.6(2)	74.2(1)	74.4(2)	74.2(1)
N(2)-Re(1)-C(1) [°]	99.76(13)	102.2(3)	100.4(2)	101.8(2)	102.7(2)	100.3(2)	103.3(2)
dihedral angle pyridine–coordinated peripheral ring [°]	15.83(14)	2.41	15.15	13.43	8.79	11.36	10.59
dihedral angle pyridine–uncoordinated peripheral ring [°]	50.90(12)	59.34	33.12	50.25	63.93	48.22	61.46
dihedral angle pyridine–phenyl [°]	34.67(19)	6.68	17.69	10.84	13.89	17.77	13.99
dihedral angle phenyl–substituent [°]	48.61(14)	_	17.35	_	3.94	_	12.78

Table S2. Comparative structural analysis for discussed compounds. Data for complexes **1A–3A** and **1B–3B** are taken from ref. [1]

 Table S3. Weak interactions and hydrogen bonds detected in the structure of 2.

Short intra- and intermolecular hydrogen bonds											
D–H•••A		D–H [Å]		H•••A [Å]		D-A [Å]	D–H•••A [°]			
C(8)–H(8)•••S	(1)	0.93			2.85		3.206(4)		104.00		
C(30)-H(30)•••($O(3)^{a}$	0.93			2.57		3.204((8)	126.00		
Short $\pi^{\bullet\bullet\bullet}\pi$ interactions											
$Cg(I) \bullet \bullet Cg(J)$	Cg(I))•••Cg(J) [Å]	α[°]		β [°]		γ [°] Cg(I)		p[Å]	Cg(J)-Perp [Å]	
$Cg(1) \bullet \bullet Cg(2)^{b}$		3.714(3)	12.9(2	2)	14.1		26.8 3.3136		(18)	3.603(2)	
	X—Y•••Cg(J)(π-ring) interactions										
X—Y•••Cg(J)		X(I)•••Cg(Cg(J) [Å]		X-Perp [Å]		γ′ [°]		$Y-X(I) \bullet \bullet Cg(J) [^{\circ}]$		
C(1)-O(1)•••C	g(3)	3.230(4)		-3.216		5.24	ŀ	84.0(3)		

 α = dihedral angle between Cg(I) and Cg(J); β = angle $Cg(I) \rightarrow Cg(J)$ vector and normal to ring I; γ = angle $Cg(I) \rightarrow Cg(J)$ vector and normal to plane J; Cg(I)-Perp = Perpendicular distance of Cg(I) on ring J; Cg(J)-Perp = perpendicular distance of Cg(J) on ring I; γ' = angle

 $X(I) \rightarrow Cg(J)$ vector and normal to plane J.

Cg(1) is the centroid of atoms = N2/C7/C8/C9/C10/C11; Cg(2) is the centroid of atoms = C21/C22/C23/C24/C25/C26; Cg(3) is the centroid

of atoms = $\frac{S2}{C12}/\frac{N3}{C13}/C14$. Symmetry codes: a = 2-x, -1/2+y, 3/2-z; b = 2-x, 1-y, 1-z.

Figure S9. Hirshfeld surface mapped with d_{norm} (a), and 2D fingerprint plot (b) for **2**.

■ Cl-H ■ S-C ■ S-H ■ O-O ■ O-H ■ N-H ■ C-C ■ C-H ■ H-H ■ other

Figure S10. The relative contributions (%) of various intermolecular interactions to the Hirshfeld surface of 2.

Figure S11. Weak interactions detected in the crystal lattice of 2.

Frontier molecular orbital analysis

(a)

Figure S12. Partial molecular orbital energy levels of **2–3** (a-b) in comparison to the parent complexes [ReCl(CO)₃(L^{n} - $\kappa^{2}N$)] without any group attached to the phenyl ring (**2A/3A**) and that bearing pyrrolidine instead of carbazole (**2B/3B**), computed at TD-DFT/PBE1PBE/def2-TZVPD/def2-TZVP level with the use of the PCM model at polarities corresponding to MeCN. Data for complexes **2A–3A** and **2B–3B** are taken from ref. [1]

Figure S13. Energy diagram for complexes 1A-3A, 1-3, 1B-3B. Data for complexes 1A-3A and 1B-3B are taken from ref. [1]

ort com	oital oound	H-4	Н-3	H-3 H-2 H-1 H		н	L	L+1
1A				H H H H H H H H H H H H H H H H H H H		A CARACTER AND A CARA		
1	terpy		ALL ALL	A H H	A HA		A A A A A A A A A A A A A A A A A A A	How
1B		A CARACTER STATE	× × × × × × × × × × × × × ×		A A A A A A A A A A A A A A A A A A A			

Figure S14. Selected molecular orbitals of complexes 1-3 in comparison to those for 1A-3A and 1B-3B. Data for complexes 1A–3A and 1B–3B are taken from ref. [1].

Table S4. Calculated ionization potentials and electron affinities (vertical and adiabatic), energy gap, as well as hole and electrons reorganization energies and extraction potentials (DFT/PBE1PBE/def2-TZVPD/def2-TZVP) for **1–3** in comparison with **1A-3A** and **1B-3B**. Data for complexes **1A–3A** and **1B–3B** are taken from ref. [1]

Complex	IP(v) [eV]	IP(a) [eV]	EA(v) [eV]	EA(a) [eV]	λ _{hole} [eV]	λ _{electron} [eV]	HEP [eV]	EEP [eV]	energy gap(a) [eV]
1A	6.16	5.83	2.89	3.05	0.71	0.33	5.45	3.21	2.78
1	5.78	5.73	2.92	3.08	0.10	0.38	5.68	3.30	2.65
1B	5.38	5.32	2.76	2.93	0.11	0.34	5.26	3.10	2.39
2 A	6.18	5.85	3.06	3.22	0.70	0.32	5.48	3.38	2.63
2	5.80	5.75	3.08	3.24	0.10	0.38	5.70	3.46	2.51
2B	5.42	5.36	2.92	3.10	0.12	0.35	5.30	3.27	2.27
3A	6.29	5.97	3.22	3.38	0.69	0.31	5.60	3.54	2.59
3	5.80	5.75	3.24	3.40	0.10	0.38	5.70	3.62	2.35
3B	5.42	5.36	3.11	3.27	0.12	0.33	5.30	3.44	2.09

The ionization potentials (IPs), electronic affinities (EAs) and reorganization energies $(\lambda_{hole} \text{ and } \lambda_{electron})$ were calculated and compared with those for **1A–3A** and **1B–3B** in order to estimate the impact of 9-carbazole unit on the energy barriers for injection and transport rates of the holes and electrons of the designed complexes [ReCl(CO)₃(Lⁿ- κ^2 N)]. The more efficient charge-transfer rate is predicted for systems showing higher EA(v) and lower IP(v) values, and thus lower reorganization energies reflecting the geometric relaxation associated with going from the neutral to the ionized state, and vice versa.

The EAs and EEPs values increase in the order [ReCl(CO)₃(R-*terpy*- κ^2 N)] (1) < [ReCl(CO)₃(R-*dtpy*- κ^2 N)] (2) < ReCl(CO)₃(R-*dpy*- κ^2 N)] (3), which correlates well with increasing stabilization of LUMO energy level in this sequence. On the contrary, IPs of the designed complexes 1–3 have comparable values, falling in the narrow range 5.78–5.80 eV for IP(v) and 5.73–5.75 eV for IP(a). With respect to the corresponding parent complexes 1A–3A, the IP values of 1–3 are lower, while EAs remain almost the same (Table S4). On the contrary, the replacement of the 9-carbazole unit by pyrrolidine leads to decreasing of both IP and EA values. Importantly, functionalization of the imine ligand with 9-carbazole and pyrrolidine results in effective reduction of the values λ_{hole} relative to the parent complexes (1A–3A), which may support their better hole transporting performance. On the other hand, there is no significant difference in $\lambda_{electron}$ between 1–3 and comparative compounds (1A–3A and 1B–3B). Consequently, opposite trends are observed in $\lambda_{electron}$ and λ_{hole} values for the parent complexes 1A–3A and [ReCl(CO)₃(Lⁿ- κ^2 N)] complexes bearing 9-carbazole-and pyrrolidine-substituted triimine ligands. For the latter $\lambda_{electron}$ values are higher than λ_{hole} ones.

Figure S16. Cyclic voltammetry (CV, right side) and differential pulse voltammetry (DPV, left side) curves of **1–3**.

compoun d	E _{red1} [V] (<i>E_{pc}-E_{pa} [V]</i>)	E _{red2} [V]	E _{red3} [V]	E _{red1onset} [V]	EA [eV] ^a	E _{ox1} [V] (E _{pc} -E _{pa} [V])	E _{ox2} [V]	E _{ox3} [V]	E _{ox1onset} [V]	IP [eV] ^a	E _g [eV]	E ^{opt} g [eV] ^c
1A	-1.73 (0.095)	-2.04	_	-1.61	-3.49	0.78	0.91	1.07	0.68	-5.78	2.29	1.86
1	-1.78	-2.04	_	-1.65	-3.45	0.71	0.86	-	0.59	-5.69	2.24	1.91
1B	-1.84 (0.091)	-2.07	-2.23	-1.67	-3.43	0.58	0.81	—	0.46	-5.56	2.13	1.78
2A	-1.60 (0.101)	-2.00	_	-1.47	-3.63	0.93	_	-	0.79	-5.89	2.26	1.69
2	-1.69	-2.07	_	-1.59	-3.51	0.78	0.85	-	0.66	-5.76	2.25	1.69
2B	-1.71 (0.083)	-2.10	-2.21	-1.59	-3.51	0.56 (0.090)	0.88	-	0.44	-5.54	2.03	1.66
3A	-1.34 (0.111)	-1.83	_	-1.25	-3.85	0.83	1.10	-	0.57	-5.67	1.82	1.69
3	-1.46	-1.68	_	-1.32	-3.78	0.69	_	-	0.55	-5.65	1.87	1.69
3B	-1.50 (0.098)	-1.76	-1.99	-1.38	-3.72	0.59 (0.089)	1.05	_	0.46	-5.56	1.84	1.70
				$^{a}\mathrm{EA} = -5,1 - \mathrm{E}_{\mathrm{rec}}$	$_{dlonset}$, IP = -5,1	$-E_{\text{ox1 onset,}} c E_g^{opt} =$	1241/λ _{em}					

Table S5. Comparison of electrochemical properties of 1–3 with those for 1A–3A and 1B–3B. Data for complexes 1A–3A and 1B–3B are taken from ref. [1].

Absorption Spectral Behavior and Time-Dependent DFT calculations

Table S6. The absorption maxima and molar extinction coefficient values for 1–3, 1A–3A and 1B–3B. Data for complexes 1A–3A and 1B–3B are taken from ref. [1].

compound	medium	absorbance /nm ($\epsilon \cdot 10^4$ /M ⁻¹ cm ⁻¹)
1.4	acetonitrile	374.4 (0.46), 324.1 (1.34), 293.1 (2.54), 260.3 (2.84), 218.0 (2.94)
IA	chloroform	396.9 (0.28), 297.4 (1.60), 263.8 (1.82)
1	acetonitrile	378 (1.24), 313 (1.72), 286 (2.19), 251 (3.56), 235 (5.06)
1	chloroform	393 (0.99), 337 (0.99), 309 (1.79), 285 (2.55), 245 (4.01)
1D	acetonitrile	414.1 (2.51), 308.2 (2.40), 247.7 (3.05), 191.1 (8.68)
ID	chloroform	420.9 (2.42), 306.9 (2.83), 246.9 (3.38)
24	acetonitrile	388.6 (0.53), 328.8 (1.70), 294.6 (2.57), 278.0 (2.48)
ZA	chloroform	417.4 (0.44), 325.2 (1.69), 296.4 (2.24), 278.9 (2.28)
n	acetonitrile	385 (1.37), 334 (2.14), 286 (2.86), 235 (5.24)
2	chloroform	412 (2.12), 335 (3.65), 329 (3.59), 287 (5.60), 244 (7.60)
20	acetonitrile	446.1 (2.62), 380.2 (1.34), 330.7 (1.78), 318.1 (1.85), 259.6 (2.26), 195.0 (6.13)
20	chloroform	456.8 (3.21), 389.2 (1.87), 332.9 (2.16), 321.4 (2.38), 262.1 (2.93)
2.4	acetonitrile	405.0 (0.42), 334.2 (1.35), 303.7 (2.24), 277.2 (2.41), 242.4 (2.05)
ЗА	chloroform	431.4 (0.42), 314.8 (2.46), 274.2 (2.44), 247.7 (2.17)
2	acetonitrile	396 (2.11), 335 (3.67), 317 (4.38), 279 (6.81), 236 (9.91)
3	chloroform	424 (0.41), 319 (0.99), 277 (1.76), 258 (1.89), 245 (2.08)
2D	acetonitrile	454.2 (0.45), 369.8 (0.41), 318.7 (0.57), 248.5 (0.62), 192.6 (1.41)
38	chloroform	470.1 (1.13), 374.3 (1.23), 315.3 (1.76), 247.7 (1.89)

Figure S17. UV-Vis spectroscopic properties of 1–3 in comparison to the free ligands L¹–L³

Figure S18. UV-Vis spectroscopic properties of 1–3 in comparison to the spectral profiles of 1A–3A and 1B–3B. Data for complexes 1A–3A and 1B–3B are taken from ref. [1].

Figure S19. UV-vis spectra of 1 and 2 as thin films on glass substrate and photoluminescence spectrum of PVK:PBD. Green spectra are scaled to the right Y axis.

Figure S20. Experimental (red line) absorption spectra and calculated transitions (black) of for 1–3, 1A–3A and 1B–3B. The transitions were computed at TD-DFT/PBE1PBE/def2-TZVPD/def2-TZVP level with the use of the PCM model at polarities corresponding to MeCN and CHCl₃, respectively. Data for complexes 1A–3A and 1B–3B are taken from ref. [1].

Table S7. The energies and characters of spin-allowed electronic transitions assigned to the lowest wavelength absorption bands of complexes 1–3, 1A–3A and 1B–3B. The transitions were computed at TD-DFT/PBE1PBE/def2-TZVPD/def2-TZVP level with the use of the PCM model at polarities corresponding to MeCN. Data for complexes 1A–3A and 1B–3B are taken from ref. [1].

	Experimental		Calculated tran	sitions		
Compound (medium)	absorption λ; nm (10 ⁴ ε; M ⁻¹ cm ⁻¹)	Major contribution (%)	Character	E [eV]	λ [nm]	Oscillator strength
		$H \rightarrow L (99\%)$	MLLCT	2.90	428.06	$0.0098 S_1$
1A	374.4 (0.46)	$H-1 \rightarrow L (98\%)$	MLLCT	3.09	400.71	0.1093 S ₂
		$H-2 \rightarrow L (98\%)$	MLLCT	3.37	367.72	$0.0057 S_3$
		$\begin{array}{c} \text{H-1} \rightarrow \text{L} (83\%) \\ \text{H} \rightarrow \text{L} (14\%) \end{array}$	MLCT ILCT	2.88	430.78	0.0536 S ₁
1	378 (1.24)	$\begin{array}{c} H \rightarrow L \ (76\%) \\ H-1 \rightarrow L \ (16\%) \end{array}$	ILCT MLCT	2.94	421.20	0.3034S ₂
1	576(1.24)	$H-3 \rightarrow L (90\%)$	MLCT	3.11	398.38	$0.0187S_3$
		$H-4 \rightarrow L (98\%)$	MLCT	3.36	369.26	$0.0054 S_4$
		$H-2 \rightarrow L (98\%)$	ILCT	3.45	359.45	$0.0001 S_5$
		$H \rightarrow L+1 (90\%)$	ILCT	3.56	348.22	$0.1498 S_6$
		$H \rightarrow L (97\%)$	ILCT	2.70	459.61	$0.4501 S_1$
1B	414.1 (2.51)	$H-1 \rightarrow L (98\%)$	MLLCT	3.01	411.82	$0.0274 S_2$
		$H-2 \rightarrow L (90\%)$	MLLCT	3.23	384.16	$0.0681 S_3$
		$H \rightarrow L+1 (90\%)$	ILCI	3.26	380.67	$0.3118 S_4$
		$H \rightarrow L (98\%)$	MLLCT	2.75	450.24	$0.0034 S_{I}$
2A	388.6 (0.53)	$\text{H-1} \rightarrow \text{L} (97\%)$	MLLCT	2.96	418.75	$0.1094 S_2$
		$\text{H-2} \rightarrow \text{L} (96\%)$	MLLCT	3.23	383.78	$0.0106 S_3$
		$H-1 \rightarrow L (89\%)$	MLCT	2.74	451.77	$0.0176 S_1$
		$H \rightarrow L (83\%)$ $H-1 \rightarrow L (10\%)$	ILCT MLCT	2.81	441.38	0.3066 S ₂
2	385 (1.37)	$H-3 \rightarrow L (90\%)$	MLCT	2.98	415.72	$0.0216 S_3$
		$H-4 \rightarrow L (95\%)$	MLCT	3.22	384.14	$0.0120 S_4$
		$H \rightarrow L+1 (92\%)$	ILCT	3.36	369.02	$0.1652 S_6$
		$H-1 \rightarrow L+1 (95\%)$	MLCT	3.44	360.15	$0.0021 S_7$
		$H \rightarrow L (96\%)$	ILCT	2.58	481.41	$0.3772 S_1$
2R	446.1 (2.62)	$\text{H-1} \rightarrow \text{L} (98\%)$	MLLCT	2.87	431.85	$0.0247 S_2$
20		$\text{H-2} \rightarrow \text{L} (79\%)$	MLLCT	3.09	401.18	0.1661 S ₃
	380.2 (1.34)	$H \rightarrow L+1 (78\%)$	ILCT	3.13	395.88	0.3501 S ₄
		$H \rightarrow L (99\%)$	MLLCT	2.66	466.40	$0.0104 S_1$
3 A	405.0 (0.42)	$\text{H-1} \rightarrow \text{L} (98\%)$	MLLCT	2.89	429.65	0.0979 S ₂
		$\text{H-2} \rightarrow \text{L} (98\%)$	MLLCT	3.15	394.03	$0.0056 S_3$
		$\begin{array}{c} \text{H-2} \rightarrow \text{L} (60\%) \\ \text{H} \rightarrow \text{L} (37\%) \end{array}$	MLCT ILCT	2.63	470.58	$0.0952 S_{I}$
2	20((2.11)	$H \rightarrow L (58\%)$ $H-2 \rightarrow L (39\%)$	ILCT MLCT	2.70	458.94	0.1441 S ₂
5	390 (2.11)	$\text{H-3} \rightarrow \text{L} (94\%)$	MLCT	2.90	427.38	$0.0443 S_3$
		$\text{H-4} \rightarrow \text{L} (98\%)$	MLCT	3.14	394.75	$0.0055 S_4$
		$H \rightarrow L+1 (94\%)$	ILCT	3.33	371.98	0.1993 S ₆
		$H-2 \rightarrow L+2 (96\%)$	MLCT	3.52	351.87	$0.0064 S_7$
		$H \rightarrow L (97\%)$	ILCT	2.40	515.39	$0.3106 S_1$
	454 2 (0 45)	$\text{H-1} \rightarrow \text{L} (97\%)$	MLLCT	2.76	449.51	$0.0255 S_2$
		$\text{H-2} \rightarrow \text{L} (96\%)$	MLLCT	2.99	414.63	$0.0472 S_3$
3B		$H \rightarrow L+1 (93\%)$	ILCT	3.05	405.93	$0.2571 S_4$
		$H-3 \rightarrow L (98\%)$	MLLCT	3.22	385.19	0.0036 S ₅
	369.8 (0.41)	$H \rightarrow L+2 (94\%)$	ILCT	3.27	379.16	$0.1525 S_6$
		$H \rightarrow L+3 (94\%)$	ILCT	3.59	345.52	0.2343 S ₇

Figure S21. Comparison of emission spectra of 1-3 with their analogues (1A-3A and 1B-3B) in different media. Data for complexes 1A–3A and 1B–3B are taken from ref. [1].

Figure S22. Emission spectra of L^1-L^3 in comparison to 1-3.

17 X 5 7 X u	d ID 5D . Dutu 10					
compound	medium	excitation	emission	Lifetime [ns]	χ^2	o [%]
1 1 1	MeCN	380 321 300 251	666	2 18 (71 /2%) 16 01 (28 58%)	0.071	0.21
17	CUCI	400, 200, 266	667	2.16(71.4270), 10.01(28.5670)	1.052	0.21
		400, 300, 200	5.42	3.27(71.01%), 28.43(28.99%)	1.032	0.45
	//K	384, 360, 333, 305	545	2282(22.41%), 58/8(77.59%)	1.013	-
	solid	442, 369, 302, 261	592	30.04 (65.78%), 94.89 (34.22%)	1.184	1.28
1B	MeCN	458, 365, 315, 257	702	0.079	1.426	0.36
	CHCl ₃	404, 329, 289	507	3.74	1.073	0.14
		432, 369, 303, 265	617	3.04 (20.60%) 49.78 (79.40%)	1.103	
	77K	429, 319	588	93 460 (20.55%), 279 070 (79.45%)	1.022	-
	solid	522, 351, 302	625	696.33 (44.36%), 3 541 (55.65%)	1.131	1.29
1	MeCN	370 326 282 254	651	0.58 (13.33%) 2.60 (86.67%)	0.955	0.58
	CHCl	385 316 287 261	506	7 74 (76 77%) 2 90 (23 23%)	1 044	1 39
	eners	505, 510, 207, 201	657	3 17 (73 15%) 7 66 (26 85%)	1.052	1.57
	77K	400 322 289 278 240	513 540	0 874 (41 66%) 38 355 (58 34%)	1.002	
	//K	400, 322, 289, 278, 240	515, 540	222.71	0.059	-
	Solid	480	590	332.71	0.958	15.42
	film	404	580	-	-	-
	blend with 1wt.%	340	404,552	-	-	-
	blend with	340	302 551	_	_	_
	2 wt.%	540	392,331	-	-	-
	blend with 15wt.	240	276 565			
	%	540	370,303	-	-	-
2A	MeCN	392, 331, 304, 261	735	4.44	1.035	0.36
	CHCl ₂	419, 327, 300, 267	727	6.38	1.092	0.28
	77K	392 343 331 310	585	1 822 8 (85 47%) 9 198 9 (14 53%)	1 061	-
	solid	502 393 310 265	650	68 51 (54 28%) 205 69 (45 72%)	0.924	2 54
20	MaCN	450 265 221 200	741	0.08(84.60%) = 6.08(15.21%)	1 222	0.25
20		430, 303, 331, 290	526	0.08 (84.0970), 0.98 (13.3170)	0.096	0.23
	CHCl ₃	427, 348, 300	530	2.00 (48.01%), 4.03 (51.39%)	0.980	1.55
	7717	403, 328, 207	080		1.212	
	//K	457, 336	607	69 340 (23.27%), 212 650 (76.73%)	1.11/	-
	solid	551, 513, 382, 307	652	114.52 (20.80%), 613.27 (79.20%)	1.130	1.53
		563, 386, 306	752	280.52 (45.77%), 1 163 (54.23%)	1.073	
2	MeCN	386, 334, 304, 253	733	3.98	0.961	0.92
	CHCl ₃	410, 334, 265	734	5.78	1.086	0.77
	77K	402, 327, 287, 239	578	2 635 (56.68%), 9 826 (43.32%)	1.131	-
	solid	494	618	46.67 (38.05%); 300.57 (61.95%)	1.076	7.55
	film	423	610	-	-	-
	blend with 1wt.%	340	383	-	-	-
	blend with	2.10				
	2 wt %	340	411	-	-	-
	blend with 15wt					
		340	417, 604	-	-	-
3 ۸	MeCN	403 325 303 260	736	3 30	1 1 20	0.34
JA	CUCI	405, 525, 505, 200	730	5.55	1.129	0.34
		430, 329, 300, 203	732	4.//	1.1/2	0.38
	/ / K	410, 380, 369, 344,	58/	2 091 (/3.41%), 10 914 (20.39%)	1.0//	-
		329, 309	(22	76 15 (20 110/) 214 07 (70 000/)	1.071	0.10
	solid	486, 396, 305, 263	623	/6.15 (20.11%), 214.0/ (/9.89%)	1.0/1	0.19
3B	MeCN	480, 400, 341	781	0.06 (23./3%), 3.55 (49./8%),	1.200	0.14
				23.72 (26.49%)		
	CHCl ₃	462, 382, 323, 268	690	10.06 (27.75%), 41.36 (72.25%)	0.980	0.93
	77K	466, 390, 334	632	30 630 (23.51%), 86 330 (76.49%)	1.139	-
	solid	536, 413, 302	661	26.60 (8.93%), 164.58 (42.21%),	0.968	2.27
				614.49 (48.86%)		
3	MeCN	400, 322, 288	734	3.35	0.996	0.51
	CHCl ₃	411, 326, 287, 259	738	3.95 (53.05%), 9.26 (46.95%)	1.016	0.99
	77K	421, 331, 288	578	29 376 (52.62%), 156 554 (47.38%)	1.126	-
	solid	512	638	30.44 (21.47%) 114 69 (78.53%)	1 000	8.60
	film	449	576	-	1.000	5.00
	hland with 1wt 9/	3/0	301	-		-
	blondith	340	391	-	-	-
	2 wt 9/	340	392	-	-	-
	2 WL.70					
	orena with 15wt.	340	391, 592	-	-	-

Table S8. Summary of photoluminescence properties of 1–3 in comparison with photoluminescence data for 1A–3A and 1B–3B. Data for complexes 1A–3A and 1B–3B are taken from ref. [1].

Table S9. Summary of photoluminescence properties of 1–3.

Figure S23. PL spectra of investigated compounds in thin film and in blend with PVK:PBD deposited on glass. Blue spectra are scaled to the right Y axis, while black spectra are scaled to the left Y axis.

Figure S24. Absorption (a), excitation (b) and emission (c) spectra of 1-3 in CH_3CN/H_2O mixture with different water fraction (f_w).

Electroluminescence

	Active layer structure												
	Neat complex		PVK:PBD:complex		PVK:PBI):complex	PVK:PBD:complex						
Re(I)			1 wt.%		2 w	t.%	15 wt.%						
complex	$\lambda_{EL} [nm]$	Intensity	λ_{EL} [nm]	Intensity	$\lambda_{EL} [nm]$	Intensity	$\lambda_{EL} [nm]$	Intensity					
	(V)	[a.u.]	(V)	[a.u.]	(V)	[a.u.]	(V)	[a.u.]					
1	625 (15)	598	600 (22)	6624	600 (25)	36041	600 (30)	159790					
2	—	_	615 (23)	2861	630 (27)	8799	630 (30)	24618					
3	_	_	615 (22)	23826	610 (23)	9518	620 (22)	1425					

Table S10. Data obtained from EL spectra of diodes based on Re(I) complexes: position of λ_{EL} under external voltage (V) and its maximal reached EL intensity

The EL spectra were registered as a function of applied voltage. For diodes with structure ITO/PEDOT:PSS/complex/Al, it was found that only the device based on the Re(I) complex with terpy core (1) showed weak EL with maximum of the emission band (λ_{EL}) at 625 nm (Table S10 and Figure 9). Additionally, due to partial overlap between the absorption spectrum of the complexes with the emission spectrum of the applied matrix PVK:PBD (Figure S19), devices with guest-host configuration were prepared (ITO/PEDOT:PSS/PVK:PBD:complex/Al). However, taking into account the PL spectra of the blends, that is, the Re(I) complexes dispersed molecularly in a PVK:PBD, only in the case of complex bearing *terpy* core (1), for all its content in matrix, a band originating from the emission of 1 is seen (Figure S23). In all PL spectra of blends the emission of the matrix observed at shorter wavelengths dominates, which confirms incomplete quenching of the PVK:PBD photoluminescence due to incomplete energy transfer from the matrix to the luminophore. All guest-host diodes emitted red light with varied intensity. It can be noticed that the maximal EL intensity was reached under high external voltage. It was found that dispersion of complex in a matrix results in a significant increase in light emission intensity. The most favorable complex content in blend, which provides intense EL is 15 and 1 wt.% for diode with 1, 2 and 3, respectively (Table S10). The EL spectra of devices based on 1, 2 and 3 recorded under the same external voltage were compared to determine the impact of complexes chemical structure on emission of light (Figure 9).

In examination of the effect of the complex structure in a diode architecture with its 1 wt. % content in a matrix under 22 or 23 V, it can be noticed that the most intense EL emission was observed for the device containing compound with dppy core (3). On the other hand, the increase of complex content in blend to 2 and 15 wt.% caused that the diode with molecule bearing *terpy* unit (1) exhibited the highest emission.

Finally, the most intense light emission under voltage was observed for diode with active layer bearing 15 wt.% of complex 1. It can be concluded that the presence of terpy (1) unit compared to dtpy (2) and dppy (3) structure provides better ability for light emission induced by both radiation and voltage. Considering the previously reported systems – without any groups attached to the phenyl ring and bearing pyrrolidine instead of carbazole (Scheme S1)¹ - the effect of these substituents in complex with *terpy* (1A, 1B and 1), *dtpy* (2A, 2B and 2) and *dppy* (3A, 3B and 3) core on voltage induced emission can be analyzed. The slight impact of complex structure on energy of emitted light was seen and all diodes with architecture ITO/PEDOT:PSS/complex/Al exhibited red EL. However, significant differences in emitted light intensity were observed. In the examination of such type of diodes, it can be noticed that device based on compound with *terpy* and unsubstituted phenyl ring (1A) was non emissive contrary to diodes with *terpy* substituted with pyrrolidine (1B) and carbazole (1) unit. The diodes without carbazole unit and dtpy (2A and 2B) and dppy (3A and 3B) core showed EL. The more intense EL showed diode with pyrrolidine and *dtpy* core (2B). When evaluating guest-host devices (with 2 wt.% complex content in a matrix), substitution of phenyl ring in complex increases the EL

intensity. The replacement of carbazole (1-3) with pyrrolidone (1B-3B) unit enhances the EL intensity.

Nano- and femtosecond transient absorption

Figure S25. Nanosecond transient absorption spectra of complexes 1 and 1A in CH₃CN (argon bubbling) (a). Nanosecond transient absorption spectra of complex 1B and ligand L^{1B} in CH₃CN or CHCl₃ (argon bubbling) (b). Data for complex 1B taken from ref. [1].

Figure S26. Femtosecond transient absorption spectra of 1, 1A and 1B (visible region with pump 420 nm and 355 nm and near UV region with pump 420 nm).

Figure S27. Comparison of fs-TA spectra of complexes 1, 1A, 1B and the corresponding ligands.

Table S11. Fit of kinetic of selected wavelengths of complex 1.

The value of the first time component was obtained from the analysis of cropped delay time range (20 ps) and then fixed. This ultrafast component is related to the decay of ESA band at 472 nm and growing of ESA band at 580 nm. The decay kinetics of two visible ESA bands were fitted for samples pumped at 420 nm and 355 nm. The shapes of decay curves at both pumping wavelengths are similar and the obtained time constrains are within error bars. The greater differences are visible for ESA band at 472 nm (t2 = 15.7 ± 5.68 ps for 420nm pump and t2 = 36.9 ± 4.97 ps for 355 nm pump).

Table S12. Fit of kinetic of selected wavelength of complex 1A.

The value of the first time component was obtained from the analysis of cropped delay time range (20 ps) and then fixed. This ultrafast component is related to the growing of ESA band at 563 nm. The decay kinetic of visible ESA band was fitted for samples pumped at 420 nm and 355 nm. The shapes of decay curves at both pumping wavelengths are similar and the obtained time constrains are within error bars.

Table S13. Fit of kinetic of selected wavelengths of complex 1B.

The value of the first time component was obtained from the analysis of cropped delay time range (20 ps) and then used as an initial value or fixed. The ultrafast component is related to the decaying of ESA band at 509 nm and the growing of ESA band at 618 nm. The additional growing time constrain is visible for ESA at 618 nm. The decay kinetics of two visible ESA bands were fitted for samples pumped at 420 nm and 355 nm. The shapes of decay curves at both pumping wavelengths are similar and the obtained time constrains are within error bars.

Table S14. Fit of kinetic of selected wavelengths of ligand L^{1B}.

The decay kinetic at 509 nm band for L^{1B} presents the different profile and time constants than complex **1B**. The much more similarity is visible in case of fit of kinetic at 618 nm. However, the t₂ component within few ps in case of complex **1B** represent the growing of ESA band, while in case of ligand L^{1B} decaying.

Figure S28. Decay Associated Spectra of complexes 1, 1A, 1B and ligand L^{1B}.

Energy diagrams

Figure S29. Proposed energy level diagrams of the photophysical processes occurring in complexes 1 and 1B.

Figure S30. Estimation of ³MLCT and ³IL/³ILCT energies on the basis of r.t. emission spectra of complexes **1** and **1B** and 77 K phosphorescence of the appropriate ligands obtained with TRES measurements (delay 180 ns).

References

[1] T. Klemens, A. Świtlicka, A. Szlapa-Kula, S. Krompiec, P. Lodowski, A. Chrobok, M. Godlewska, S. Kotowicz, M. Siwy, K. Bednarczyk, M. Libera, S. Maćkowski, T. Pędziński, E. Schab-Balcerzak and B. Machura, Applied Organometallic Chemistry, 2018, 32, e4611.