Multifunctional Properties in {Cu^{II}₂Ln^{III}₂} System Involving Nitrogen-Rich Nitronyl Nitroxide: Single-Molecule Magnet, Luminescence, Magnetocaloric Effect and Heat Capacity

Hongdao Li,*^{ab} Pei Jing,^b Jiao Lu,^b Lu Xi,^b Qi Wang,^a Lifeng Ding,^a Wen-Min Wang,^c Zhenjun Song*^{bd}

^a Department of Chemistry and Chemical Engineering, Taiyuan Institute of Technology, Taiyuan 030008, China

^b Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry and Tianjin Key Laboratory of Metal and Molecule-based Material Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China

^c Department of Chemistry, Taiyuan Normal University, Jinzhong 030619, China

^d School of Pharmaceutical and Materials Engineering, Taizhou University, Taizhou 318000, China

Ligand	1
Empirical formula	$C_{29}H_{36}Cl_2N_{12}O_4$
Mr	687.60
<i>T</i> (K)	150(2)
Crystal system	triclinic
Space group	$P^{\overline{1}}$
<i>a</i> /Å	6.6243(8)
b/Å	15.4438(17)
<i>c</i> /Å	16.5551(17)
α /°	91.772(6)
β /°	101.017(6)

Table S1. The crystal data and refinement details of 1

γ /°	100.690(6)
$V/\text{\AA}^3$	1629.7(3)
Ζ	2
$D_{\text{calcd}}/\text{g cm}^{-3}$	1.405
θ /°	2.91-72.34
F(000)	720
Reflections collected	39190
Unique reflns/ <i>R</i> _{int}	6755/0.0934
GOF (F^2)	0.999
$R_1, wR_2 (I > 2\sigma(I))$	0.0924, 0.2031
R_1 , wR_2 (all data)	0.1355, 0.2280

_

Table S2. Selected bond lengths [Å] and angles $[\circ]$ for ligand 1.

		1 radical		
N(1)-C(4)	1.313(6)	N(7)-C(18)	1.317(6)	
N(1)-C(1)	1.334(6)	N(7)-C(15)	1.346(7)	
N(2)-C(2)	1.306(7)	N(8)-C(17)	1.315(6)	
N(2)-C(3)	1.335(6)	N(8)-C(16)	1.341(7)	
N(3)-N(4)	1.371(5)	N(9)-C(19)	1.347(6)	
N(3)-C(5)	1.361(6)	N(9)-N(10)	1.383(5)	
N(3)-C(4)	1.403(6)	N(9)-C(18)	1.408(6)	
N(4)-C(6)	1.324(6)	N(10)-C(20)	1.322(6)	
N(5)-O(1)	1.275(5)	N(11)-C(22)	1.353(6)	
N(5)-C(8)	1.328(6)	N(11)-C(24)	1.506(6)	
N(5)-C(10)	1.504(6)	N(12)-O(4)	1.277(5)	
N(6)-O(2)	1.286(5)	N(12)-C(22)	1.346(6)	
N(6)-C(8)	1.341(6)	N(12)-C(23)	1.505(6)	
N(6)-C(9)	1.496(6)			
O(1)-N(5)-C(8)	125.7(4)	C(8)-N(6)-C(9)	112.7(4)	
O(1)-N(5)-C(10)	121.4(4)	O(3)-N(11)-C(22)	125.1(4)	
C(8)-N(5)-C(10)	112.7(4)	O(3)-N(11)-C(24)	122.0(4)	
O(2)-N(6)-C(8)	125.3(4)	O(4)-N(12)-C(22)	125.0(4)	
O(2)-N(6)-C(9)	121.9(4)	O(4)-N(12)-C(23)	122.6(4)	

	2 Gd		3 Tb
Gd(1)-O(7)	2.401(5)	Tb(1)-O(7)	2.376(4)
Gd(1)-O(8)	2.402(5)	Tb(1)-O(8)	2.395(5)
Gd(1)-O(9)	2.415(6)	Tb(1)-O(9)	2.372(4)
Gd(1)-O(10)	2.384(6)	Tb(1)-O(10)	2.388(4)
Gd(1)-O(11)	2.400(6)	Tb(1)-O(11)	2.369(4)
Gd(1)-O(12)	2.401(5)	Tb(1)-O(12)	2.396(4)
Gd(1)-O(13)	2.393(5)	Tb(1)-O(13)	2.389(4)
Gd(1)-N(3)	2.581(6)	Tb(1)-N(3)	2.570(5)
Gd(1)-N(5)	2.747(6)	Tb(1)-N(5)	2.743(5)
Cu(1)-O(6)	1.943(6)	Cu(1)-O(6)	1.948(5)
Cu(1)-O(5)	1.953(5)	Cu(1)-O(5)	1.960(4)
Cu(1)-O(3)	1.959(5)	Cu(1)-O(3)	1.961(4)
Cu(1)-O(4)	1.963(5)	Cu(1)-O(4)	1.965(4)
Cu(1)-O(1)	2.465(7)	Cu(1)-O(1)	2.464(5)
Cu(1)-N(6)	2.368(6)	Cu(1)-N(6)	2.368(5)
O(7)-Gd(1)-O(8)	73.16(18)	O(7)-Tb(1)-O(8)	70.53(16)
O(10)-Gd(1)-O(9)	72.78(18)	O(9)-Tb(1)-O(10)	73.63(14)
O(11)-Gd(1)-O(12)	70.52(19)	O(11)-Tb(1)-O(12)	73.05(15)
O(3)-Cu(1)-O(4)	92.2(2)	O(3)-Cu(1)-O(4)	91.91(19)
O(6)-Cu(1)-O(5)	92.4(2)	O(6)-Cu(1)-O(5)	92.1(2)
O(1)-Cu(1)-N(6)	165.2(2)	O(1)-Cu(1)-N(6)	165.1(2)

Table S3. Selected bond lengths [Å] and angles [°] for compounds 2 and 3.

	4 Dy
Dy(1)-O(7)	2.396(7)
Dy(1)-O(8)	2.352(7)
Dy(1)-O(9)	2.370(7)
Dy(1)-O(10)	2.361(7)
Dy(1)-O(11)	2.362(7)
Dy(1)-O(12)	2.371(6)
Dy(1)-O(13)	2.360(11)
Dy(1)-N(3)	2.564(8)
Dy(1)-N(5)	2.745(8)
Cu(1)-O(6)	1.954(7)
Cu(1)-O(5)	1.958(7)
Cu(1)-O(3)	1.948(7)
Cu(1)-O(4)	1.962(7)
Cu(1)-O(1)	2.468(8)
Cu(1)-N(6)	2.377(8)
O(7)-Dy(1)-O(8)	73.3(2)
O(10)-Dy(1)-O(9)	70.8(2)
O(11)-Dy(1)-O(12)	73.8(2)
O(3)-Cu(1)-O(4)	91.9(3)
O(6)-Cu(1)-O(5)	91.8(3)
O(1)-Cu(1)-N(6)	165.0(2)

Table S4. Selected bond lengths [Å] and angles $[\circ]$ for compound 4.

 Table S5. SHAPE analysis for complexes 2-4.

Complex	JCSAPR-9	CSAPR-9	MFF-9
2 Gd	1.409	0.899	0.671
3 Tb	1.344	0.871	0.659
4 Dy	1.337	0.881	0.654

JCSAPR-9: Capped square antiprism J10; CSAPR-9: Spherical capped square antiprism; MFF-9: Muffin

Figure S1. Packing diagram of ligand 1 and all of the hydrogen atoms are omitted for clarity.

Figure S2. Crystal structure of complex 3, in which H and F atoms are omitted for clarity.

Figure S3. Coordination polyhedra around the Tb^{III} ion in 3.

Figure S4. Packing diagram of complex **3**, where all the H and F atoms and trichloromethane solvent molecules are omitted for clarity.

Figure S5. Crystal structure of complex 4, in which H and F atoms are omitted for clarity.

Figure S6. Coordination polyhedra around the Dy^{III} ion in 4.

Figure S7. Packing diagram of complex **4**, where all the H and F atoms and trichloromethane solvent molecules are omitted for clarity.

Figure S8. Powder X-ray diffraction (PXRD) patterns for complexes 2-4 at room temperature.

Figure S9. *M* versus *H* plot of complex **3** at 2.0, 3.0 and 5.0 K.

Figure S10. Plots of the reduced magnetization M versus HT^{-1} for compound 3.

Figure S11. *M* versus *H* plot of complex 4 at 2.0, 3.0 and 5.0 K.

Figure S12. Plots of the reduced magnetization M versus HT^{-1} for compound 4.

Figure S13. Temperature dependence of χ' for **3** in zero dc field with an oscillation of 3 Oe.

Figure S14. Temperature dependence of χ'' for 3 in zero dc field with an oscillation of 3 Oe.

Figure S15. Temperature dependence of χ' for 4 in zero dc field with an oscillation of 3 Oe.

Figure S16. Temperature dependence of χ'' for 4 in zero dc field with an oscillation of 3 Oe.

Figure S17. Temperature dependence of χ' for 4 in 1.5 kOe dc field with an oscillation of 3 Oe.

Figure S18. Temperature dependence of χ'' for **4** in 1.5 kOe dc field with an oscillation of 3 Oe.

Temp. (K)	τ	α
3.0 K	3.9E-4	0.38
3.5 K	2.33E-4	0.3595
4.0 K	1.5E-4	0.35
4.5 K	1.02E-4	0.33
5.0 K	6.6E-5	0.305
5.5 K	4.72E-5	0.274
6.0 K	3.86E-5	0.223
6.6 K	3.10E-4	0.218
7.0 K	2.86E-5	0.152

 Table S6. Selected parameters from the fitting result of the Cole-Cole plots for compound 4 under

 1.5 kOe.

 Table S7. Fitting parameters of the luminescence decay curve for compound 3.

fitting parameter	compound 3
$ au_1$	14.51
$ au_2$	52.06
A_1	1.21E4
A_2	397.5
В	3.16
R^2	0.997