Bis(pyridineylidene)isoindoline, an isoindoline chelate with a delocalized electronic structure

Sanjay Gaire,^a Briana R. Schrage,^a Victor N. Nemykin,^b and Christopher J. Ziegler^a

a Department of Chemistry, University of Akron, Akron, Ohio 44312-3601, United States b Department of Chemistry, University of Tennessee, Knoxville, TN 37996

Supplementary Information

Table of Contents

	Page
General Information	S4
Full citation for Gaussian	S6
Syntheses	S7
Figure S1: ¹ H NMR (300 MHz) of 1 in CDCl ₃ .	S9
Figure S2: ¹ H NMR (300 MHz) of Zn(1) in CDCl ₃ .	S10
Figure S3: High-resolution ESI mass spectra of 1.	S11
Figure S4: High-resolution ESI mass spectra of Zn(1).	S12
Figure S5: High-resolution ESI mass spectra of Cu(1).	S13
Figure S6: High-resolution ESI mass spectra of Ni(1).	S14
Figure S7: Cyclic voltammogram of compound 1 in DMF/0.1 TBAPF ₆	S15
Figure S8: Cyclic voltammogram of compound $Zn(1)$ in DMF/0.1 TBAPF ₆	S16
Figure S9: Cyclic voltammogram of compound $Cu(1)$ in DMF/0.1 TBAPF ₆	S17
Figure S10: Cyclic voltammogram of compound Ni(1) in DMF/0.1 TBAPF ₆	S18
Figure S11: The UV-visible spectra of BPYI and its metal complexes in DMF solution.	S19
Figure S12. DFT-predicted frontier orbitals for BPYI (1) and BPI.	S20
Figure S13. DFT-predicted frontier orbitals for the metal complexes of (1).	S21
Figure S14: Experimental and TDDFT-predicted spectra for compounds BPYI (1) and BPI	S22
Figure S14: Experimental and TDDFT-predicted spectra for compounds Zn(1).	S23
Figure S15: Experimental and TDDFT-predicted spectra for compounds Cu(1) and Ni(1).	S24
Figure S17: B3LYP relative energies of the frontier orbitals for BPYI (1) and BPI.	S25
Figure S16: B3LYP α-spin relative energies of the frontier orbitals for compounds 1, Zn(1), Cu(1) and Ni(1).	S26
Figure S17: B3LYP β-spin relative energies of the frontier orbitals for compounds 1, Zn(1), Cu(1) and Ni(1).	S26
Figure S18: Orbital compositions for 1 and Zn(1).	S27
Figure S19: Orbital compositions for Cu(1) , α -spin on top and β -spin on bottom.	S28
Figure S20: Orbital compositions for Ni(1), α -spin on top and β -spin on bottom.	S29
Table S1: X-ray crystal data and structure parameters	S30

for compounds 1, Zn(1), Cu(1), and Ni(1).

Table S2: Evans NMR method data and parameters.	S32
Table S3 : TDDFT-predicted energies and expansion coefficients for compound 1 (only excited states with $f > 0.05$ and $\lambda > 270$ nm are listed).	S33
Table S4 : TDDFT-predicted energies and expansion coefficients for compound BPI (only excited states with $f > 0.05$ and $\lambda > 270$ nm are listed).	S33
Table S5 : TDDFT-predicted energies and expansion coefficients for compound Zn(1)(only excited states with $f > 0.05$ and $\lambda > 270$ nm are listed).	S33
Table S6 : TDDFT-predicted energies and expansion coefficients for compound Cu(1)(only excited states with $f > 0.05$ and $\lambda > 270$ nm are listed).	S33
Table S7 : TDDFT-predicted energies and expansion coefficients for compound Ni(1)(only excited states with $f > 0.05$ and $\lambda > 270$ nm are listed).	S36
Table S8: DFT optimized geometry of compound 1.	S38
Table S9: DFT optimized geometry of compound BPI.	S39
Table S10: DFT optimized geometry of compound Zn(1).	S40
Table S11: DFT optimized geometry of compound Cu(1).	S 42
Table S12: DFT optimized geometry of compound Ni(1).	S44

General Information

Experimental

All reagents and starting materials were purchased from commercial vendors and used without further purification. 1,3-diiminoisoindoline (DII) was synthesized according to previously published procedures.¹ Deuterated solvents were purchased from Cambridge Isotope Laboratories and used as received.

NMR spectra were recorded on 300 MHz and 500 MHz spectrometers and chemical shifts were given in ppm relative to residual solvent resonances (¹H NMR and ¹³C NMR spectra). High-resolution mass spectrometry experiments were performed on a Bruker MicroTOF-III and MicroTOF-qIII instruments. Infrared spectra were collected on Thermo Scientific Nicolet iS5 that was equipped with an iD5 ATR. UV-visible spectra were recorded on a Shimadzu UV-2600 UV-Visible spectrophotometer.

X-ray intensity data were measured on a Bruker CCD-based and PHOTON II CPAD-based diffractometer with dual Cu/Mo ImuS microfocus optics (Cu K α radiation, $\lambda = 1.54178$ Å, Mo K α radiation, $\lambda = 0.71073$ Å). Crystals were mounted on a cryoloop using Paratone oil and placed under a steam of nitrogen at 100 K (Oxford Cryosystems). The detector was placed at a distance of 5.00 cm from the crystal. The data were corrected for absorption with the SADABS program. The structures were refined using the Bruker SHELXTL Software Package (Version 6.1),² and were solved using direct methods until the final anisotropic full-matrix, least squares refinement of F² converged.

Electrochemistry measurements were conducted using a CHI 820D potentiostat in a standard three-electrode configuration. Platinum wire was used as the counter electrode. The working electrode used was a 2 mm diameter platinum disk. A nonaqueous Ag/Ag⁺ reference

electrode was used by immersing silver wire in a degassed dimethylformamide (DMF) solution of $0.01 \text{ M AgNO}_3 / 0.1 \text{ M}$ tetrabutylammonium hexafluorophosphate (TBAPF₆). All potentials were referenced to the ferrocene/ferrocenium couple. The concentration of analyte was 1.0 mM, and the supporting electrolyte was 0.1 M TBAPF₆ dissolved in DMF.

Computational Details

The starting geometries of compounds **BPI**, **1**, **Zn(1)**, **Cu(1)**, and **Ni(1)** were optimized using a B3LYP exchange–correlation functional.³ Energy minima in optimized geometry were confirmed by the frequency calculations (absence of the imaginary frequencies). The solvent effect was modeled using the polarized continuum model (PCM).⁴ In all calculations, DMF was used as the solvent (CHCl₃ for BPI). In PCM-TDDFT calculation, the first 30 states were calculated. All atoms were modeled using the 6-311G(d)⁵ basis set. Gaussian 09 software was used in all calculations. ⁶ The QM Forge program was used for molecular orbital analysis in all cases.⁷

Synthesis of 1: 1.00 g of DII (7 mmol), and 1.6 mL of 2-pyridylacetonitrile (14 mmol) were mixed in 30 mL of EtOH and refluxed for 2 hours. After cooling to room temperature, the precipitate was filtered, washed with cold EtOH, and dried in a vacuum oven, yielding an orange solid. Yield: 1.75 g (72%). MP: (decomp) 280°C. ESI MS (positive mode) $[C_{22}H_{13}N_5Na]^+$ calculated $[M+Na]^+$ 370.1063 m/z, found 370.1021 m/z. ¹H NMR (300 MHz, CDCl₃): δ = 7.25 (m, 2H), 7.67 (m, 2H,), 7.82 (dd, 4H), 8.73 (m, 2H) and 8.81 (dd, 2H). ¹³C NMR {¹H}: due to limited solubility we were unable to get ¹³C NMR. Crystals suitable for X-ray diffraction were grown in DMF.

Synthesis of **Zn(1)**: 50.80 mg of **1** (146.24 mmol), and 32.80 mg (146.24 mmol) of $Zn(OAc)_2.2H_2O$ were dissolved in MeOH (20 mL) and refluxed for 2 hours. The resulting solution was cooled down to room temperature, filtered, washed with cold MeOH and dried in vacuum oven to get reddish brown powder of pure compound **2**. Yield: 68 mg (87%). ESI MS (positive mode) $[C_{24}H_{15}N_5O_2ZnNa]^+$ calculated $[M+Na]^+$ 492.0420 m/z, found 492.0421 m/z. ¹H NMR (300 MHz, CDCl₃): $\delta = 1.99$ (s, 3H), 7.35 (m, 2H), 7.65 (m, 2H), 7.91 (m, 2H), 8.13 (m, 2H), 8.75 (m, 2H), 8.91 (m, 2H).). ¹³C NMR {¹H}: due to limited solubility we were unable to get ¹³C NMR. Crystals suitable for X-ray diffraction were grown in chloroform.

Synthesis of **Cu(1)**: 50 mg of **1** (143.93 mmol) and 53.33 mg (143.93 mmol) of Cu(ClO₄)₂.6H₂O were dissolved in MeOH (20 mL) and refluxed for 2 hours. The resulting solution was cooled down to room temperature, filtered, washed with cold MeOH and dried in a vacuum oven to get brown powder of pure compound **Cu(1)**. Yield: 41 mg (56%). ESI MS (negative mode) $[C_{22}H_{12}Cl_2CuN_5O_8]^-$ calculated [M]⁻ 606.936 m/z, found 606.935 m/z. ¹H NMR: due to paramagnetic nature we were unable to get ¹H NMR. Crystals suitable for X-ray diffraction were grown in DMF.

Synthesis of **Ni(1)**: Two equivalents of **1** (75 mg, 215.90 mmol) and one equivalent of NiCl₂.6H₂O (107.95 mmol, 25.66 mg) were dissolved in DMF (20 mL) and refluxed for 2 hours. The resulting solution was cooled down to room temperature left to evaporate to form dark red crystals of compound **Ni(1)**. Yield: 64 mg (79%). ESI MS (negative mode) $[C_{44}H_{23}N_{10}$ NiNa]⁻ calculated [M+Na-H]⁻ 772.1364 m/z, found 772.1430 m/z. ¹H NMR: due to paramagnetic nature we were unable to get ¹H NMR. Crystals suitable for X-ray diffraction were grown in DMF.

Figure S1: ¹H NMR (300 MHz) of 1 in CDCl₃

Figure S2: ¹H NMR (300 MHz) of Zn(1) in CDCl₃

Figure S3: ESI mass spectra of 1. Top: calculated spectrum. Bottom: experimental spectrum.

Figure S4: ESI mass spectra of Zn(1). Top: calculated spectrum. Bottom: experimental spectrum.

Figure S5: ESI mass spectra of Cu(1). Top: calculated spectrum. Bottom: experimental spectrum.

Figure S6: ESI mass spectra of Ni(1). Top: calculated spectrum. Bottom: experimental spectrum.

Figure S7: Cyclic voltammogram of compound **1** in DMF/0.1 TBAPF₆ (scan toward positive potentials).

Figure S8: Cyclic voltammogram of compound **Zn(1)** in DMF/0.1 TBAPF₆ (scan toward positive potentials).

Figure S9: Cyclic voltammogram of compound **Cu(1)** in DMF/0.1 TBAPF₆ (scan toward positive potentials).

Figure S10: Cyclic voltammogram of compound **Ni(1)** in DMF/0.1 TBAPF₆ (scan toward positive potentials).

Figure S11: The UV-visible spectra of BPYI and its metal complexes in DMF solution.

Compound		
	НОМО	LUMO
BPYI (1)		
BPI		

Figure S12. DFT-predicted frontier orbitals for BPYI (1) and BPI.

Compound

	НОМО	LUMO
Zn(1)		
Cu(1)		
Ni(1)		

Figure S13. DFT-predicted frontier orbitals for the metal complexes of (1).

Figure S14: Experimental and TDDFT-predicted spectra for compounds BPYI (1) and BPI.

Figure S15: Experimental and TDDFT-predicted spectra for Zn(1).

Figure S15: Experimental and TDDFT-predicted spectra for compounds Cu(1) and Ni(1).

Figure S16: B3LYP α -spin relative energies of the frontier orbitals for compounds.

Figure S17: B3LYP β -spin relative energies of the frontier orbitals for compounds.

Figure S17: B3LYP relative energies of the frontier orbitals for BPYI (1) and BPI.

Figure S18: Orbital compositions for 1 and Zn(1).

Figure S19: Orbital compositions for Cu(1), α -spin on top and β -spin on bottom.

Figure S20: Orbital compositions for Ni(1), α -spin on top and β -spin on bottom.

Compound	1 BPYI	Zn(1)	Cu(1)	Ni(1)
CCDC	2043926	2043927	2043928	2043929
Empirical formula	C ₂₅ H ₂₀ N ₆ O	$C_{24}H_{15}N_5O_2Zn$	C ₂₅ H ₁₉ ClCuN ₆ O ₅	C44H24N10Ni
Formula weight	420.47	470.78	582.45	751.44
Crystal system	Tetragonal	Triclinic	Monoclinic	Tetragonal
Space group	P4 ₁	P-1	$P2_1/n$	I4 ₁ /acd
a/ Å	12.557(3)	7.9525(11)	8.025	17.9413(11)
b/ Å	12.557	10.8324(15)	28.235	17.9413(11)
c/ Å	25.933(6)	12.7721(19)	10.565	42.212(2)
α(°)	90	69.282(8)	90	90
β(°)	90	75.267(9)	101.66	90
γ(°)	90	83.931(9)	90	90
Volume (Å ³)	4089.2(19)	995.1(3)	2344.4	13587.6(18)
Z	8	2	4	16
Dc (Mg/m ³)	1.366	1.571	1.650	1.469
μ (mm ⁻¹)	0.088	1.268	1.098	0.623
F(000)	1760	480	1188	6176
reflns collected	5255	15222	51946	15457
indep. reflns	5255	3577	5789	3006
GOF on F ²	1.033	1.050	1.072	0.989
R1 (on F_0^2 , I >	0.1284	0.0922	0.0988	0.0531
2σ(I))				
wR2 (on F_0^2 , I >	0.2852	0.2340	0.2303	0.1009
2σ(I))				
R1 (all data)	0.2387	0.1511	0.1248	0.1089
wR2 (all data)	0.3539	0.2727	0.2402	0.1154

Table S1: X-ray crystal data and structure parameters for compounds 1, Zn(1), Cu(1), andNi(1).

Equation 1: Evans NMR method calculation for effective magnetic moment

$$\mu_{eff} = \sqrt{\frac{3 k_{\rm B}}{N_A \beta^2}} (\chi_M^P T)$$

 k_B = Boltzmann constant N_A = Avogadro's number β = Bohr magneton \boldsymbol{x}_P = molar susceptibility T = absolute temperature (K)

Equation 2: Evans NMR method calculation for mass susceptibility

$$\chi = \frac{\delta v^p}{v_o S_f m^p} + \chi_o$$

 δv^p = Shift in frequency for an internal inert reference; regular methanol (Hz) v_o = frequency of the NMR spectrometer (Hz) S_f = Shape factor of the NMR spectrometer; $4\pi/3$ sample axis parallel to magnetic field m^p = concentration of solute (g/mL) \boldsymbol{x}_o = mass susceptibility of the deuterated solvent (mL/g)

Equation 3: Evans NMR method calculation for molar susceptibility

$$\chi^P_M = \frac{\delta v^p M^p}{v_o S_f m^p} - \chi^{dia}_M$$

 δv^p = Shift in frequency for an internal inert reference; regular methanol (Hz)

 M^{p} = Molecular weight of solute (g/mol)

 v_o = frequency of the NMR spectrometer (Hz)

 S_f = Shape factor of the NMR spectrometer; $4\pi/3$ sample axis parallel to magnetic field m^p = concentration of solute (g/mL)

 χ_{M}^{dia} = diamagnetic constant (mL/mol)

 Table S2: Evans NMR method data and parameters.

Compound	Ni	Cu
Mass (mg)	1.5	1.6
Volume (mL)	1	1
Deuterated Solvent	Methanol	Methanol
Mass Susceptibility of solvent (mL/g)	5.3x10 ⁻⁷	5.3x10 ⁻⁷
Shift in frequency (Hz)	14.02	15.67
Temperature (K)	303.15	303.15
Molecular weight of solute (g/mol)	751.44	509.36
Frequency of NMR spectrometer (Hz)	4x10 ⁸	4x10 ⁸
Mass Susceptibility (mL/g)	6.1x10 ⁻⁶	6.37x10 ⁻⁶
Molar Susceptibility (mL/mol)	4.59x10 ⁻³	3.24x10 ⁻³
Diamagnetic constant (mL/mol)	-3.87x10 ⁻⁴	-2.30x10 ⁻⁴
$\mu_{eff}(\mu_{\beta})$	3.4	2.8

Table S3: TDDFT-predicted energies and expansion coefficients for compound 1 (only excited states with f > 0.05 and $\lambda > 270$ nm are listed).

Excited State 90 -> 91	1: Singlet-A 0.70623	2.4950 eV 496.93 nm f=0.9941 <s**2>=0.000</s**2>
Excited State 89 -> 91 90 -> 92	2: Singlet-A 0.69523 -0.10532	3.3510 eV 369.99 nm f=0.5238 <s**2>=0.000</s**2>
Excited State 89 -> 91 90 -> 92	6: Singlet-A 0.10142 0.69331	3.9424 eV 314.49 nm f=0.4650 <s**2>=0.000</s**2>

Table S4: TDDFT-predicted energies and expansion coefficients for compound **BPI** (only excited states with f > 0.05 and $\lambda > 270$ nm are listed).

Excited State	1: Singlet-B2	3.1945 eV 388.12 nm f=0.8299 <s**2>=0.000</s**2>
78 -> 79	0.70141	
Excited State	5: Singlet-A1	3.8525 eV 321.83 nm f=0.6237 <s**2>=0.000</s**2>
77 -> 79	0.69420	
Excited State	8: Singlet-A1	4.5389 eV 273.16 nm f=0.4748 <s**2>=0.000</s**2>
69 -> 79	0.11265	
71 -> 79	-0.12727	
78 -> 80	0.64409	
78 -> 81	0.15667	

Table S5: TDDFT-predicted energies and expansion coefficients for compound **Zn(1)** (only excited states with f > 0.05 and $\lambda > 270$ nm are listed).

Excited State 120 ->121	1:	Singlet-A 0.70374	2.3962 eV	517.42 nm	f=0.8999	<s**2>=0</s**2>	.000
Excited State	2:	Singlet-A	3.3738 eV	367.49 nm	f=0.5297	<s**2>=0</s**2>	0.000
119 ->121		0.69910					
Excited State	3:	Singlet-A	3.4570 eV	358.65 nm	f=0.0535	<s**2>=0</s**2>	.000
117 ->121		0.60845					
118 ->121		-0.34795					
Excited State	5:	Singlet-A	3.7062 eV	334.53 nm	f=0.3172	<s**2>=0</s**2>	0.000
120 ->122		0.69836					
Excited State	6:	Singlet-A	3.8983 eV	318.05 nm	f=0.0631	<s**2>=0</s**2>	.000
120 ->123		0.69942					
Excited State	7:	Singlet-A	3.9854 eV	311.10 nm	f=0.0785	<s**2>=0.</s**2>	.000
120 ->124		0.69731					
Excited State	12:	Singlet-A	4.4742 eV	277.11 nm	f=0.3183	<s**2>=</s**2>	0.000
113 ->121		0.12669					
114 ->121		0.29144					
120 ->125		0.60068					
120 ->126		-0.12703					

Table S6: TDDFT-predicted energies and expansion coefficients for compound Cu(1) (only excited states with f > 0.05 and $\lambda > 270$ nm are listed).

Excited State 6: 2.003-A	2.3843 eV 519.99 nm f= $0.0683 < S^{**}2 > = 0.753$
124A ->125A -0.21501	
97B ->124B 0.26046	
100B ->124B 0.54514	
101B ->124B 0.25681	
105B ->124B -0.16894	
107B ->124B 0.37628	
113B ->124B -0.18799	
114B ->124B 0.18689	
120B ->124B -0 29054	
122B ->124B -0 27741	
123B ->125B -0 21708	
Excited State 7: 2 004-A	2 4294 eV 510 35 nm f=0 7930 <\$**2>=0 754
$124A \rightarrow 125A = 0.66736$	2.129101 910.39 IIII 1 0.7930 10 2. 0.791
$100B \rightarrow 124B$ 0.19036	
$107B \rightarrow 124B$ 0.19030	
$107B \rightarrow 124B$ 0.10517 $120B \rightarrow 124B$ -0.10645	
123B > 125B = 0.10043	
Excited State 14: 2010 A	33106eV37451nmf=05113 <s**2>=0760</s**2>
$122 \wedge 125 \wedge 0.60076$	5.5100 CV 574.51 IIII 1-0.5115 <5 22-0.700
123R - 123R = 0.09970 122R > 125R = 0.60403	
Excited State 20: 2 006 A	26002 eV 225 15 nm f-0 2676 $<$ S**2>-0 756
124A > 126A = 0.60145	5.0775 eV 555.15 IIII 1-0.2070 <5* 22-0.750
124A - 120A = 0.09143 122D > 126D = 0.60955	
125B ->120B 0.09655 Excited State 25: 2.027 A	2.0574 eV 212.20 nm f=0.1175 < S**2>=0.787
EXCILCUISTATE $23.2.057-A$	5.95/4 ev 515.50 lill 1-0.11/5 \S*22-0.787
124A - 12/A = 0.00034 122D > 127D = 0.69525	
123B ->127B 0.08323	4.0462 eV 206 42 mm f=0.0552 < S**2>=0.755
Excluent State $27.2.003$ -A	4.0402 eV 500.42 IIII 1-0.0552 <5*22-0.755
120A -> 123A -0.124/3	
124A ->128A 0.00939	
109B -> 124B -0.12525	
116B ->124B 0.15483	
120B ->125B -0.130/6	
123B ->128B 0.66380	
Excited State 30 : 2.019-A	$4.1321 \text{ eV} 300.05 \text{ nm} 1=0.0805 <5^{**}2 \ge 0.769$
124A ->128A 0.100/3	
101B ->124B 0.14283	
105B ->124B -0.13620	
109B ->124B 0.18458	
110B ->124B 0.11946	
113B ->124B 0.34615	
114B ->124B -0.5012/	
115B ->124B -0.16911	
116B ->124B -0.18618	
117/B ->124B 0.61714	
120B ->124B 0.10620	
Excited State 31: 2.061-A	4.1/42 eV 29/.02 nm f=0.0704 < S**2 >= 0.812
119A ->125A 0.17589	

124A ->128A	-0.12568	
99B ->124B	0.10553	
100B ->124B	0.13426	
101B ->124B	-0.10506	
109B ->124B	-0.27997	
111B ->124B	0.24661	
113B ->124B	0 10912	
115B -> 124B	-0.44315	
116B ->124B	0.65767	
110B ->124B	0.12566	
117D = 124D 110B = >125B	0.12378	
173B >123B	0.12378	
Excited State 35:	2 0/0 A	4.3430 eV 285 42 nm f=0.1382 < S**2>=0.800
	0.18548	T.JTJ CV 203.T2 IIII 1-0.1302 <5 2>-0.000
119A -> 123A	-0.10504	
124A ->129A 100D >124D	0.10394	
100D - 2124D	0.21373	
101B -> 124B	-0.23817	
109B ->124B	-0.40353	
111B ->124B	-0.18453	
114B ->124B	-0.31031	
115B ->124B	0.59600	
116B ->124B	0.15164	
119B ->125B	-0.23175	
Excited State 36:	2.165-A	4.4056 eV 281.42 nm f=0.1936 <s**2>=0.921</s**2>
105B ->124B	0.20757	
107B ->124B	0.31356	
113B ->124B	0.76446	
114B ->124B	0.19205	
117B ->124B	-0.25556	
118B ->125B	-0.23091	
123B ->130B	-0.21268	
Excited State 40:	2.240-A	4.5501 eV 272.49 nm f=0.2571 <s**2>=1.005</s**2>
115A ->125A	-0.12448	
119A ->125A	-0.20544	
124A ->129A	-0.52422	
114B ->125B	0.19495	
119B ->125B	-0.17010	
121B ->128B	-0.12306	
123B ->129B	0 70334	
Excited State 41	· 2.072-A	4 5657 eV 271 56 nm f=0 1223 <s**2>=0 823</s**2>
118A ->125A	-0 35625	
124A ->130A	-0 22758	
105R ->124R	-0.28012	
103B ->124B	-0 34218	
107D = 124D 110B > 124B	0.118/18	
110D = 124D 114R = >124D	0.11040	
115B \124D	0.40/30	
1150 -~1240 1160 \1250	0.13010	
110D -~123B 117D \124D	-0.11213	
11/D - 2124B 110D > 125D	0.20010	
118B ->125B	-0.32042	
123B ->130B	-0.31323	

Table S7: TDDFT-predicted energies and expansion coefficients for compound Ni(1) (only excited states with f > 0.05 and $\lambda > 270$ nm are listed).

Excited State 8: 3.699-A	2.1601 eV 573.96 nm f=0.0814 <s**2>=3.171</s**2>
193A -> 196A -0.56232	
194A -> 195A 0.78738	
191B -> 194B 0.23828	
Excited State 10: 3.019-A	2.2415 eV 553.12 nm f=0.4881 <s**2>=2.028</s**2>
193A -> 195A 0.48975	
194A -> 196A 0.50885	
191B -> 193B 0.37794	
192B -> 194B 0.58831	
Excited State 11: 3.031-A	2.2695 eV 546.29 nm f=1.1416 <s**2>=2.046</s**2>
193A -> 196A 0.67808	
194A -> 195A 0.28707	
182B -> 195B 0.10028	
191B -> 194B 0.52656	
192B -> 193B 0.38981	
Excited State 24: 3.005-A	3.2080 eV 386.49 nm f= $0.6230 < S^{**2} > = 2.007$
189A -> 195A 0.15229	
191A -> 196A 0.68671	
189B -> 193B 0.16214	
190B -> 194B 0.67533	
Excited State 29: 3.072-A	3.3198 eV 373.46 nm f=0.2461 <s**2>=2.109</s**2>
189A -> 195A 0.76278	
191A -> 196A -0.24291	
189B -> 193B 0.56773	
Excited State 32: 3.151-A	3.3410 eV $371.10 nm$ f=0.0913 <s**2>=2.232</s**2>
187A -> 195A -0.46255	
188A -> 196A -0.43393	
193A -> 199A -0.12498	
194A -> 200A -0.10206	
187B -> 193B -0.35859	
188B -> 194B -0.42407	
192B -> 195B 0.46508	
Excited State 43: 3.094-A	3.6822 eV $336.71 nm$ f=0.2352 < $$**2>=2.144$
194A -> 198A 0.69486	
183B -> 193B -0.11959	
184B -> 194B -0.12309	
186B -> 193B 0.12277	
191B -> 196B -0.19786	
$192B \rightarrow 197B = 0.62753$	
Excited State 48: 3.0/1-A	$3./349 \text{ eV}$ 331.96 nm t= $0.22/1 < S^{**}2 > = 2.108$
185A -> 195A -0.10336	
186A -> 196A -0.10447	
193A -> 197A 0.69758	
194A -> 201A -0.17693	

191B -> 196B	0.63797			
191B -> 200B	-0.12999			
192B -> 197B	0.11851			
Excited State 54:	3.119 - A	3.8356 eV	323.25 nm	f=0.0690 <s**2>=2.182</s**2>
193A -> 199A	0.53547			
194A -> 200A	0.23341			
185B -> 201B	-0.10268			
191B -> 198B	0.75996			
Excited State 99:	3.500-A	4.4536 eV	278.39 nm	f=0.1505 <s**2>=2.813</s**2>
181A -> 196A	0.10872			
182A -> 195A	-0.17776			
185A -> 195A	-0.11147			
187A -> 201A	0.16936			
188A -> 197A	-0.16198			
188A -> 202A	-0.10812			
190A -> 199A	0.20182			
192A -> 200A	-0.21922			
193A -> 203A	0.18160			
194A -> 204A	0.17369			
172B -> 193B	0.10928			
175B -> 194B	0.16361			
179B -> 194B	-0.34614			
184B -> 194B	0.12231			
187B -> 199B	-0.11060			
188B -> 196B	0.14438			
191B -> 203B	0.64180			
192B -> 199B	0.10345			
192B -> 204B	0.16474			
Excited State 104:	3.114 - A	4.4757 eV	277.02 nm	f=0.5376 <s**2>=2.175</s**2>
185A -> 195A	0.19268			
186A -> 196A	0.10475			
193A -> 203A	-0.25341			
194A -> 204A	-0.48353			
183B -> 193B	-0.17939			
192B -> 204B	0.74358			

Center	Aton	nic A	Atomic	Coordinate	s (Angstroms)
Number	Nu	mber	Type	X Y	L
1	6	0	-2 038857	-3 258985	-0.057884
2	1	Ő	-1.187090	-3.931563	-0.089187
3	6	0	-3.334263	-3.765451	-0.041210
4	1	0	-3.507123	-4.834732	-0.057735
5	6	0	-4.387492	-2.855015	-0.002507
6	1	0	-5.416348	-3.197406	0.012907
7	6	0	-4.107627	-1.496342	0.015558
8	1	0	-4.915437	-0.776281	0.044625
9	6	0	-2.766961	-1.070382	-0.004386
10	6	0	-2.426885	0.368090	0.008097
11	6	0	-3.528374	1.264493	0.021816
12	6	0	-1.148478	0.895988	0.004641
13	6	0	-0.707241	2.299105	0.004012
14	6	0	-1.413382	3.502378	0.007831
15	1	0	-2.493203	3.526537	0.014070
16	6	0	-0.698407	4.698157	0.003754
17	1	0	-1.236949	5.639202	0.006774
18	6	0	0.697746	4.698244	-0.004113
19	1	0	1.236168	5.639355	-0.007281
20	6	0	1.412865	3.502533	-0.008025
21	1	0	2.492683	3.526818	-0.014247
22	6	0	0.706863	2.299207	-0.004037
23	6	0	1.148302	0.896092	-0.004609
24	6	0	2.426790	0.368404	-0.007963
25	6	0	3.528161	1.264944	-0.021591
26	6	0	2.767112	-1.070041	0.004505
27	6	0	4.107835	-1.495743	-0.015095
28	1	0	4.915534	-0.775537	-0.043682
29	6	0	4.387935	-2.854378	0.002760
30	1	0	5.416849	-3.196579	-0.012417
31	6	0	3.334874	-3.765011	0.040984
32	1	0	3.507925	-4.834268	0.057327
33	6	0	2.039371	-3.258781	0.057441
34	1	0	1.187728	-3.931525	0.088423
35	7	0	-0.000043	0.141702	0.000041
36	1	0	-0.000044	-0.880124	-0.000003
37	7	0	-1.752593	-1.955606	-0.039136
38	7	0	-4.456768	1.957363	0.033506
39	7	0	1.752880	-1.955447	0.038838
40	7	0	4.456524	1.957852	-0.033172

 Table S8: DFT optimized geometry of compound 1.

E_h = -1120.173695 Hartree

Center	Aton	nic A	tomic	Coordinate	s (Angstroms)
Number	Nui	nber	Туре	X Y	Z
1	7	0	0.000000	1.946679	-1.751293
2	7	0	0.000000	0.000000	0.210966
3	7	0	0.000000	2.409879	0.618461
4	6	0	0.000000	0.704739	4.789695
5	1	0	0.000000	1.236565	5.734627
6	6	0	0.000000	4.231754	-0.943798
7	1	0	0.000000	4.898771	-0.092163
8	6	0	0.000000	1.161289	0.987110
9	6	0	0.000000	2.423456	-3.014758
10	1	0	0.000000	1.680330	-3.805118
11	6	0	0.000000	1.427955	3.583609
12	1	0	0.000000	2.511231	3.573232
13	6	0	0.000000	0.703512	2.391736
14	6	0	0.000000	2.837363	-0.717412
15	6	0	0.000000	3.791188	-3.321390
16	1	0	0.000000	4.120774	-4.352744
17	6	0	0.000000	4.709200	-2.256902
18	1	0	0.000000	5.775656	-2.449945
19	7	0	0.000000	-1.946679	-1.751293
20	7	0	0.000000	-2.409879	0.618461
21	6	0	0.000000	-0.704739	4.789695
22	1	0	0.000000	-1.236565	5.734627
23	6	0	0.000000	-4.231754	-0.943798
24	1	0	0.000000	-4.898771	-0.092163
25	6	0	0.000000	-1.161289	0.987110
26	6	0	0.000000	-2.423456	-3.014758
27	1	0	0.000000	-1.680330	-3.805118
28	6	0	0.000000	-1.427955	3.583609
29	1	0	0.000000	-2.511231	3.573232
30	6	0	0.000000	-0.703512	2.391736
31	6	0	0.000000	-2.837363	-0.717412
32	6	0	0.000000	-3.791188	-3.321390
33	1	0	0.000000	-4.120774	-4.352744
34	6	0	0.000000	-4.709200	-2.256902
35	1	0	0.000000	-5.775656	-2.449945
36	1	0	0.000000	0.000000	-0.807567

Table S9: DFT optimized geometry of compound BPI.

E_{*h*} = -966.678725 Hartree

Center Number	Aton Nu	nic A mber	tomic Type	Coordinate X Y	s (Angstroms) Z
1	6	0	2.683375	-2.232021	-0.894964
2	1	0	3.446142	-1.485468	-0.717084
3	6	0	2.992427	-3.460970	-1.449828
4	1	0	4.010392	-3.686023	-1.741546
5	6	0	1.959169	-4.381614	-1.608665
6	1	0	2.146102	-5.357817	-2.041646
7	6	0	0.680060	-4.037749	-1.207449
8	1	0	-0.128346	-4.745233	-1.332260
9	6	0	0.419957	-2.769152	-0.653189
10	6	0	-0.960981	-2.434195	-0.244807
11	6	0	-1.819947	-3.556546	-0.103803
12	6	0	-1.504519	-1.166324	-0.058718
13	6	0	-2.917508	-0.793959	0.173222
14	6	0	-4.084546	-1.536904	0.346096
15	1	0	-4.077763	-2.616838	0.338850
16	6	0	-5.288528	-0.859007	0.539468
17	1	0	-6.201097	-1.427008	0.682807
18	6	0	-5.330357	0.534982	0.550321
19	1	0	-6.275278	1.044853	0.702370
20	6	0	-4.169305	1.286688	0.367484
21	1	0	-4.227196	2.365074	0.377029
22	6	0	-2.959976	0.617765	0.183468
23	6	0	-1.572504	1.077502	-0.045872
24	6	0	-1.107613	2.378077	-0.221848
25	6	0	-2.029831	3.445317	-0.055259
26	6	0	0.244476	2.797804	-0.646985
27	6	0	0.424672	4.088691	-1.181217
28	1	0	-0.422219	4.754986	-1.272941
29	6	0	1.674306	4.506827	-1.604019
30	1	0	1.799911	5.500255	-2.019562
31	6	0	2.757668	3.638338	-1.489942
32	1	0	3.754778	3.922011	-1.801826
33	6	0	2.527254	2.385719	-0.950327
34	1	0	3.332129	1.677628	-0.804148
35	6	0	2.952418	0.083983	2.133468
36	6	0	3.812425	0.048525	3.375950
37	1	0	3.311797	0.537189	4.211915
38	1	0	4.780061	0.514242	3.191908
39	1	0	3.985750	-0.995290	3.655213
40	7	0	-0.767486	-0.020511	-0.132105
41	7	0	1.440648	-1.884622	-0.509218

Table S10: DFT optimized geometry of compound Zn(1).

42	7	0	1.314357	1.967686	-0.540818
43	7	0	-2.489478	-4.495390	0.013701
44	7	0	-2.752413	4.340787	0.084504
45	8	0	1.680309	0.038052	2.276589
46	8	0	3.474187	0.127764	0.992968
47	30	0	1.200464	0.044820	0.282884

E_h = -3127.570282 Hartree

Center Number	Atom: Num	ic A nber	tomic Type	Coordinate X Y	rs (Angstroms) Z
1	6	0	-1.995164	2.589000	-1.127781
2	1	0	-2.830687	1.903864	-1.140055
3	6	0	-2.144840	3.901833	-1.529140
4	1	0	-3.106268	4.253779	-1.879965
5	6	0	-1.031330	4.737346	-1.461548
6	1	0	-1.096791	5.775793	-1.764866
7	6	0	0.168185	4.226156	-1.002952
8	1	0	1.039049	4.864457	-0.950897
9	6	0	0.270118	2.875747	-0.614492
10	6	0	1.555581	2.348781	-0.138837
11	6	0	2.530720	3.345659	0.137200
12	6	0	1.906443	1.016381	0.029025
13	6	0	3.218680	0.474043	0.431838
14	6	0	4.427149	1.075394	0.784473
15	1	0	4.547087	2.147537	0.806508
16	6	0	5.507605	0.261342	1.121243
17	1	0	6.449812	0.719068	1.401024
18	6	0	5.389154	-1.127963	1.101994
19	1	0	6.239614	-1.746037	1.367009
20	6	0	4.187262	-1.737577	0.745195
21	1	0	4.123501	-2.814775	0.737555
22	6	0	3.099086	-0.930541	0.412132
23	6	0	1.717109	-1.231758	-0.008758
24	6	0	1.151998	-2.480747	-0.229030
25	6	0	1.934741	-3.636745	0.037959
26	6	0	-0.184919	-2.764902	-0.764853
27	6	0	-0.496205	-4.060651	-1.222278
28	1	0	0.249915	-4.840938	-1.166132
29	6	0	-1.740464	-4.337327	-1.756391
30	1	0	-1.966961	-5.335686	-2.112351
31	6	0	-2.689231	-3.318854	-1.834882
32	1	0	-3.675735	-3.483679	-2.248182
33	6	0	-2.340114	-2.070678	-1.359066
34	1	0	-3.045411	-1.251306	-1.377777
35	6	0	-3.048591	-0.072296	1.631785
36	1	0	-2.300623	-0.453029	2.331269
37	6	0	-4.572331	-0.359081	3.496880
38	1	0	-3.668194	-0.706769	3.992745
39	1	0	-5.314915	-1.158788	3.506872
40	1	0	-4.968888	0.501222	4.038810
41	6	0	-5.389846	0.513535	1.310455

Table S11: DFT optimized geometry of compound Cu(1).

42	1	0	-5.795902	1.419900	1.763741
43	1	0	-6.173605	-0.245079	1.272447
44	1	0	-5.044283	0.731713	0.304931
45	29	0	-0.860584	0.116339	-0.302090
46	7	0	1.059779	-0.040989	-0.191993
47	7	0	-0.825852	2.080863	-0.684205
48	7	0	-1.126987	-1.792882	-0.835182
49	7	0	3.288920	4.193253	0.355913
50	7	0	2.529136	-4.607579	0.251073
51	7	0	-4.273293	0.020684	2.116395
52	8	0	-2.731309	0.244365	0.456613

E_h = -3008.566038 Hartree

Center Number	Aton Nu	nic A mber	tomic Type	Coordinate X Y	s (Angstroms) Z
1	6	0	-0.970011	-1.676388	2.316321
2	1	0	-1.696273	-0.878138	2.256601
3	6	0	-1.186933	-2.762418	3.147393
4	1	0	-2.082649	-2.813960	3.753560
5	6	0	-0.231151	-3.775430	3.152928
6	1	0	-0.361367	-4.662731	3.762434
7	6	0	0.907909	-3.624896	2.383029
8	1	0	1.675356	-4.386229	2.408649
9	6	0	1.089064	-2.468060	1.595557
10	6	0	2.387023	-2.240008	0.940737
11	6	0	3.287957	-3.335260	1.016880
12	6	0	2.857819	-1.049858	0.383700
13	6	0	4.277383	-0.674115	0.203923
14	6	0	5.481587	-1.349019	0.409764
15	1	0	5.510138	-2.383180	0.718028
16	6	0	6.679373	-0.666789	0.200888
17	1	0	7.619800	-1.184318	0.355634
18	6	0	6.679159	0.667881	-0.203995
19	1	0	7.619422	1.185467	-0.359527
20	6	0	5.481119	1.349983	-0.411886
21	1	0	5.509254	2.384137	-0.720239
22	6	0	4.277177	0.674937	-0.205016
23	6	0	2.857507	1.050589	-0.383877
24	6	0	2.386305	2.240849	-0.940338
25	6	0	3.286922	3.336358	-1.016221
26	6	0	1.088117	2.468725	-1.594780
27	6	0	0.906213	3.625985	-2.381445
28	1	0	1.673036	4.387978	-2.406309
29	6	0	-0.232803	3.776121	-3.151498
30	1	0	-0.363602	4.663723	-3.760440
31	6	0	-1.187780	2.762346	-3.146854
32	1	0	-2.083322	2.813510	-3.753314
33	6	0	-0.970301	1.676051	-2.316273
34	1	0	-1.696083	0.877331	-2.257029
35	7	0	2.069928	0.000309	0.000066
36	7	0	0.111824	-1.532620	1.532868
37	7	0	0.111474	1.532621	-1.532689
38	7	0	3.978618	-4.265278	1.065667
39	7	0	3.977328	4.266582	-1.064800
40	28	0	0.000004	0.000006	0.000247

Table S12: DFT optimized geometry of compound Ni(1).

41	6	0	0.969975	1.676428	2.316317
42	1	0	1.696245	0.878184	2.256608
43	6	0	1.186884	2.762470	3.147376
44	1	0	2.082598	2.814028	3.753545
45	6	0	0.231091	3.775472	3.152896
46	1	0	0.361298	4.662783	3.762389
47	6	0	-0.907965	3.624917	2.382997
48	1	0	-1.675417	4.386245	2.408605
49	6	0	-1.089108	2.468068	1.595539
50	6	0	-2.387061	2.239989	0.940715
51	6	0	-3.288043	3.335203	1.016870
52	6	0	-2.857825	1.049836	0.383667
53	6	0	-4.277380	0.674080	0.203878
54	6	0	-5.481588	1.348978	0.409709
55	1	0	-5.510145	2.383140	0.717974
56	6	0	-6.679367	0.666741	0.200821
57	1	0	-7.619799	1.184264	0.355559
58	6	0	-6.679139	-0.667928	-0.204064
59	1	0	-7.619398	-1.185521	-0.359604
60	6	0	-5.481093	-1.350021	-0.411950
61	1	0	-5.509219	-2.384174	-0.720308
62	6	0	-4.277155	-0.674969	-0.205069
63	6	0	-2.857478	-1.050604	-0.383927
64	6	0	-2.386255	-2.240853	-0.940399
65	6	0	-3.286843	-3.336386	-1.016283
66	6	0	-1.088060	-2.468701	-1.594834
67	6	0	-0.906135	-3.625942	-2.381524
68	1	0	-1.672950	-4.387941	-2.406413
69	6	0	0.232890	-3.776048	-3.151568
70	1	0	0.363705	-4.663634	-3.760529
71	6	0	1.187858	-2.762264	-3.146888
72	1	0	2.083409	-2.813407	-3.753337
73	6	0	0.970359	-1.675992	-2.316283
74	1	0	1.696135	-0.877269	-2.257008
75	7	0	-2.069917	-0.000314	0.000027
76	7	0	-0.111857	1.532638	1.532864
77	7	0	-0.111426	-1.532590	-1.532710
78	7	0	-3.978867	4.265096	1.065711
79	7	0	-3.977330	-4.266558	-1.064721

E_h = -3747.535260 Hartree

References

- 1 I. Tamgho, J. T. Engle and C. J. Ziegler, *Tetrahedron Lett.*, 2013, 54, 6114–6117.
- 2 G. M. Sheldrick, Acta Crystallogr. Sect. A Found. Crystallogr., 2008, 64, 112–122.
- J. Tao, J. P. Perdew, V. N. Staroverov and G. E. Scuseria, *Phys. Rev. Lett.*, 2003, **91**, 146401/1-146401/4.
- 4 J. Tomasi, B. Mennucci and R. Cammi, *Chem. Rev.*, 2005, **105**, 2999–3093.
- 5 A. D. McLean and G. S. Chandler, J. Chem. Phys., 1980, 72, 5639–5648.
- 6 M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, Ma. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci and G. A. Petersson, *Inc. Wallingford, CT*.
- 7 Tenderholt, Adam L. "QMForge: A Program to Analyze Quantum Chemistry Calculations", Version 3.0, https://qmforge.net.