Supporting Information

Liquid crystalline behavior and photoluminescence of lanthanide decanoate nanoparticles synthesized by microwave radiation

Clare Davis-Wheeler Chin[†], Harold O. Lee[†], James J.M. Griego[§], and LaRico J. Treadwell^{†*}

[†]Advanced Materials Laboratory, Sandia National Laboratories 1001 University Blvd. SE, Suite 100, Albuquerque, NM USA

[§]Sandia National Laboratories, P.O. Box 5800, Albuquerque, NM 87185-1411, USA

Please address all correspondence to Dr. LaRico J. Treadwell Email: <u>ljtread@sandia.gov</u>.; Tel.: (505) 389-3503; Fax: (505) 284-3017

Figure S1	TEM micrographs of MWV-synthesized LnC ₁₀ NPs		
Figure S2	Plot of average NP diameter vs. Ln ³⁺ ionic radius		
Figure S3	TEM micrographs of Ln _x O _y calcination products		
Figure S4	S4 UV-Vis absorbance spectra of LnC_{10} NPs		
Figure S5	S5 NIR photoluminescence emission spectra		
Figure S6	Figure S6 Comparison of DSC thermograms to TGA derivative weight change		
Table S1 Summary of average nanoparticle diameter for LnC ₁₀ and Ln _x O _y NPs		8	

TABLE OF CONTENTS

Figure S1. TEM micrographs of products obtained from the solvothermal microwave synthesis of decanoic acid with various lanthanide nitrate precursors. (a) $Pr(NO_3)_3$; (b) $Nd(NO_3)_3$; (c) $Gd(NO_3)_3$; (d) $Er(NO_3)_3$.

Figure S2. Plot of average nanoparticle diameter vs. lanthanide ionic radius. The decrease in diameter coincided with the contraction of Ln^{3+} ionic radius across the lanthanide series.

Figure S3. TEM micrographs of Ln_xO_y NPs produced by calcination of LnC_{10} NPs in air at 500 °C for 1h: (a) Pr_6O_{11} ; (b) Nd_2O_3 ; (c) Gd_2O_3 ; (d) Er_2O_3 .

Figure S4. UV-Vis absorbance spectra of dilute methanol suspensions of LnC_{10} NPs. All spectra show absorbance maxima near 215 nm. (a) Er and Eu C_{10} NPs spectra also displayed well-defined secondary absorbance maxima near 570 nm. (b) Gd, Nd, Pr, and Sm C_{10} NPs did not display strong or distinct absorbance peaks at $\lambda > 230$ nm.

Figure S5. NIR-range photoluminescence emission spectra for (a) PrC_{10} ; (b) NdC_{10} ; (c) SmC_{10} ; and (d) ErC_{10} NPs. Labeled peak transitions corresponded with expected wavelengths for each sample. NIR-range PL spectra were collected from 5 g/L ethanol suspensions of LnC_{10} NPs using excitation wavelengths of 450 nm (NdC₁₀) or 550 nm (Pr, Sm, ErC_{10}).

Figure S6. Comparison of DSC endothermic heat flow vs. TGA derivative weight change over the full DSC analysis range (0 - 200 °C) for (a) SmC₁₀; (b) GdC₁₀; (c) NdC₁₀; and (d) PrC₁₀ NPs. Lack of overlap between the peaks of each curve indicates that heat flux events observed under DSC were not associated with weight loss from thermal decomposition.

Average Nanoparticle Diameter Before and After Calcination				
<u>Ln³⁺</u>	<u>LnC₁₀ (nm)</u>	<u>Ln_xO_y (nm)</u>	Percent Reduction	
Pr	96.3	13.4	86	
Nd	89.7	12.8	85	
Sm	76.2	12.2	84	
Gd	68.6	3.5	95	
Er	60.9	3.1	95	

Table S1. Summary of average nanoparticle diameter calculated from TEM analysis of assynthesized LnC_{10} NPs and the Ln_xO_y NPs produced after calcination. The trend of decrease in particle diameter from PrC_{10} to ErC_{10} may be related to the effects of lanthanide contraction. The significant reduction after calcination supports the conversion of LnC_{10} to Ln_xO_y via combustion of surface-adsorbed and intercalated decanoate ligands.