Supporting Information

New 2D Cu-MOF Constructed from Carboxylate Ligand Containing

$\mathbf{C - H} \cdots \pi$ Interaction as a Recyclable Responsive Luminescent Sensor for VOCs Vapors

Chengxin Liu, ${ }^{a}$ Jin Cui, ${ }^{*}$ Yufang Wang ${ }^{c}$ and Mingjie Zhang ${ }^{*}{ }^{a}$
a. Department of Chemistry, School of Sciences, Tianjin University, Tianjin 30035, P.
R. of China.
b. National Foodstuff Inspection Center, Tianjin Product Quality Inspection

Technology Research Institute, Tianjin 300384, P. R. of China.
c. Scientific Research Department, Shijiazhuang University of Applied Technology,

Shijiazhuang 050081, P. R. of China.

General Considerations

Unless otherwise noted, all reactions were performed with oven-dried glassware with chemicals or reagents obtained from commercial sources. Solvents were dried over 4$8 \AA$ mesh molecular sieves (Aldrich). Reactions were monitored by thin layer chromatography on 0.20 mm Anhui Liangchen silica gel plates and spots were detected with UV light. Silica gel (200-300 mesh) (from Qingdao ocean Chemical Plant) was used for flash chromatography. NMR data were collected on a Bruker AVANCE III HD $400-\mathrm{MHz}$ NMR Spectrometer. Infrared spectroscopy was recorded with an ALPHA spectrophotometer at room temperature. Elemental analyses were determined in house using an elementar vario el III elemental analyzer. Thermal analyses were performed in nitrogen in the temperature range $25-800^{\circ} \mathrm{C}$ with a heating rate of $10{ }^{\circ} \mathrm{C} \mathrm{min}^{-1}$ on a Netzsch TG 209 F3 instrument. Powder X-ray diffraction patterns were obtained on a D/MAX-2500 of Rigaku Corporation Powder Diffractometer at a scan rate of $5 \% \mathrm{~min}^{-1}$. Fluorescence spectra, the fluorescence absolute quantum yields ($\Phi \mathrm{fl}$) and time-resolved fluorescence measurements were recorded on a Fluorolog-3 of HORIBA Jobin Yvon spectrofluorometer. The images of compound $\mathbf{6}, \mathrm{Cu}-\mathrm{MOF}$ and activated $\mathrm{Cu}-\mathrm{MOF}$ were taken under the Leica-DMI1 inverted biological microscope. The dynamic vapor adsorption was texted in dynamic vapor adsorption apparatus of TA-Instrument-VTI-SA+. Surface area and pore size distribution measurements were measured using a Micromeritics ASAP 2020 surface area and pore size analyzer. Before the measurements, activated Cu-MOF (100 mg) was degassed under reduced pressure at $100^{\circ} \mathrm{C}$ for 10 h . Pore size distribution data were calculated from the N_{2} sorption isotherms at 77 K based on non-local density functional theory (NLDFT) model in the Micromeritics ASAP2020 software package (assuming slit pore geometry). The data of X-ray crystallography was collected on a XtaLAB mini ($600 \mathrm{~W}, \mathrm{SHINE}, \mathrm{CCD}, 75 \mathrm{~mm}, 0.1$ electrons/pisel/sec) X-ray single crystal diffractometer. The structure was solved and refined by direct methods using the SHELXS 97 program. ${ }^{1,2}$ The non-hydrogen atoms were refined using anisotropic thermal parameters. All the hydrogen atoms were located at geometrically calculated positions.

Figure S1. Synthesis of ligand (compound 6).

The ligand was synthesized in good yields using 1-bromo-4-methylnaphthalene as the starting material. 1-Bromo-4-methylnaphthalene was treated with N -bromosuccinimide and dibenzoyl peroxide with CCl_{4} as solvent to obtain compound $\mathbf{1}$. Compound $\mathbf{1}$ was heated with NaHCO_{3} in DMSO to give compound $\mathbf{2}$ as yellow solid. Then compound $\mathbf{2}$ was refluxed in acetone and oxidized by KMnO_{4} to give compound $\mathbf{3}$, which was subsequently refluxed with sulfuric acid in MeOH to obtain compound 4. Refluxing of compound 4 with 1,4-Phenylenebisboronic acid, tetrakis-(triphenylphosphine)palladium and $\mathrm{K}_{2} \mathrm{CO}_{3}$ in DMF and $\mathrm{H}_{2} \mathrm{O}$ gave compound 5, which then refluxed with $10 \% \mathrm{NaOH}$ and ethyl alcohol generated compound 6 .
Synthesis of 1-bromo-4-(bromomethyl)naphthalene (compound 1) ${ }^{\mathbf{3}}$
A 500 mL Schlenk flask was added 1-bromo-4-methylnaphthalene ($10 \mathrm{~g}, 48 \mathrm{mmol}, 1$ eq), N -bromosuccinimide ($9.4 \mathrm{~g}, 53 \mathrm{mmol}, 1.1 \mathrm{eq}$), dibenzoyl peroxide ($1 \mathrm{~g}, 4 \mathrm{mmol}$, 0.083 eq) and $\mathrm{CCl}_{4}(150 \mathrm{~mL})$. After refluxed for 5 h under N_{2} atmosphere, the mixture was cooled to room temperature and filtered, the write precipitate was wash by CCl_{4} $(100 \mathrm{~mL})$ for three times. Then the resulting filtrate was washed by saturated sodium sulfite solution (200 mL), dried over anhydrous sodium sulfate, and achieved by flash chromatography on a silica gel column (aether petrolei). the resulting write solid product was dried in vacuum at room temperature. Yield: $71 \% .{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, Chloroform-d) $\delta 8.21(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.04(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.61$ (d, $J=7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.55(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.26(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.80(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , Chloroform-d) $\delta 133.36,132.45,132.14,129.55,128.15,127.91,127.67,127.43$, 124.59, 124.27, 30.99.

Synthesis of 4-bromo-1-naphthaldehyde (compound 2) ${ }^{\mathbf{3}}$
A 250 mL flask was charged with compound $1(4.5 \mathrm{~g}, 15 \mathrm{mmol}, 1 \mathrm{eq}$, $) \mathrm{NaHCO}_{3}(2.5 \mathrm{~g}$, $30 \mathrm{mmol}, 2 \mathrm{eq})$ and DMSO (50 mL). The mixture was heated to $95^{\circ} \mathrm{C}$ for 5 h . After cooling to room temperature, ice water $(100 \mathrm{~mL})$ was added. The mixture was extracted with ethyl acetate ($3 \times 100 \mathrm{~mL}$). Further purification of the resulting yellow solid product was achieved by flash chromatography (10% ethyl acetate in aether petrolei). Yield: $62 \% .{ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 10.34$ (s, 1 H), 9.26 (d, $J=8.3 \mathrm{~Hz}$, $1 \mathrm{H}), 8.34(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.94$ (d, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.77$ (d, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.75-$ $7.63(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , Chloroform-d) δ 192.63, 136.13, 132.14, 131.43, 131.34, 130.9, 129.81, 129.36, 128.30, 127.74, 125.14.

Synthesis of 4-Bromo-1-naphthalenecarboxylic acid (compound 3) ${ }^{\mathbf{3}}$

Compound $2(5 \mathrm{~g}, 21 \mathrm{mmol}, 1 \mathrm{eq})$ and acetone (50 mL) was refluxed in a 250 mL round bottom flask equipped with a stir bar. $\mathrm{KMnO}_{4}(6 \mathrm{~g}, 38 \mathrm{mmol}, 1.8 \mathrm{eq})$ in water (100 mL) was added dropwise to the boiling mixture for 3 h and continue refluxed for 2 h . Then the mixture was filtered at a high temperature. The black precipitate was wash by acetone $(50 \mathrm{~mL})$ and water $(50 \mathrm{~mL})$. The acetone was removed in vacuum and the water solution was washed by saturated sodium sulfite solution (50 mL) and diethyl ether (50 mL). The colorless transparent solution was cooled to $0^{\circ} \mathrm{C}$ and adjusted to pH 1.0 with 1 M HCl , the resulting white precipitate was collected by filtration, washed by hot water and dried in vacuum at $110^{\circ} \mathrm{C}$. Yield: 85%. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d6) $\delta 13.47$ (s, 1H), 9.02-8.86 (m, 1H), 8.27 (dd, $J=7.4,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.10-7.94$ (m, 2H), 7.77 (dd,
$J=6.6,3.3 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO-d6) $\delta 168.53$, 132.24, 131.81, 130.49, $129.85,128.96,128.72,128.55,127.48,127.41,126.71$.

Synthesis of methyl 4-bromo-1-naphthoate (compound 4)

Compound $\mathbf{3}(3 \mathrm{~g}, 12 \mathrm{mmol})$ was dissolved in a mixed solution of $\mathrm{MeOH}(90 \mathrm{~mL})$ and concentrated sulfuric acid (3 mL) refluxed for 12 h in a 250 mL round bottom flask. After cooling to room temperature, the mixture was concentrated in vacuum and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($3 \times 30 \mathrm{~mL}$). The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo to give the resulting product pale yellow oil. Yield: 92%. ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 8.91-8.81(\mathrm{~m}, 1 \mathrm{H}), 8.28-8.19(\mathrm{~m}, 1 \mathrm{H}), 7.89(\mathrm{~d}$, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{td}, J=7.5,6.3,4.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.91(\mathrm{~s}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , Chloroform-d) $\delta 167.45$, 132.40, 132.19, 130.11, 128.91, $128.82,128.50,127.71,127.63,126.99,126.26,52.37$.

Synthesis of 1,4-bis(methyl 1-naphthoate)benzene (compound 5)

Under N_{2} atmosphere, a 250 mL flask was charged with compound 4 ($3 \mathrm{~g}, 12 \mathrm{mmol}$, 2.2 eq), 1,4-Phenylenebisboronic acid ($0.9 \mathrm{~g}, 5.4 \mathrm{mmol}, 1 \mathrm{eq}$), $\mathrm{K}_{2} \mathrm{CO}_{3}(1.1 \mathrm{~g}, 8.1 \mathrm{mmol}$, 1.5 eq), tetrakis-(triphenylphosphine)-palladium ($0.6 \mathrm{~g}, 0.8 \mathrm{mmol}, 0.1 \mathrm{eq}$), DMF (60 $\mathrm{mL})$ and $\mathrm{H}_{2} \mathrm{O}(15 \mathrm{~mL})$. The mixture was heated to $65^{\circ} \mathrm{C}$ for 24 h . After cooling to room temperature, quantity of water was added. The mixture was filtrated and the filtrate was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 80 \mathrm{~mL})$. Further purification of the resulting write oil product was achieved by flash chromatography on a silica gel column (10 \% ethyl acetate in aether petrolei). Yield: 69%. ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 9.02$ (d, $J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.27(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.08(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.69-7.64(\mathrm{~m}, 1 \mathrm{H})$, $7.63(\mathrm{~s}, 2 \mathrm{H}), 7.56(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , Chloroform-d) $\delta 168.04$, $144.87,139.69,132.08,131.82,129.94,129.63,127.64,126.75,126.66,126.42$, 126.13, 125.84, 52.28.

Synthesis of 1,4-bis(4-naphthoic acid)benzene (ligand, complex 6)

A suspension of compound $5(2.5 \mathrm{~g}, 5.6 \mathrm{mmol})$ in $10 \% \mathrm{NaOH}(40 \mathrm{~mL})$ and ethyl alcohol $(120 \mathrm{~mL})$ was refluxed for 5 h in a 500 mL round bottom flask equipped with a stir bar. After cooling to room temperature, the mixture was concentrated in vacuum and acidized with 1 M HCl , white precipitate was collected by filtration, washed by hot water and dried in vacuum at $110^{\circ} \mathrm{C}$. Yield: $91 \% .{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d6) δ $13.27(\mathrm{~s}, 1 \mathrm{H}), 9.02(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.26(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.04(\mathrm{~d}, J=8.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.76-7.70(\mathrm{~m}, 1 \mathrm{H}), 7.69(\mathrm{~s}, 2 \mathrm{H}), 7.64(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , DMSO-d6) $\delta 169.10,144.09,139.50,131.78,131.66,130.36,129.77,128.03,127.94$, 127.13, 126.61, 126.56, 126.45. FT-IR $\left(\mathrm{cm}^{-1}\right): 391$ (w), 541 (w), 518 (w), 649 (w), 650 (w), 671 (w), 770 (m), 795 (w), 843 (w), 923 (w), 999 (w), 1105 (w), 1160 (w), 1189 (w), 1245 (m), 1271 (m), 1309 (w), 1325 (w), 1383 (w), 1430 (w), 1453 (w), 1504 (w), 1582(m), 1683(s), 2554 (w), 2664 (w), 2990 (m), 3424 (w). Elemental analysis (\% calc/found: C 78.52/80.37, H 4.26/4.34).

Preparation of $\mathbf{C u}-\mathrm{MOF}$

Compound 6 ($21 \mathrm{mg}, 0.05 \mathrm{mmol}$), TEA ($14 \mu \mathrm{~L}$) and DMF (2 mL) were stirred for 0.5 h in a 10 mL vial, then, $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}(72 \mathrm{mg}, 0.3 \mathrm{mmol})$ was added. The vial was tightly capped, placed in an oven and heated to $110^{\circ} \mathrm{C}$ in 4 h , held for 72 h , and then cooled to $25^{\circ} \mathrm{C}$ in 42.5 h to give $8 \mathrm{mg} \mathrm{Cu}-\mathrm{MOF}$ as green transparent olivary crystal. Or,
compound $6(21 \mathrm{mg}, 0.05 \mathrm{mmol}), \mathrm{HCl}(5 \mu \mathrm{~L})$ and $\mathrm{DMF}(2 \mathrm{~mL})$ were stirred for 10 min in a 10 mL vial, then, $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}(72 \mathrm{mg}, 0.3 \mathrm{mmol})$ was added. The vial was tightly capped and placed in the same conditions to yield 8 mg of $\mathrm{Cu}-\mathrm{MOF}$ as green transparent cuboid crystal. These two differently shaped crystals have the same unit cell parameters. FT-IR (cm ${ }^{-1}$): 384 (w), 472 (w), 557 (w), 584 (w), 654 (w), 665 (w), 770 (m), 795 (w), 858 (w), 925 (w), 1001 (w), 1067 (w), 1089 (w), 1155 (w), 1245 (w), 1371 (m), 1391 (m), 1453 (w), 1505 (w), 1584 (w), 1606 (m), 1672 (m), 2334 (vw), 2357 (vw), 2839 (vw), 2951 (w). Elemental analysis (\% calc/found: C 64.49/65.22, H 5.20/4.83, N 4.81/4.47).

Preparation of activated Cu-MOF

The obtained crystals of Cu -MOF were soaked in MeOH for 3 days at room temperature. The supernatant was decanted and fresh MeOH was added every day. Then the crystals were treated with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ for another 3 days similarly. After that, the mixture was filtered and the resulting green precipitate was heated in vacuum at $80^{\circ} \mathrm{C}$ for 3 h to remove the residual reagents in the pores. FT-IR $\left(\mathrm{cm}^{-1}\right): 391(\mathrm{w}), 480(\mathrm{w}), 584(\mathrm{w}), 669$ (w), 770 (m), 795 (w), 843 (w), 850 (w), 925 (w), 1020 (w), 1040 (w), 1130 (w), 1158 (w), 1245 (w), 1370 (m), 1391 (m), 1453 (w), 1504 (w), 1582 (w), 1660 (m), 1672 (w), 2909 (w), 3018 (w), 3424 (m). Elemental analysis (\% calc/found: C 68.49/70.07, H 3.57/3.36).

Preparation of activated $\mathrm{Cu}-\mathrm{MOF} \supset$ guests

A 1.5 mL vial was charged with 15 mg activated $\mathrm{Cu}-\mathrm{MOF}$ which had heated to $100^{\circ} \mathrm{C}$ in vacuum for 8 h . The vial was then placed into a 15 mL sealed container, which contains 3 mL testing solvent, for 48 h in $40^{\circ} \mathrm{C}$. Subsequently the vial was taken out of the container and the emission spectra of activated $\mathrm{Cu}-\mathrm{MOF} \supset$ guests was taken.

Figures

Figure S2. Structure of crystallographically independent molecules of ligand, the solvent molecules have been removed for clarity.

Figure S3. $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions in a single ligand crystal, represented as dotted lines, measured between H and the adjacent phenyl ring centroids.

Figure S 4 . Fluorescence emission spectrum of the ligand in the THF/ $\mathrm{H}_{2} \mathrm{O}$ mixed solvent at various volume ratios. The inset: diagram of the changes in the intensity of fluorescence as a function of maximum emission.

Figure S5. Unit-cell content of the crystal structure of Cu-MOF. Hydrogen atoms have been removed for clarity. Here, $a=x, y, z ; b=1-x, 1-y,-z ; c=x,-1+y,-1+z ; d=1-x, 2$ $-y, 1-z ; e^{2}=2-x,-y, 1-z ; f=2-x,-y, 1-z ; g=x, 1+y, 1+z$.

Figure S6. The crystal structure of $\mathrm{Cu}-\mathrm{MOF}$ viewed along the [100] direction. Here, red and blue represent two neighboring layers. The solvent molecules have been removed for clarity.

Figure S7. Simulated PXRD of $\mathrm{Cu}-\mathrm{MOF}$ and measured PXRD of $\mathrm{Cu}-\mathrm{MOF}$, activated $\mathrm{Cu}-\mathrm{MOF}$ and the activated $\mathrm{Cu}-\mathrm{MOF}$ after cycle experiment.

Figure S8. Dynamic vapor adsorption (VTI) of the activated Cu-MOF using benzene at room temperature. The inset: the weight changes as a function of time.

Figure S9. FT-IR spectra of ligand, $\mathrm{Cu}-\mathrm{MOF}$ and activated $\mathrm{Cu}-\mathrm{MOF}$.

Figure S10. Changes in the intensity and emission spectrum of fluorescence with activated Cu -MOF exposed to methanol vapor.

Figure S11. The fluorescence decay lifetime of ligand and Cu-MOF.

Figure S12. Diagram of the experimental setup for incubating activated $\mathrm{Cu}-\mathrm{MOF}$ under different VOCs vapors.

Figure S13. Fluorescent images of ligand in $\mathrm{THF} / \mathrm{H}_{2} \mathrm{O}$ mixed solvents with different volume ratios.

Figure S14. From left to right: under optical images of ligand, under fluorescent images of ligand, under optical images of $\mathrm{Cu}-\mathrm{MOF}$, under fluorescent images of $\mathrm{Cu}-\mathrm{MOF}$.

Figure S15. Nitrogen adsorption-desorption isotherm of activated Cu -MOF after the cyclic experiments.

Figure S16. Orientation dependence of the $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions.
Table S1. The distance (\AA) and angle $\phi\left({ }^{\circ}\right)$ of $\mathrm{C}-\mathrm{H}^{\cdots} \pi$ interactions in $\mathrm{Cu}-\mathrm{MOF}$.

Entry	Bond	Distance	Angle
I a	$\mathrm{C} 28-\mathrm{H}^{\cdots} \pi$	$3.1731(7)$	$142.265(712)$
I b	$\mathrm{C} 31-\mathrm{H}^{\cdots} \pi$	$2.9133(6)$	$153.744(698)$
II a	$\mathrm{C} 39-\mathrm{H}^{\cdots} \cdots \pi$	$3.3278(9)$	$148.503(863)$
II b	$\mathrm{C} 22-\mathrm{H}^{\cdots} \pi$	$2.8168(7)$	$131.870(901)$
III a	$\mathrm{C} 6-\mathrm{H}^{\cdots} \pi$	$3.2883(11)$	$139.609(923)$
III b	$\mathrm{C} 6 \mathrm{~A}-\mathrm{H}^{\cdots} \pi \pi$	$3.1798(13)$	$124.347(891)$

NMR spectroscopy

Table 2 Crystal data and structure refinement for ligand.

Identification code
Empirical formula
Formula weight
Temperature/K
Crystal system
Space group
a/ \AA
b/Å
c/ \AA
$\alpha /{ }^{\circ}$
$\beta /{ }^{\circ}$
$\gamma /{ }^{\circ}$
Volume/ \AA^{3}
Z
$\rho_{\text {calcg }} / \mathrm{cm}^{3}$
1.317
μ / mm^{-1}
0.089

F(000)
Crystal size $/ \mathrm{mm}^{3} \quad 0.2 \times 0.18 \times 0.12$
Radiation
$\operatorname{MoK} \alpha(\lambda=0.71073)$
2Θ range for data collection/ $/{ }^{\circ} 3.486$ to 55.752
Index ranges
$-30 \leq h \leq 30,-9 \leq k \leq 10,-16 \leq 1 \leq 22$

Reflections collected 15041
Independent reflections $\quad 3708\left[\mathrm{R}_{\text {int }}=0.0698, \mathrm{R}_{\text {sigma }}=0.0582\right]$
Data/restraints/parameters 3708/0/220
Goodness-of-fit on $\mathrm{F}^{2} \quad 1.087$
Final R indexes $[\mathrm{I}>=2 \sigma(\mathrm{I})] \quad \mathrm{R}_{1}=0.0630, \mathrm{wR}_{2}=0.1336$
Final R indexes [all data] $\quad \mathrm{R}_{1}=0.0927, \mathrm{wR}_{2}=0.1499$
Largest diff. peak/hole / e $\AA^{-3} 0.24 /-0.23$

Table 3 Crystal data and structure refinement for Cu-MOF.
Identification code
Empirical formula
Formula weight
Temperature/K
Crystal system
Space group
a/ \AA
b/Å
c/ \AA
$\alpha{ }^{\circ}$
$\beta /{ }^{\circ}$
$\gamma^{\circ} \quad 67.68(3)$
Volume/ \AA^{3}
1726.3(7)

Z
$\rho_{\text {calcg }} / \mathrm{cm}^{3}$
1.205
μ / mm^{-1}
0.675

F(000)
650.0

Crystal size $/ \mathrm{mm}^{3}$
$0.2 \times 0.18 \times 0.12$
Radiation $\mathrm{MoK} \alpha(\lambda=0.71073)$
2Θ range for data collection $/{ }^{\circ} 3.558$ to 49.998

Index ranges

$-12 \leq \mathrm{h} \leq 12,-14 \leq \mathrm{k} \leq 14,-17 \leq 1 \leq 17$
Reflections collected
16694
Independent reflections $\quad 6078\left[\mathrm{R}_{\text {int }}=0.0644, \mathrm{R}_{\text {sigma }}=0.0809\right]$
Data/restraints/parameters 6078/1061/583
Goodness-of-fit on $\mathrm{F}^{2} \quad 1.079$
Final R indexes $[\mathrm{I}>=2 \sigma(\mathrm{I})] \quad \mathrm{R}_{1}=0.0933, \mathrm{wR}_{2}=0.2510$
Final R indexes [all data] $\quad \mathrm{R}_{1}=0.1097, \mathrm{wR}_{2}=0.2671$
Largest diff. peak/hole / e $\AA^{-3} 1.12 /-0.75$

Table 4 Bond Lengths for Cu-MOF.
Atom Atom Length $/ \AA$ Atom Atom Length $/ \AA$

| Cu1 | Cu1 1 | $2.6328(15)$ | C30 | C29 |
| :--- | :--- | ---: | :--- | ---: |$\quad 1.3900$

N 1	C28A	$1.466(13)$	C 18	C 19	1.3900
N 1	C 46	$1.443(13)$	C 19	C 20	1.3900

N1 C47 $\quad 1.480(13) \mathrm{C} 20 \quad \mathrm{C} 25 \quad 1.3900$

N1A C29A	$1.448(13)$	C20	C21	1.3900
N1A	C30A	$1.469(13)$	C25	C24

N1A C31A $1.463(13)$ C24 C23 1.3900

C 1	C 2	$1.515(8)$	C 23	C 22
1.3900				

| C2 | C3 | $1.496(11)$ | C 22 | C21 |
| :--- | :--- | :--- | :--- | :--- |$\quad 1.3900$

C 2	C 11	$1.350(9)$	C 32	C 37
C 5	C 4	1.3900	C33	C34
	1.3900			
C5	C6	1.3900		

C5	C6	1.3900	C34	C35	1.3900
C4	C3	1.3900	C35	C36	1.3900

C3	C27	1.3900	C35	C42	$1.58(3)$
C27	C7	1.3900	C36	C37	1.3900

C 27	C 9	$1.518(12)$	C 36	C 41
C 7	C 6	1.3900	C 37	C 38
1.3900				

C5A	C6A	1.3900	C38	C39	1.3900
C5A	C4A	1.3900	C39	C40	1.3900
C6A	C7A	1.3900	C40	C41	1.3900
C7A	C8A	1.3900	O9	C43	$1.214(17)$
C8A	C3A	1.3900	N 3	C43	$1.466(13)$
C8A	C9	$1.388(12)$	N 3	C44	$1.458(13)$
C3A	C4A	1.3900	N 3	C45	$1.450(13)$
C8	C26	1.3900	O10	C48	$1.152(17)$

Table 4 Bond Lengths for Cu-MOF.

Atom Atom	Length $/ \AA$	Atom Atom	Length $/ \boldsymbol{\AA}$		
C8	C28	1.3900	N 2	C48	$1.465(13)$
C26	C31	1.3900	N 2	C49	$1.471(13)$
C26	C19	$1.541(10)$	N 2	C50	$1.446(13)$
C31	C30	1.3900			

${ }^{1} 1-X, 1-Y,-Z ;{ }^{2} 2-X,-Y, 1-Z$

Table 5 Bond Angles for Cu-MOF.

Atom Atom Atom
O1 Cu1 Cu1 ${ }^{1}$
O1 $\mathrm{Cu} \mathrm{O}^{1}$
O1 Cu1 O3
O1 Cu1 O7
$\mathrm{O}^{1}{ }^{1} \mathrm{Cu} 1 \quad \mathrm{Cu} 1^{1}$
$\mathrm{O}^{1} \mathrm{Cu} 1 \mathrm{O} 3$
$\mathrm{O}^{1} \quad \mathrm{Cu} 1 \quad \mathrm{O} 7$
O3 $\mathrm{Cu} \mathrm{Cu}^{1}$
O3 Cu1 O7
O7 Cu1 Cu1 ${ }^{1}$
C1 O1 Cu1
$\mathrm{C} 1 \quad \mathrm{O} 2 \quad \mathrm{Cu} 1^{1}$
C15 O3 Cu1
C29A O7 Cu1
C46 O7 Cu1
C28AN1 C47
C46 N1 C28A
C46 N1 C47
C29AN1A C30A
C29AN1A C31A
C31AN1A C30A
O1 C1 O2
O1 C1 C2
O2 $\quad \mathrm{C} 1 \quad \mathrm{C} 2$
C3 $\quad \mathrm{C} 2 \quad \mathrm{C} 1$
C3A C2 C1
C11 C2 C1
C11 C2 C3

Angle $/^{\circ}$ Atom Atom Atom

84.54(14) C10 C9 C12
168.37(19) C12 C9 C27
83.3(6) C9 C10 C11
93.3(2) C2 C11 C10
83.85(14) C13 C12 C9
95.1(6) C14 C12 C9
98.3(2) C14 C12 C13
85.0(6) $\mathrm{C}_{1}{ }^{2} \mathrm{C} 13 \mathrm{C} 12$
97.3(6) C12 $\mathrm{C} 14 \mathrm{C} 13^{2}$
176.65(18) O3 C15 C16
122.9(4) O4 C15 O3
122.5(4) O4 C15 $\quad \mathrm{C} 16$
120.8(19) C17 C16 C15
116.6(13) C17 C16 C25
112.7(13) C25 C16 C 15
115.0(16) C16 C17 C18
132.4(17) C19 C18 C17
112.6(16) C18 C19 C26
118.1(17) C18 C19 C20
114.0(17) C20 C19 C26
127.8(18) C19 C20 C25
126.2(5) C19 C20 C21
119.0(6) C25 C20 C21
114.8(6) C20 C25 C16
121.3(7) C24 C25 C16
124.0(8) C24 C25 C20
118.4(6) C23 C24 C25
119.3(8) C24 C23 C22

Angle ${ }^{\circ}$
118.2(6)
122.5(8)
121.2(7)
122.1(7)
121.5(7)
120.6(6)
117.9(6)
120.1(7)
122.0(7)
114.9(16)

125(3)
120.2(18)
114.5(6)
120.0
125.5(6)
120.0
120.0
118.7(4)
120.0
121.0(4)
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0

Table 5 Bond Angles for Cu-MOF.

Atom	Atom	Atom	Angle ${ }^{\circ}$	Atom	Atom	Atom	Angle ${ }^{\circ}$
C11	C2	C3A	116.4(8)	C21	C22	C23	120.0
C4	C5	C6	120.0	C22	C21	C20	120.0
C5	C4	C3	120.0	O7	C29A	N1A	114.7(17)
C4	C3	C2	121.5(9)	C33	C32	C29	117.5(5)
C4	C3	C27	120.0	C33	C32	C37	120.0
C27	C3	C2	118.4(9)	C37	C32	C29	122.3(5)
C3	C27	C9	118.4(9)	C34	C33	C32	120.0
C7	C27	C3	120.0	C35	C34	C33	120.0
C7	C27	C9	121.6(9)	C34	C35	C36	120.0
C27	C7	C6	120.0	C34	C35	C42	115.5(6)
C7	C6	C5	120.0	C36	C35	C42	123.3(6)
C6A	C5A	C4A	120.0	C35	C36	C37	120.0
C7A	C6A	C5A	120.0	C35	C36	C41	120.0
C6A	C7A	C8A	120.0	C37	C36	C41	120.0
C7A	C8A	C3A	120.0	C36	C37	C32	120.0
C9	C8A	C7A	118.6(10)	C38	C37	C32	120.0
C9	C8A	C3A	121.2(10)	C38	C37	C36	120.0
C8A	C3A	C 2	119.5(9)	C37	C38	C39	120.0
C4A	C3A	C2	120.1(9)	C38	C39	C40	120.0
C4A	C3A	C8A	120.0	C41	C40	C39	120.0
C3A	C4A	C5A	120.0	C40	C41	C36	120.0
C26	C8	C28	120.0	O5	C42	C35	112.7(18)
C8	C26	C31	120.0	O6	C42	O5	125(3)
C8	C26	C19	120.3(5)	O6	C42	C35	122(2)
C31	C26	C19	119.7(5)	07	C46	N1	127(2)
C30	C31	C26	120.0	C44	N3	C43	113.4(16)
C31	C30	C29	120.0	C45	N3	C43	118.5(16)
C30	C29	C28	120.0	C45	N3	C44	128.1(17)
C30	C29	C32	121.1(5)	O9	C43	N3	118.8(19)
C28	C29	C32	118.6(5)	C48	N2	C49	117.0(18)
C29	C28	C8	120.0	C50	N2	C48	120.7(18)
C8A	C9	C12	123.1(8)	C50	N2	C49	122(2)
C10	C9	C27	118.6(8)	O 10	C48	N2	121(2)
C10	C9	C8A	117.6(8)				

[^0]1 O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. J. Puschmann, Appl.Cryst., 2009, 2, 339.
2 G. M. Sheldrick, University of Göttingen, Germany, 1997.
3 S. Øien-Ødegaard, B. Bouchevreau, K. Hylland, L. Wu, R. Blom, C. Grande, U. Olsbye, M. Tilset and K. P. Lillerud, Inorg. Chem., 2016, 55, 1986.

[^0]: ${ }^{1} 1-X, 1-Y,-Z ;{ }^{2} 2-X,-Y, 1-Z$

