Electronic Supporting Information (ESI) for

Co-luminescence in a zero-dimensional organic-inorganic hybrid antimony halide with multiple coordination units

Zhi-Zhuan Zhang,^{a,b} Jian-Ce Jin,^{b,c} Liao-Kuo Gong,^{b,c} Yang-Peng Lin,^a Ke-Zhao Du,^{a,*}

and Xiao-Ying Huang^{b,*}

^{*a*} College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou 350007, China. E-mail: <u>duke@fjnu.edu.cn</u>

^b State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P.R. China. E-mail: <u>xyhuang@fjirsm.ac.cn</u>

^cUniversity of Chinese Academy of Sciences, Beijing, 100049, P.R. China.

Compound	$[\operatorname{Emim}]_8[\operatorname{SbCl}_6]_2[\operatorname{SbCl}_5]$
Empirical formula	$C_{48}H_{88}N_{16}Cl_{17}Sb_3$
Formula Mass	1857.24
Crystal system	Tetragonal
Space group	P4/n
a/Å	25.1212(6)
<i>b</i> /Å	25.1212(6)
c/Å	12.0964(6)
$\alpha/^{\circ}$	90
$eta/^{\circ}$	90
γ/°	90
$V/\text{\AA}^3$	7633.7(5)
Ζ	4
<i>T</i> /K	100(2)
λ/Å	0.71073
<i>F</i> (000)	3720
$ ho_{ m calcd}/ m g~ m cm^{-3}$	1.616
μ/mm^{-1}	1.693
Measured refls.	31350
Independent refls.	11049
No. of parameters	487
R _{int}	0.0411
$R_1 (I \ge 2\sigma(I))^a$	0.0370
$wR(F^2) (I \ge 2\sigma(I))^b$	0.0700
GOF	1.037
CCDC #	2051595

 Table S1. Crystal data and structure refinement for 1.

 Compound
 [Emim]₀[SbCl₆]₂[SbCl₆]

[a] $R_1 = \sum \|F_0\| - \|F_c\| / \sum \|F_0\|$, [b] $wR_2 = [\sum w(F_0^2 - F_c^2)^2 / \sum w(F_0^2)^2]^{1/2}$.

bond	lengths (Å)	bonds	angles (°)		
Sb(1)-Cl(3)	2.5767(8)	Cl(3)-Sb(1)-Cl(1)	90.93(2)		
Sb(1)-Cl(1)	2.6188(7)	Cl(3)-Sb(1)-Cl(5)	86.83(2)		
Sb(1)-Cl(5)	2.6405(8)	Cl(1)-Sb(1)-Cl(5)	89.24(2)		
Sb(1)-Cl(4)	2.6715(8)	Cl(3)-Sb(1)-Cl(4)	89.70(3)		
Sb(1)-Cl(6)	2.6930(7)	Cl(1)-Sb(1)-Cl(4)	89.00(3)		
Sb(1)-Cl(2)	2.7288(8)	Cl(5)-Sb(1)-Cl(4)	176.08(3)		
Sb(2)-Cl(8)	2.3957(13)	Cl(3)-Sb(1)-Cl(6)	91.69(2)		
Sb(2)-Cl(7)#1	2.6107(7)	Cl(1)-Sb(1)-Cl(6)	176.89(2)		
Sb(2)-Cl(7)#2	2.6107(7)	Cl(5)-Sb(1)-Cl(6)	92.59(2)		
Sb(2)-Cl(7)#3	2.6107(7)	Cl(4)-Sb(1)-Cl(6)	89.32(3)		
Sb(2)-Cl(7)	2.6107(7)	Cl(3)-Sb(1)-Cl(2)	178.79(2)		
Sb(3)-Cl(9)	2.4048(14)	Cl(1)-Sb(1)-Cl(2)	90.11(2)		
Sb(3)-Cl(10)#2	2.6158(8)	Cl(5)-Sb(1)-Cl(2)	92.57(2)		
Sb(3)-Cl(10)#3	2.6158(8)	Cl(4)-Sb(1)-Cl(2)	90.94(3)		
Sb(3)-Cl(10)	2.6158(8)	Cl(6)-Sb(1)-Cl(2)	87.29(2)		
Sb(3)-Cl(10)#1	2.6158(8)	Cl(8)-Sb(2)-Cl(7)#1	88.124(17)		
		Cl(8)-Sb(2)-Cl(7)#2	88.124(17)		
		Cl(7)#1-Sb(2)-Cl(7)#2	89.939(1)		
		Cl(8)-Sb(2)-Cl(7)#3	88.124(17)		
		Cl(7)#1-Sb(2)-Cl(7)#3	176.25(3)		
		Cl(7)#2-Sb(2)-Cl(7)#3	89.938(2)		
		Cl(8)-Sb(2)-Cl(7)	88.124(17)		
		Cl(7)#1-Sb(2)-Cl(7)	89.939(2)		
Cl(7)#2-Sb(2)-Cl(7) 176.25(3)		176.25(3)			
Cl(7)#3-Sb(2)-Cl(7) 89.939(1)		89.939(1)			
		Cl(9)-Sb(3)-Cl(10)#2	87.818(18)		
	Cl(9)-Sb(3)-Cl(10)#3 87.818(18)		87.818(18)		
		Cl(10)#2-Sb(3)-Cl(10)#3	89.917(1)		
		Cl(9)-Sb(3)-Cl(10)	87.818(18)		
		Cl(10)#2-Sb(3)-Cl(10)	175.64(4)		
		Cl(10)#3-Sb(3)-Cl(10)	89.915(2)		
		Cl(9)-Sb(3)-Cl(10)#1	87.818(18)		
		Cl(10)#2-Sb(3)-Cl(10)#1	89.919(2)		
		Cl(10)#3-Sb(3)-Cl(10)#1	175.64(4)		
		Cl(10)-Sb(3)-Cl(10)#1	89.917(1)		
Symmetry transformations used to generate equivalent atoms: $\#1,-y+3/2,x,z$; $\#2 - x+3/2,-y+3/2,z$					
#3 y,-x+3/2,z					

Table S2 Selected bond lengths (Å) and bond angles (°) for 1.

 Table S3 Hydrogen bonding data for 1.

D−H···A	D-H (Å)	H···A (Å)	D…A (Å)	<(DHA) (°)
$C(1)-H(1A)\cdots Cl(5)$	0.95	2.77	3.689(3)	162.6
C(2)-H(2A)···Cl(2)#4	0.95	2.90	3.822(3)	164.1
C(3)-H(3A)···Cl(1)#5	0.95	2.71	3.540(3)	146.0
C(4)-H(4B)Cl(1)#5	0.98	2.72	3.649(3)	157.4
C(4)-H(4C)Cl(4)#6	0.98	2.78	3.695(3)	156.0
C(5)-H(5B)···Cl(6)	0.99	2.82	3.682(3)	146.3
C(8)-H(8A)····Cl(7)#3	0.95	2.81	3.664(3)	150.3
C(9)-H(9A)Cl(6)#7	0.95	2.57	3.408(3)	147.3
C(10)-H(10A)····Cl(5)#3	0.98	2.71	3.653(4)	162.3
C(10)-H(10B)····Cl(2)#7	0.98	2.85	3.625(3)	136.1
C(10)-H(10C)···Cl(2)#3	0.98	2.81	3.406(4)	120.1
C(11)-H(11A)····Cl(7)	0.99	2.72	3.661(4)	158.2
C(11)-H(11B)····Cl(10)#1	0.99	2.77	3.596(3)	141.5
C(13)-H(13A)····Cl(1)#8	0.95	2.97	3.735(3)	138.8
C(13)-H(13A)····Cl(7)#8	0.95	2.87	3.474(3)	122.4
C(15)-H(15A)····Cl(4)#7	0.95	2.85	3.423(3)	119.7
C(15)-H(15A)····Cl(6)#7	0.95	2.81	3.654(3)	148.9
C(16)-H(16A)····Cl(1)#8	0.98	2.91	3.688(4)	136.5
C(16)-H(16B)Cl(2)#8	0.98	2.72	3.493(3)	136.0
C(16)-H(16C)Cl(2)#7	0.98	2.65	3.604(4)	163.5
C(17)-H(17A)····Cl(10)	0.99	2.86	3.441(3)	117.9
C(17)-H(17A)····Cl(10)#1	0.99	2.84	3.683(3)	143.3
C(20)-H(20A)····Cl(3)#7	0.95	2.76	3.645(4)	154.9
C(20)-H(20A)···Cl(6)#7	0.95	2.82	3.384(4)	118.9
C(21)-H(21A)····Cl(4)#6	0.95	2.57	3.406(4)	147.2
$C(22)-H(22A)\cdots Cl(5)$	0.98	2.84	3.74(2)	152.8
C(22)-H(22B)····Cl(2)#4	0.98	2.79	3.519(15)	131.4
C(23)-H(23B)····Cl(3)#6	0.99	2.79	3.61(2)	139.7
C(24)-H(24C)Cl(3)#7	0.98	2.98	3.867(13)	150.4
C(22B)-H(22D)…Cl(4)#7	0.98	2.83	3.81(3)	173.1
$C(23B)-H(23C)\cdots Cl(5)$	0.99	2.89	3.68(3)	137.9
C(23B)-H(23D)Cl(2)#4	0.99	2.85	3.466(14)	121.3
$C(22C)-H(22H)\cdots Cl(5)$	0.98	2.79	3.70(5)	155.6
C(22C)-H(22I)····Cl(2)#4	0.98	2.82	3.69(4)	147.2
C(24C)-H(24G)…Cl(3)#6	0.98	2.99	3.46(2)	111.1
C(24C)-H(24H)Cl(4)#7	0.98	2.52	3.45(3)	158.5
Symmetry transformations used to generate equivalent atoms:				

#1 -y+3/2,x,z; #2 -x+3/2,-y+3/2,z; #3 y,-x+3/2,z; #4 -x+2,-y+1,-z+1; #5 y+1/2,-x+1,-z+1; #6 x,y,z+1; #7 -y+1,x-1/2,-z+1; #8 y,-x+3/2,z+1

Table S4 Element analysis of C, H and N for 1.				
Elements	С	Н	Ν	
Calculation	31.04	4.78	12.07	
Found	30.40	4.80	11.77	

 Table S5 Summary of Sb···Sb distances and PLQYs for various hybrid chloroantimonates.

Compounds	Two shortest Sb…Sb distances (Å)		PLQY (%)	Ref
Rb ₇ (SbCl ₆)(Sb ₂ Cl ₁₀)	4.527	4.532	3.8	1
[Emim] ₈ [SbCl ₆] ₂ [SbCl ₅]	5.932	6.164	11.2	This work
$(C_6N_2H_{16})_2SbCl_5$	4.337	7.465	25.3	2
(Bmim) ₂ SbCl ₅	8.503	8.821	86.3	3
(C ₉ NH ₂₀) ₂ SbCl ₅	8.229	8.756	98	4
(TEBA) ₂ SbCl ₅	8.670	9.254	98	5
(TTA) ₂ SbCl ₅	8.941	9.494	86	5
(C@Cs) ₂ SbCl ₅	8.536	9.362	89	6
(Bzmim) ₂ SbCl ₅	8.892	9.071	22.3	7
(Bzmim) ₃ SbCl ₆	9.513	9.743	87.5	7
$(Ph_4P)_2SbCl_5$	10.006	10.015	87	8
(C@Rb) ₂ SbCl ₅	10.397	10.468	75	6
(PPN) ₂ SbCl ₅	11.042	12.191	98.1	9

Fig. S1 *ORTEP* drawing (50% ellipsoid probability) of the asymmetric unit of **1**. Hydrogen atom are omitted for clarity.

Fig. S2 Diagrams showing hydrogen bonds among the organic cations and [Sb(1)Cl₆]³⁻ (a), [Sb(2)Cl₅]²⁻ (b), and [Sb(3)Cl₅]²⁻ (c) in 1. (d) and (e) show the two- and three-dimensional supramolecular network, respectively, considering various hydrogen bonds in 1.

Fig. S3 PXRD patterns of 1.

Fig. S4 TG curves for 1 and [Emim]Cl.

Fig. S5 PL lifetime curve and its fitted curve for 1 measured at 77K.

Fig. S6 The PLE and PL of 1 measured on FLSP920 and FLS1000 fluorescence spectrometer.

Fig. S7 PXRD patterns of [Bmim]₂SbCl₅ (left) and its PLE and PL spectra measured on FLSP920 (right).

Fig. S8 PXRD patterns of [Bzmim]₂SbCl₅ (left) and its PLE and PL spectra measured on FLSP920 (right).

Fig. S9 PXRD patterns of [Bzmim]₃SbCl₆ (left) and its PLE and PL spectra measured on

FLSP920 (right).

References

- B. M. Benin, K. M. McCall, M. Worle, V. Morad, M. Aebli, S. Yakunin, Y. Shynkarenko and M. V. Kovalenko, *Angew. Chem.-Int. Ed.*, 2020, 59, 14490-14497.
- G. M. Song, M. Z. Li, S. Z. Zhang, N. Z. Wang, P. F. Gong, Z. G. Xia and Z. S. Lin, *Adv. Funct. Mater.*, 2020, 30, 2002468.
- Z. P. Wang, J. Y. Wang, J. R. Li, M. L. Feng, G. D. Zou and X. Y. Huang, *Chem. Commun.*, 2015, 51, 3094-3097.
- C. K. Zhou, H. R. Lin, Y. Tian, Z. Yuan, R. Clark, B. Chen, L. J. van de Burgt, J. C. Wang, Y. Zhou, K. Hanson, Q. J. Meisner, J. Neu, T. Besara, T. Siegrist, E. Lambers, P. Djurovich and B. W. Ma, *Chem. Sci.*, 2018, 9, 586-593.
- 5. Z. Y. Li, Y. Li, P. Liang, T. L. Zhou, L. Wang and R. J. Xie, Chem. Mater., 2019, 31, 9363-9371.
- 6. V. Morad, S. Yakunin and M. V. Kovalenko, ACS Materials Lett., 2020, 2, 845-852.
- Z. P. Wang, Z. Z. Zhang, L. Q. Tao, N. N. Shen, B. Hu, L. K. Gong, J. R. Li, X. P. Chen and X. Y. Huang, *Angew. Chem.-Int. Ed.*, 2019, 58, 9974-9978.
- C. K. Zhou, M. Worku, J. Neu, H. R. Lin, Y. Tian, S. J. Lee, Y. Zhou, D. Han, S. Y. Chen, A. Hao, P. I. Djurovich, T. Siegrist, M. H. Du and B. W. Ma, *Chem. Mater.*, 2018, **30**, 2374-2378.
- Q. Q. He, C. K. Zhou, L. J. Xu, S. J. Lee, X. S. Lin, J. Neu, M. Worku, M. Chaaban and B. W. Ma, ACS Materials Lett., 2020, 2, 633-638.