Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2021

Supporting Information

Al-doped Fe_2O_3 nanoparticles: advanced anode materials for high capacity lithium ion batteries

Yongqing Yuan, a Shijie Liang, a Weipei Liu, a Qiong Zhao, a Puguang Peng, a Rui Ding, a Ping Gao, a

Xiujuan Sun, *a and Enhui Liu *a

⁺Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education,

College of Chemistry, Xiangtan University, Hunan 411105, P. R. China

*Corresponding authors E-mail: sunxj594@xtu.edu.cn; liuenhui99@sina.com

Experimental Section

1. Materials

All reagents in this study were of analytical grade and were used without further purification and displayed in

Table S1.

Chemicals, Agents and Materials	Туре	Company	Characteristics
Fe(NO ₃) ₃ •9H ₂ O	AR	SinoPharm	purity≥98.0%
Al(NO ₃) ₃ •9H ₂ O	AR	SinoPharm	purity≥99.0%
AB	Battery grade		/
NMP	AR	Kermel	purity≥99.0%
PVDF	Battery grade		/
Electrolytes	LBC-305-01	САРСНЕМ	1 M LiPF ₆ /EC:EMC:DMC (1:1:1) /1% VC
Li plate	15.6*0.45 mm	China Energy	15.6*0.45 mm
Foam nickel	Battery grade	Tianjin Aiweixin Chemical Technology	Thickness: 1.5 mm
Cu foil	200*0.015	GuangZhou JiaYuan	Total thickness: 15 μ m; weight: 87 g m ⁻²
Glass microfiber filters	GF/D 2.7 μm; 1823-090	Whatman	Diameter: 25 mm; Thickness: 675 μm; weight: 121 g m ⁻²
Cell components	CR-2025	ShenZhen TianChenHe	/

Table S1. Chemicals, agents and materials used in the study.

2. Synthesis of Al doped $Fe_2O_3(Al-Fe_2O_3)$ and Fe_2O_3 nanoparticles.

The chemicals and reagents used in this paper are of analytical level (A.R.) and are used without further treatment. Dissolve 0.270 g of Fe(NO₃)₃·9H₂O (1 mmol) and 0.029 g of Al(NO₃)₃·9H₂O (0.1 mmol) in into 50 mL solvents of deionized water. The solution was stirred for 30 min and transferred into a 100 mL Teflon-lined stainless steel autoclave and kept at 140 °C for 25 h, and cooling at room temperature subsequently. The obtained precipitate was purified by dispersing in deionized (DI) water and ethanol respectively following centrifugal separation for three times. After dried at 90 °C about 24 hours, the reddish-brown precursor was calcined at 500 °C in air atmosphere for 7 hours, the muffle furnace was taken out until cooling to 100 °C or below, and then the Al-doped Fe₂O₃ nanomaterial was obtained. Pure Fe₂O₃ are also synthesized by the same route without Al(NO₃)₃ adding as the original stocks.

The phase structure and ingredient of the obtained mesoporous composite were assessed by X-ray diffraction (XRD, Rigaku, D/max-A, Cu K_a, I = 1.5406 Å) and X-ray photoelectron spectra (XPS). The morphology was identified by scanning electron microscopy (SEM, JEM-6700F) and Transmission electron microscopy (TEM, JEM2100F). The element contents were further examined by energy-dispersive X-ray spectroscopy (EDS). In order to get more information of their specific surface area and mesoporous nature, Surface Area and Pore Size Analyzers (Tristar-II 3020) were utilized, which using high-quality surface area with gas adsorption technology and solid material porosity measurement.

3. Electrochemical measurements

The as-prepared Al-Fe₂O₃ nanoparticles were evaluated as an anode material for LIBs (Fig.S1b). The anode was prepared by mixing the active Al-Fe₂O₃ particle, carbon black and polyvinyl fluoride (PVDF) in a mass ratio of 7:2:1, all of them were dissolved in N-methyl-2-pyrrolidone (NMP) solvent together to form homogeneous slurry. The slurry was coated on the copper foil, and then the copper foil was placed in a vacuum drying oven at 110 °C

for 12 h. Cut them into disks with diameter of 12 mm with the active materials mass loading of about 1.0-1.2 mg

 cm^2 . The electrochemical measurements of the anode were carried out by CR2025-type coin cells, consisting of the Al-Fe₂O₃ electrode, Cellgard 2400 micromesoporous polypropylene(separator), lithium metal (counter electrode) and 1 M LiPF₆ in a mixture of ethylene carbonate (EC) and diethyl carbonate (DEC) (1:1:1 in vol%) as the electrolyte. Galvanostatic charge-discharge (GCD) tests were performed in the voltage range of 0.01-3 V with a multichannel battery test system (LAND CT2001A) at room temperature. Electrochemical impedance spectra (EIS) measurements of the half-cell were carried out in a CHI660A electrochemical work station at the frequencies ranging from 10⁻² to 10⁴ Hz combined with the cyclic voltammetry (CV) at a scan rate of 0.1-1.0 mV s⁻¹. All currents and specific capacity presented in this work were calculated based on the total mass of the active particles.

Fig. S1. (a) Schematic illustration of the synthesis procedure of Al-Fe₂O₃. (b) the composition of coin cell.

Fig. S2. The SEM images of pure Fe_2O_3 .

Fig.3. (a) XRD patterns of AI doped Fe₂O₃ with various AI doping level and the corresponding SEM images (b-d).

Fig. S4. (a) The N_2 sorption isotherms. (b) pore volumes. (c) pore size distributions of Fe_2O_3 .

Fig. S5. The TEM images (a-b) and HRTEM (c) of Fe_2O_3 .

Fig. S6. Al-Fe₂O₃ particle size distribution (a) and (b) the particle size distribution of Fe₂O₃.

Fig. S7. (a) rate performance and (b) cycling behaviors of Al doped Fe_2O_3 .

Fig. S8. Electrochemical performances of pure Fe₂O₃ electrode (a) GCD curves at a current density of 0.5 A g⁻¹. (b)

Cycling behaviours at 0.5 A g⁻¹. (c) The rate performance of pure Fe_2O_3 electrode from current density of 0.1 to 3

A g⁻¹.

Fig. S9. (a) XRD patterns and SEM images of (b) AI-Fe $_2O_3$ and (c) Fe $_2O_3$ after cycling.

Fig. S10. The equivalent circuit model.

Materials	Specific capacitance /mAh g ⁻¹	Rate capability /mAh g ⁻¹	Cycling behavior	Ref s.
α-Fe ₂ O ₃	800/0.1 A g ⁻¹	350/3.0 A g ⁻¹	459/mAh g ⁻¹ after 500 cycles at 0.5 A g ⁻¹	1
α-Fe ₂ O ₃	567/0.05 C	52/4 C	601/mAh g ⁻¹ after 300 cycles at 0.1 C	2
α-Fe ₂ O ₃	895/0.1 A g ⁻¹	285/3.0 A g ⁻¹	880/mAh g $^{-1}$ after 800 cycles at 1.0 A g $^{-1}$	3
Fe ₂ O ₃	/	/	705/mAh•g ⁻¹ after 430 cycles at 0.1 A g ⁻¹	4
Ni and Co doped Fe ₂ O ₃	819/0.1 A g ⁻¹	61.6/3.0 A g ⁻¹	415.7/mAh g $^{-1}$ after 200 cycles at 0.2 A g $^{-1}$	5
α-Fe ₂ O ₃ /Spherical graphite	519/0.1 A g ⁻¹	202/5.0 A g ⁻¹	540/mAh $g^{\text{-1}}$ after 200 cycles at 0.5 A $g^{\text{-1}}$	6
SiO ₂ @Fe ₂ O ₃	437/0.06 C	310/1 C	770/mAh g ⁻¹ after 550 cycles at 0.1 C	7
Ag-Fe ₂ O ₃	938/0.1 A g ⁻¹	650/5.0 A g ⁻¹	$678/mAh~g^{\text{-1}}$ after 250 cycles at 1.0 A $g^{\text{-1}}$	8
Titanium-doped Fe ₂ O ₃	447/0.1 A g ⁻¹	175/1.0 A g ⁻¹	454/mAh g $^{-1}$ after 500 cycles at 0.1 A g $^{-1}$	9
ALEe.O.	833/0.1 A g ⁻¹	320/3 A g ⁻¹	902 mAh g ⁻¹ after 500 cycles at 0.5 A g ⁻¹	This work
AFTV2V3			777 mAh g ⁻¹ after 500 cycles at 1.0 A g ⁻¹	

Table S2. A comparison for the performance of Al-Fe₂O₃ in the study with some reported materials.

References

- 1 S. Yao, Z. Shi and X. Zhang, J. Alloys Compd., 2019, 794, 333-340.
- 2 S. Sheng, H. Gao, X. Liu, Z. Wang and Y. Zhao, *Surf. Interfaces.*, 2020, **21**, 100612.
- 3 G. Xu, G. Wang, X. Zhang, Z. Deng, L. Huo and S. Gao, *Ceram. Int.*, 2021, **47**, 3772-3779.
- 4 J. Zhang, Y. Sun, Y. Yao, T. Huang and A. Yu, J. Power Sources., 2013, 222, 59-65.
- 5 X. Qi, Z. Yan, Y. Liu, X. Li, G. He and S. Komarneni, *Mater. Chem. Phys.*, 2018, **211**, 452-461.
- 6 X. Yan, F. Jiang, X. Sun, R. Du, M. Zhang, L. Kang, Q. Han, W. Du, D. You and Y. Zhou, J. Alloys Compd., 2020, 822, 153719.
- 7 X. Zeng, M. Zhu, C. Hu, Y. Chen, T. Han, J. Li and J. Liu, *Mater. Lett.*, 2021, **285**, 129107.
- 8 X. Lin, J. Zhang, X. Tong, H. Li, X. Pan, P. Ning and Q. Li, *Sci Rep.*, 2017, **7**, 9657.
- 9 J. Yang, J. Hou, Y. Niu, W. Li, F. Yi, S. Liu, G. Li and M. Xu, J. Alloys Compd., 2017, 722, 414-419.

		Before CT	After CT
Model		$R_s(CR_{SEI})(CR_{ci})WC$	
	R_S	4.831	5.079
	$C_{dl,l}$	4.918×10 ⁻⁶	3.193×10 ⁻⁶
	R _{SEI}	33.19	15.02
	$C_{dl,2}$	1.938×10-6	1.17×10-5
EIS parameters	R_{ct}	14.49	44.83
	W	6.655×10-3	5.783×10-3
	C _{int}	1.509×10-3	2.276×10-3
	χ^2	3.357×10-3	3.276×10-3

Table S3. EIS parameters of Al-Fe $_2O_3$ before (a) and after (b) cycling.