Supplementary Information

Efficient proton conductivity in a novel 3D open-framework vanadoborate with [V₆B₂₀] architectures

Le Zhang^a, Xinxin Liu^b, Mingyu Shang^c, Fuxing Sun^a, Juan Jian^a, Ke Bu^a, Decheng Zeng^a and Hongming Yuan^{*,a}

^aState Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China ^bInstitute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, P. R. China ^cCollege of Earth Sciences, Jilin University Changchun, P. R.China

E-mail: hmyuan@jlu.edu.cn; Fax: +86-0431-85168318

Fig. S1 FT-IR spectrum of compound 1.

Fig. S2 TGA curve of compound 1.

Fig. S4 The XRD patterns of sample (black) and the sample used impedance measurement.

Table S1 Sele	ected bonds leng	th (A) and angles (*) 10	r 1.
Ni(1)-0(8)	2.024(4)	V(1)-O(23)	1.601(5)
Ni(1)-0(8)#1	2.024(4)	V(1)-O(17)	1.959(4)
Ni(1)-0(26)	2.069(5)	V(1)-O(19)	1.960(4)
Ni(1)-0(26)#1	2.068(5)	V(1)-O(11)#2	1.972(4)
Ni(1)-0(12)	2.075(4)	V(1)-O(9)#2	1.976(4)
Ni(1)-0(12)#1	2.076(4)	V(3)-O(25)	1.612(5)
V(2)-O(24)	1.616(5)	V(3)-O(6)#2	1.950(4)
V(2)-O(17)	1.946(4)	V(3)-O(15)	1.951(4)
V(2)-O(6)#2	1.948(5)	V(3)-O(11)	1.955(4)
V(2)-O(15)	1.965(4)	V(3)-O(19)#2	1.960(4)
V(2)-O(9)#2	1.971(4)	B(1)-O(1)	1.475(8)
B(2)-O(5)	1.420(8)	B(1)-O(2)	1.423(8)
B(2)-O(6)	1.461(8)	B(1)-O(3)	1.530(8)
B(2)-O(7)	1.470(8)	B(1)-O(4)	1.467(8)
B(2)-O(1)	1.530(8)	B(3)-O(1)	1.523(8)
B(4)-O(3)	1.503(8)	B(3)-O(8)	1.436(8)
B(4)-O(8)	1.439(8)	B(3)-O(9)	1.454(8)
B(4)-O(11)	1.437(8)	B(3)-O(10)	1.452(8)
B(4)-O(12)	1.488(8)	B(5)-O(3)	1.541(8)
B(6)-O(2)	1.539(8)	B(5)-O(13)	1.469(8)

B(6)-0(14)	1.426(8)	B(5)-0(14)	1.421(8)
B(6)-O(16)	1.462(8)	B(5)-O(15)	1.461(8)
B(6)-O(17)	1.465(8)	B(7)-O(5)	1.416(8)
B(8)-O(7)	1.358(8)	B(7)-O(2)	1.539(8)
B(8)-O(10)	1.369(7)	B(7)-O(18)	1.473(8)
B(8)-O(20)	1.371(8)	B(7)-O(19)	1.446(8)
B(10)-O(16)	1.367(9)	B(9)-O(12)	1.374(8)
B(10)-O(18)	1.473(8)	B(9)-O(13)	1.364(8)
B(10)-O(22)	1.382(9)	B(9)-O(21)	1.363(8)
Na(1)-O(5)	2.246(6)	0(23)-V(1)-0(17)	109.7(2)
Na(1)-0(7)	2.584 (6)	0(23)-V(1)-0(19)	108.3(2)
Na(1)-0(27)	2.404(10)	0(17)-V(1)-0(19)	91.00(18)
Na(1)-O(28A)	2.726(17)	0(23)-V(1)-0(11)#2	109.6(2)
Na(1)#4-0(20)	2.292(7)	0(17)-V(1)-0(11)#2	140.66(18)
Na(1)#5-0(22)	2.267(14)	0(19)-V(1)-0(11)#2	75.77(18)
Na(2)-0(14)	2.424(9)	0(23)-V(1)-0(9)#2	110.1(2)
Na(2)-0(4)	2.627(9)	0(17)-V(1)-0(9)#2	76.85(17)
Na(2)-O(30A)	2.562(6)	0(19)-V(1)-0(9)#2	141.59(19)
Na(2)-O(30B)	2.462(2)	0(11)#2-V(1)-0(9)#2	90.75(18)
Na(2)-O(29A)	2.511(16)	0(24)-V(2)-0(17)	110.4(2)
Na(2)#3-0(14)	2.402(9)	0(24)-V(2)-0(6)#2	109.7(2)
0(25)-V(3)-0(6)#2	109.9(2)	0(17)-V(2)-0(6)#2	139.85(18)
0(25)-V(3)-0(15)	109.5 (2)	0(24)-V(2)-0(15)	110.5(2)
0(6)#2-V(3)-0(15)	77.00(18)	0(17)-V(2)-0(15)	89.48(18)
0(25)-V(3)-0(11)	109.0(2)	0(6)#2-V(2)-0(15)	76.70(18)
0(6)#2-V(3)-0(11)	141.11(19)	0(24)-V(2)-0(9)#2	108.6(2)
0(15)-V(3)-0(11)	90.48(18)	0(17)-V(2)-0(9)#2	77.27(17)
0(25)-V(3)-0(19)#2	109.4(2)	0(6)#2-V(2)-0(9)#2	89.98(18)
0(6)#2-V(3)-0(19)#2	90.68(18)	0(15)-V(2)-0(9)#2	140.88(18)
0(15)-V(3)-0(19)#2	141.06(18)	0(4)-B(1)-O(2)	112.1(5)
0(11)-V(3)-0(19)#2	76.17(18)	0(4)-B(1)-O(1)	111.8(5)
O(5)-B(2)-O(6)	113.4(5)	0(2)-B(1)-O(1)	109.1(5)
O(5)-B(2)-O(7)	110.3(5)	0(4)-B(1)-O(3)	109.3(5)
0(6)-B(2)-O(7)	109.5(5)	0(2)-B(1)-O(3)	106.7(5)
O(5)-B(2)-O(1)	108.6(5)	0(1)-B(1)-O(3)	107.5(5)
0(6)-B(2)-O(1)	107.7(5)	0(8)-B(3)-O(10)	110.9(5)
0(7)-B(2)-O(1)	107.2(5)	0(8)-B(3)-O(9)	110.7(5)
0(11)-B(4)-0(8)	113.9(5)	O(10)-B(3)-O(9)	111.7(5)
0(11)-B(4)-0(12)	112.0(5)	0(8)-B(3)-O(1)	108.0(5)
O(8)-B(4)-O(12)	104.0(5)	O(10)-B(3)-O(1)	107.8(5)

0(11)-B(4)-0(3)	109.6(5)	0(9)-B(3)-0(1)	107.7(5)
0(8)-B(4)-0(3)	109.4(5)	O(14)-B(5)-O(15)	113.3(5)
0(12)-B(4)-0(3)	107.6(5)	0(14)-B(5)-0(13)	111.0(5)
0(14)-B(6)-0(16)	110.4(5)	O(15)-B(5)-O(13)	110.8(5)
0(14)-B(6)-0(17)	113.2(5)	O(14)-B(5)-O(3)	108.1(5)
0(16)-B(6)-0(17)	110.2(5)	O(15)-B(5)-O(3)	106.8(5)
0(14)-B(6)-0(2)	109.1(5)	O(14)-B(5)-O(3)	106.5(5)
0(16)-B(6)-0(2)	107.1(5)	O(5)-B(7)-O(19)	113.8(5)
0(17)-B(6)-0(2)	106.6(5)	0(5)-B(7)-0(18)	110.5(5)
O(7)-B(8)-O(20)	121.3(6)	0(19)-B(7)-0(18)	109.8(5)
O(7)-B(8)-O(10)	123.1(6)	O(5)-B(7)-O(2)	108.7(5)
O(20)-B(8)-O(10)	115.5(6)	0(19)-B(7)-0(2)	107.2(5)
0(18)-B(10)-0(16)	124.3(6)	O(18)-B(7)-O(2)	106.5(5)
0(18)-B(10)-0(22)	116.3(6)	0(21)-B(9)-0(13)	118.2(6)
		0(21)-B(9)-0(12)	119.8(6)
		0(12)-B(9)-0(13)	122.0(6)
		O(16)-B(10)-O(22)	119.4(6)

Symmetry transformations used to generate equivalent atoms: #1 -x+2,-y+1,-z+2 #2 -x+1,-y+1,-z+2 #3 x+1,-y+1/2,-z+1 #4 x+1/2,-y+1/2,z+1/2 #5 x-1/2,-y-1/2,z-1/2

Table 32 The DVS calculations suggest the following central atom valencies	Table S	2 The BVS	calculations	suggest the	following	central	atom valencies :
---	----------------	-----------	--------------	-------------	-----------	---------	------------------

Table		Suggest the follow	ing c	cincial atom valencies.
Ni1	+2 (0.146)	B5 +	-3	(0.057)
V1	+4 (0.078)	В6 н	-3	(0.055)
V2	+4 (0.078)	В7 н	-3	(0.098)
V3	+4 (0.121)	B8 +	-3	(0.018)
B1	+3 (0.047)	В9 н	-3	(0.038)
B2	+3 (0.078)	B10 -	⊦3	(0.020)
B3	+3 (0.106)	Na1 -	⊦1	(0.034)
B4	+3 (0.096)	Na2 -	⊦1	(0.052)