† Electronic Supplementary Information for "Comprehensive organic emission profiles, secondary organic aerosol production potential, and OH reactivity of domestic fuel combustion in Delhi, India"

Gareth J. Stewart¹, Beth S. Nelson¹, W. Joe F. Acton^{2,a}, Adam R. Vaughan¹, James R. Hopkins^{1,3}, Siti S. M. Yunus⁴, C. Nicholas Hewitt², Eiko Nemitz⁵, Tuhin K. Mandal^{6,7}, Ranu Gadi⁸, Lokesh. K. Sahu⁹, Andrew R. Rickard^{1,3}, James D Lee^{1,3} and Jacqueline F. Hamilton¹.

- ⁶CSIR-National Physical Laboratory, Dr. K.S. Krishnan Marg, New Delhi, Delhi 110012, India
- ⁷ Academy of Scientific & Innovative Research, Ghaziabad, Uttar Pradesh- 201 002, India
- ⁸ Indira Gandhi Delhi Technical University for Women, Kashmiri Gate, New Delhi, Delhi 110006, India
- 9 Physical Research Laboratory (PRL), Ahmedabad 380009, India

^a Now at: School of Geography, Earth and Environmental Sciences, University of Birmingham, B15 2TT, Birmingham, UK

¹Wolfson Atmospheric Chemistry Laboratories, Department of Chemistry, University of York, York, YO10 5DD, UK

² Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK

³ National Centre for Atmospheric Science, University of York, York, YO10 5DD, UK

⁴ School of Water, Environment and Energy, Cranfield University, Cranfield, MK43 0AL, UK

⁵ UK Centre for Ecology and Hydrology, Penicuik, EH26 0QB, UK

ESI1 – Schematic of burning chamber

Figure S1. Schematic of combustion-dilution chamber with sampling locations for PTR-ToF-MS, DC-GC-FID and GC×GC-FID instruments and SPE/PTFE sample collection points.

ESI2 - Temperatures above combustion experiments

Fuel	Mean maximum flame temp $\pm \sigma$ / °C
Fuel wood	545 ± 122
Cow dung cake	303 ± 137
Charcoal	251 ± 57
Crop residue	432 ± 143
Sawdust	314 ± 163
LPG	721 ± 18
MSW	249 ± 161

Table S1. Mean maximum temperatures above different combustion experiments by fuel type.

ESI3– DC-GC-FID method

A 500 ml sample (1.5 L pre-purge of 100 ml min⁻¹ for 15 minutes, sample at 17 mL min⁻¹ for 30 minutes) was collected (Markes International CIA Advantage), passed through a glass finger at -30 °C to remove water and adsorbed onto a dual-bed sorbent trap (Markes International ozone precursors trap) at -20 °C (Markes International Unity 2). The sample was thermally desorbed (250 °C for 3 minutes) then split 50:50 and injected into two separate columns for analysis of NMHCs (50 m × 0.53 mm Al₂O₃ PLOT) and oxygenated NMVOCs (10 m × 0.53 mm LOWOX with 50 µm restrictor to balance flow). The oven was held at 40 °C for 5 minutes, then heated at 13 °C min⁻¹ to 110 °C, then finally at 8 °C min⁻¹ to 200 °C with a 30-minute hold. The instrument was calibrated using a 4 ppbv gas standard containing a range of alkanes, alkenes, alkynes and aromatics purchased from the British National Physical Laboratory.

ESI4 - GC×GC-FID method

The GC×GC-FID sampled 3 L samples (100 ml min⁻¹ for 30 minutes) using an adsorptionthermal desorption system (Markes International Unity 2). NMVOCs were trapped onto a sorbent (Markes International U-T15ATA-2S) at -20 °C with water removed in a glass cold finger at -30 °C, removed and heated to ~ 100 °C after each sample to prevent carryover of unanalysed, polar interfering compounds. The sample was thermally desorbed (250 °C for 5 minutes) and injected splitless down a transfer line. Analytes were refocussed for 60 s using liquid CO₂ at the head of a non-polar BPX5 held at 50 psi (SGE Analytical 15m × 0.15 µm × 0.25 mm), which was connected to a polar BPX50 at 30 psi (SGE Analytical 2 m × 0.25 µm × 0.25 mm) *via.* a modulator held at 180 °C (5 s modulation, Analytical Flow Products ELDV2-MT). The oven was held for 2 minutes at 35 °C, then ramped at 2.5 °C min⁻¹ to 130 °C and held for 1 minute with a final ramp of 10 °C min⁻¹ to 180 °C and hold of 8 minutes. The instrument was calibrated using a 4 ppbv gas standard containing a range of alkanes and aromatics purchased from the British National Physical Laboratory. Blank measurements were made at the beginning, middle and end of the day, with mean values subtracted from measured emission factors for both GC instruments.

ESI5 – **PTR-ToF-MS** method

Additional details of the PTR-ToF-MS system used in this study are given in previous papers. ^{1, 2} The sample air was diluted into zero air, generated by passing ambient air (1 L min⁻¹) through a heated platinum filament at 550 °C, before entering the instrument with an inlet flow of 250 ml min⁻¹. Samples were diluted by either 5 or 6.25 times (50 ml min⁻¹ in 200 ml min⁻¹ zero air or 40 ml min⁻¹ in 210 ml min⁻¹ zero air). The instrument was operated with an electric field strength (E/N, where N is the buffer gas density and E is the electric field strength) of 120 Td. The drift tube temperature was 60 °C with a pressure of 2.3 mbar and 560 V applied across it.

Calibrations were performed twice a week using a gas calibration unit (Ionicon Analytik, Innsbruck). The calibration gas (Apel-Riemer Enironmental Inc., Miami) contained 18 compounds: methanol, acetonitrile, acetaldehyde, acetone, dimethyl sulphide, isoprene, methacrolein, methyl vinyl ketone, 2-butanol, benzene, toluene, 2-hexanone, *m*-xylene, heptanal, α -pinene, 3-octanone and 3-octanol at 1000 ppbv (± 5%) and β -caryophyllene at 500 ppbv (± 5%). This standard was dynamically diluted into zero air to provide a 6-point calibration. The normalised sensitivity (ncps/ppbv) was then determined for each mass using a transmission curve. ³ The maximum error in this calibration approach has been shown to be 21%. Peak assignment was assisted with results reported by previous burning studies. ⁴⁻⁶

Mass calibration and peak fitting of PTR-ToF-MS data were performed using PTRwid software. ⁷ Count rates (cps) of each mass spectral peak were normalised to the primary ion (H_3O^+) and water cluster $(H_3O.H_2O)^+$ peaks, and mixing ratios were then determined for each mass using the normalised sensitivity. Where compounds known to fragment in the PTR-ToF-MS were identified, the mixing ratio of these species was calculated by summing parent ion and fragment ion mixing ratios.

ESI6 – SPE/PTFE-GC×GC-ToF-MS analysis

Full details on GC×GC-ToF-MS sample collection, quality control and analyses are given elsewhere. ⁸ SPE disks and PTFE filters were spiked with an internal standard (50 μ L at 20 μ g mL⁻¹) containing 6 deuterated PAHs (1,4-Dichlorobenzene-d₄, naphthalene-d₈, acenaphthene-d₁₀, phenanthrene-d₁₀, chrysene-d₁₂, perylene-d₁₂; EPA 8270 Semivolatile Internal Standard Mix, 2000 μ g mL⁻¹ in DCM). SPE disks and PTFE filters were cut and extracted into ethyl acetate (EtOAc) using accelerated solvent extraction (ASE 350, Dionex, ThermoFisher Scientific) following the methodology of Farren et al. (2015). ⁹

PTFE samples were analysed with a method that allowed well-resolved separation of hydrocarbons across a two-dimensional space from *n*-nonane to *n*-tetracontane (C_9 - C_{40}) using GC×GC-ToF-MS (Leco Pegasus BT 4D) with a splitless injection (1 µL injection, 4mm taper focus liner, SHG 560302). The primary dimension column was a RXI-5SilMS (Restek, 30 m $\times 0.25 \ \mu\text{m} \times 0.25 \ \text{mm}$) connected to a second column of RXI-17SilMS (Restek, 0.25 $\ \mu\text{m} \times 0.25$ mm, 0.17 m primary GC oven, 0.1 m modulator, 1.42 m secondary oven, 0.31 m transfer line) with a He flow of 1.4 mL min⁻¹. The primary oven was held at 40 °C for 1 minute, then ramped at 3 °C min⁻¹ to 322 °C where it was held for 3 minutes. The secondary oven was held at 62 °C for 1 minute then ramped at 3.2 °C min⁻¹ to 190 °C after which it was ramped at 3.6 °C min⁻¹ to 325 °C and held for 19.5 minutes. The inlet was held at 280 °C and the transfer line at 340 °C. A 5 s cryogenic modulation was used with a 1.5 s hot pulse and 1 s cool time between stages. SPE samples were injected split (10:1) and analysed with a shorter analysis time with the primary oven held at 40 °C for 1 minute then ramped at 3 °C min⁻¹ to 202 °C where it was held for 4 seconds. The secondary oven was held at 62 °C for 1 minute then ramped at 3.2 °C min⁻¹ to 235 °C. All peaks, including those without mass spectral database matches, have been included in the analysis. Blank measurements were made by passing air from the chamber (6 L min⁻¹ for 30 minutes) through the filter holder containing PTFE filters and SPE disks. Mean blank values from before and after relevant burning experiments were subtracted from samples.

ESI7 - Hierarchy of instruments used

Table S2 shows a summary of the instruments used to produce the volatility-basis dataset used in this study. Emission data was taken from ^{8, 10}.

Species	Instrument					
Aron	Aromatics					
Benzene-C ₃ substituted monoaromatics	GCxGC-FID					
C ₄ -C ₅ substituted monoaromatics	PTR-ToF-MS					
Pher	nolics					
All species	PTR-ToF-MS					
Oxygenate	d aromatics					
All species	PTR-ToF-MS					
Oxygenated aliphatics						
All species	PTR-ToF-MS					
NV	OCs					
All species	PTR-ToF-MS					
Fur	anics					
All species	PTR-ToF-MS					
Monot	erpenes					
All species	PTR-ToF-MS ^a					
PA	Hs					
All species	PTR-ToF-MS ^a					
Alk	enes					
All DC-GC-FID alkenes to C ₅	DC-GC-FID					
Remaining alkenes ^b	PTR-ToF-MS					
Alka	ines ^c					
C ₂ -C ₆ alkanes	DC-GC-FID					
C ₇ -C ₁₂ alkanes	GCxGC-FID					
C ₁₃ -C ₂₀ alkanes	SPE-GCxGC-ToF-MS					
Unidentified gas	-phase I/SVOCs					
All peaks excluding those already identified by	SPE-GCxGC-ToF-MS ^d					
GCxGC-FID and PTR-ToF-MS.						
Unidentified parti	cle-phase I/SVOCs					
All peaks	PTFE-GCxGC-ToF-MS ^d					

Table S2. Summary of instruments used for calculation of total emission factor.

^a PTR-ToF-MS signal used as may include isomers not measured by GCxGC-FID.

^b Only alkenes not measured by DC-GC-FID.

^{*c*} No peaks for $> C_6$ alkanes in PTR-ToF-MS spectra.

^d Used to estimate the remaining unidentified organic mass in these regions, unidentified peaks from PTR-ToF-MS have not been included to avoid double counting in this region.

ESI8 - SOA yields

Compound	High	High NO _x ref	Notes	Low NO _x		Low NO _x ref	Notes
	NO _x yield	U		yield			
Dodecane	0.08	11		0.05	12		
Tridecane	0.21	11		0.21 ^b	11		Assumed same as low NO _x ¹³
Tetradecane	0.28	11		0.28 ^b	11		Assumed same as low NO _x ¹³
Pentadecane	0.34	11		0.34 ^b	11		Assumed same as low NO _x ¹³
Hexadecane	0.38	11		0.38 ^b	11		Assumed same as low NO _x ¹³
Heptadecane	0.42	11		0.42 ^b	11		Assumed same as low NO _x ¹³
Octadecane	0.42	11		0.42 ^b	11		Assumed same as low NO _x ¹³
Nonadecane	0.42	11		0.42 ^b	11		Assumed same as low NO _x ¹³
Eicosane	0.42	11		0.42 ^b	11		Assumed same as low NO _x ¹³
Naphthalene	0.21	11		0.66	14		Assumed same as low NO _x ¹³
C1-Napthalene	0.27	11		0.57	14		Average of 1-MN and 2- MN
C2-Napthalene	0.31	11		0.57	14		Assumed same as C ₁ napthalenes
Benzene	0.14	15		0.34	15		
Toluene	0.083	15		0.33	15		
C ₂ -Benzenes	0.047	15		0.27	15		
C ₃ -Benzenes	0.047	15	Assumed same as C ₂ benzenes	0.27	15		

Table S3. SOA yields used for determining SOA from biomass burning NMVOC emissions

C ₄ -Benzenes	0.04	11		0.27	15	Assumed same as C ₂
						benzenes
C ₅ -Benzenes	0.08	11		0.27	15	Assumed same as C ₂
						benzenes
Salicylaldehyde	0.18	a	Average	0.31	а	Average
Phenol	0.54	16	Assumed same as	0.40	16	
			phenol			
Cresol/anisole	0.54	16	Assumed same as	0.40	16	Assumed same as phenol
			phenol			
Ethyl phenol	0.54	16	Assumed same as	0.40	16	Assumed same as phenol
			phenol			
Guaiacol	0.46	16		0.45	16	
Vinyl guaiacol	0.46	16	Assumed same as	0.45	16	Assumed same as
			guaiacol			guaiacol
Methyl	0.46	16	Assumed same as	0.45	16	Assumed same as
guaiacol			guaiacol			guaiacol
Eugenol,	0.3	16	Assumed same as	0.32	16	Assumed same as
isoeugenol			syringol			syringol
Syringol	0.3	16		0.32	16	
Vanillin	0.3	16	Assumed same as	0.32	16	Assumed same as
			syringol			syringol
3-	0.3	16	Assumed same as	0.32	16	Assumed same as
Methylcatechol			syringol			syringol
MVK,	0.05	17, 18	Assumption of Hatch	0.05	17, 18	Assumption of Hatch et
methacrolyn,			et al. (2015) applied to			al. (2015) applied to other
crotonaldehyde			other oxygenated			oxygenated aliphatics >
			aliphatics $> C_6$			C ₆ .
Monoterpenes	0.15	17, 19		0.15	17, 19	Same as high NOx
Furan	0.05	20		0.05	20	
Methyl furans	0.09	21	Based on 3-	0.12	21	Lower NO _x final, based
			methylfuran			on 3-methylfuran
Furfural	0.083	15, 22	Based on same SOAP	0.33	15, 22	Based on same SOAP as
			as toluene Gilman et			toluene Gilman et al.
			al. (2015)			(2015)

2-Methanol furanone	0.083	15, 22	Based on same SOAP as toluene Gilman et al. (2015)	0.33	15, 22	Based on same SOAP as toluene Gilman et al. (2015)
2-(3H)- furanone	0.083	15, 22	Based on same SOAP as toluene Gilman et al. (2015)	0.33	15, 22	Based on same SOAP as toluene Gilman et al. (2015)
5- hydroxymethyl- 2[3H]-furanone	0.083	15, 22	Based on same SOAP as toluene Gilman et al. (2015)	0.33	Based on same SOAP as toluene Gilman et al. (2015)	Based on same SOAP as toluene Gilman et al. (2015)
C ₂ .furans	0.09	21	Based on 3- methylfuran	0.12	21	Lower NO _x final, based on 3-methylfuran
C ₆ -diketone isomers, C ₆ - esters	0.05	17, 18	Assumption of Hatch et al. (2015) applied to other oxygenated aliphatics $> C_6$	0.05	17, 18	Assumption of Hatch et al. (2015) applied to other oxygenated aliphatics > C_6
Methyl furfurals	0.083	15, 22	Based on same SOAP as toluene Gilman et al. (2015)	0.33	15, 22	Based on same SOAP as toluene Gilman et al. (2015)
C ₂ -pyroles	0.083	15, 22	Based on same SOAP as toluene Gilman et al. (2015)	0.33	15, 22	Based on same SOAP as toluene Gilman et al. (2015)
Structurally assigned $\geq C_6$ compounds ^a	0.18	a		0.31	a	
structurally unassigned $\ge C_6$ compounds ^a	0.18	a		0.31	a	

^a Average of applied yields from NMVOCs in the table with at least 6 carbon atoms per molecule.

^b Low NO_x alkane yields are poorly studied beyond *n*-dodecane, and alkane emission factors in this study are small. For *n*-dodecane the low NO_x yield is comparable to high NO_x yield of dodecane and high NO_x yields have been used for heavier alkanes.

ESI9 – Rate constants for OH reactivity

 C_4 substituted monoaromatics have been taken from the PTR-ToF-MS, as opposed to the speciated measurement with the GCxGC-FID, as these species have low emission factors and little influence on overall OH reactivity. Rate constants for reaction with the OH radical have largely been taken from those compiled in the Supplementary Information of Koss et al. (2018), ⁶ with additional species found from relevant literature.

No	VOC	Formula	Rate constant (10 ⁻¹² cm ³ molecule ⁻¹ s ⁻¹)	Reference
1	Ethane	C_2H_6	0.248	23
2	Ethene	C ₂ H ₄	8.52	23
3	Propane	C ₃ H ₈	1.09	23
4	Propene	C ₃ H ₆ H	30	NIST database
5	Isobutane	$C_{4}H_{10}$	2.12	23
6	<i>n</i> -Butane	$C_{4}H_{10}$	2.36	23
7	Acetylene	C_2H_2	0.7	NIST database
8	Trans-2-butene	C_4H_8	64	23
9	1-Butene	C_4H_8	31.4	23
10	Isobutene	C_4H_8	51.4	23
11	Cis-2-butene	C_4H_8	56.4	23
12	Cyclopentane	C5H10	4.97	23
13	<i>i</i> -Pentane	C5H12	3.6	23
14	<i>n</i> -Pentane	C5H12	3.8	23
15	1,3-Butadiene	C_4H_6	66.6	23
16	Trans-2-pentene	C5H10	67	23
17	Cis-2-pentene	C5H10	65	23
18	Pent-1-ene	C5H10	31.4	23
19	<i>n</i> -Heptane	C7H16	6.76	23

Table S4. Rate constant used for calculation of OH reactivity.

20	<i>n</i> -Octane	$C_{8}H_{18}$	8.11	23
21	<i>n</i> -Nonane	C9H20	9.7	23
22	<i>n</i> -Decane	$C_{10}H_{22}$	11	23
23	<i>n</i> -Undecane	$C_{11}H_{24}$	12.3	23
24	<i>n</i> -Dodecane	$C_{12}H_{26}$	13.2	23
25	<i>n</i> -Tridecane	C13H28	15.1	23
26	<i>n</i> -Tetradecane	$C_{14}H_{30}$	17.9	²³ *312K
27	C ₈ grouped aliphatics	C ₈ H ₁₈	8.11	23
28	C ₉ grouped aliphatics	C9H20	9.7	23
29	C ₁₀ grouped aliphatics	$C_{10}H_{22}$	11	23
30	C ₁₁ grouped aliphatics	$C_{11}H_{24}$	12.3	23
31	C ₁₂ grouped aliphatics	C12H26	13.2	23
32	C ₁₃ grouped aliphatics	$C_{13}H_{28}$	15.1	23
33	C ₁₄ grouped aliphatics	$C_{14}H_{30}$	17.9	²³ *312K
34	Benzene	C_6H_6	1.22	23
35	Toluene	C_7H_8	5.6	23
36	Ethylbenzene	C ₈ H ₁₀	7	23
37	<i>m-/p</i> -Xylene	C ₈ H ₁₀	18.7	23 *mean <i>m/p</i> -xylene
38	o-Xylene	C ₈ H ₁₀	13.6	23
39	<i>i</i> -Propylbenzene	C9H12	6.3	23
40	n-Propylbenzene	C9H12	5.8	23
41	3/4-Ethyltoluene	C9H12	15.2	²³ *mean 3/4-ethyl toluene
42	1,3,5-TMB	C9H12	56.7	23
43	2-Ethyltoluene	C ₉ H ₁₂	11.9	23
44	1,2,4-TMB	C9H12	32.5	23
45	<i>t</i> -Butylbenzene	$C_{10}H_{14}$	4.5	23
46	1,2,3-TMB	C9H12	32.7	23
47	Indan	C ₉ H ₁₀	23.01429	²³ *mean C ₃ substituted
				monoaromatic

48	α-Pinene	$C_{10}H_{16}$	52.3	23
49	Camphene	$C_{10}H_{16}$	53	23
50	Sabinene	$C_{10}H_{16}$	117	23
51	β-Pinene	$C_{10}H_{16}$	74.3	23
52	Myrcene	$C_{10}H_{16}$	215	23
53	α-Phellandrene	$C_{10}H_{16}$	313	23
54	3-Carene	$C_{10}H_{16}$	88	23
55	α-Terpinene	$C_{10}H_{16}$	363	23
56	Limonene	$C_{10}H_{16}$	164	23
57	β-Ocimene	$C_{10}H_{16}$	252	23
58	γ-Terpinene	$C_{10}H_{16}$	177	23
59	Terpinolonene	$C_{10}H_{16}$	225	23
60	Ammonia ^a	NH ₃	0.2	22
61	Acetylene	C_2H_2	0.7	NIST database
62	Hydrogen cyanide ^a	HCN	0.0	Cicerone 1983
63	Methanimine	CH ₃ N	0.2	*from ammonia
64	Formaldehyde	CH ₂ O	9.4	23
65	Methanol	CH ₃ OH	0.8	23
66	Acetonitrile	C_2H_3N	0.0	22
67	Isocyanic acid	HNCO	0.0	22
68	Acetaldehyde	C_2H_4O	15.0	23
69	Formamide	CH ₃ NO	1.5	NIST database: CH ₂ =NOH
70	Formic acid	CH ₂ O ₂	0.4	NIST database
71	Ethanol	C ₂ H ₅ OH	3.2	23
72	Nitrous acid	HNO ₂	6.0	22
73	Methane thiol	CH ₄ S	33.0	NIST database
74	Methanediol	CH ₄ O ₂	7.0	NIST database
75	Propyne nitrile	C ₃ HN	4.0	* From acrylonitrile

76	1-Buten-3-yne	C_4H_4	20.0	22
77	Acrylonitrile	C ₃ H ₃ N	4.0	22
78	2-Propynal	C ₃ H ₂ O	20.0	* From acrolein
79	Butadienes	C_4H_6	58.8	23
80	Propanenitrile	C ₃ H ₅ N	0.3	22
81	Acrolein	C ₃ H ₄ O	20	22
82	Butenes, other hydrocarbon	C_4H_8	31.8	23
83	Methyl isocyanate	C ₂ H ₃ NO	0.1	* From isocyanic acid, methanol
				6
84	Acetone	C ₃ H ₆ O	0.2	23
85	Acetamide	C ₂ H ₅ NO	8.6	NIST database
86	C ₃ Amines	C ₃ H ₉ N	60.0	NIST database
87	Acetic acid	$C_2H_4O_2$	3.7	NIST database
88	Nitromethane	CH ₃ NO ₂	0.0	22
89	Dimethylsulfide ^a	CH ₃ NO ₂	0.02	22
90	1,3-Cyclopentadiene	C_5H_6	92.0	22
91	Butenenitrile isomers, pyrole	C_4H_5N	111.4	22
92	Carbon suboxide	C_3O_2	1.5	22
93	Furan	C ₄ H ₄ O	40.0	22
94	Isoprene	C ₅ H ₈	100.0	23
95	Butane nitriles, dihydropyrole	C ₄ H ₇ N	7.7	SONGNEX PTRToF paper
96	Propiolic acid	$C_3H_2O_2$	26.0	* From acrylic acid
97	MVK, methacrolyn, crotonaldehyde	C ₄ H ₆ O	24.8	²³ , NIST database
98	Methoxyacetonitrile or acrylamide	C_3H_5NO	0.02	From acetonitrile

99	Butene amines, tetrahydropyrole	C4H9N	25.0	* From butenes, ammonia see ⁶
100	Methylglyoxal, acrylic acid	$C_3H_4O_2$	21.0962	Methylglyoxal ²³ , Acrylic acid ²²
101	MEK	C ₄ H ₈ OH	5.46	²³ weighted average
102	Formamide N,N- dimethyl- or propanamide 2, ethyl or acetamide, N- methyl	C ₃ H ₇ NO	1.41	NIST Database
103	Hydroxyacetone, methyl acetate, ethyl formate	$C_3H_6O_2$	2.19763	NIST Database hydroxyacetone
104	Benzene	C ₆ H ₆	1.22	23
105	Pyridine, C ₅ nitriles	C5H5N	5.64607	NIST Database pyridine; *from pentane nitriles, pentyne nitrile
106	2,4-Cyclopentadiene-1- one, other hydrocarbon	C5H4O	19.9929	2-Methylfuran ²²
107	Methyl cyclopentadiene	C_6H_8	91.0	Estimated as cyclopentadiene
108	Methylpyrole, pentanenitriles	C5H7N	62.6792	22
109	Methylfurans, other hydrocarbon	C5H6O	37.0887	Cyclopentenone ²²
110	Hexenol fragment or cyclohexene or hexenes or 1,3-hexadiene	C ₆ H ₁₀	67.4	NIST database for cyclohexene
111	Pentane nitriles	C5H9N	0.5	* From butane nitriles
112	2-(3H)-Furanone	$C_4H_4O_2$	44.5	22
113	3-Methyl-3-butene-2-one, cyclopentanone, other hydrocarbon	C ₅ H ₈ O	11.5	²³ , NIST Database

114	1-Hexene, C ₆ -alkenes	$C_{6}H_{12}$	37.0	23
115	2,3-Butnaedione, methyl butanals, pentanones	$C_4H_6O_2$	0.8	²² , NIST Database
116	Propanamide 2-methyl- or butanamide or acetamide N-ethyl-	C4H9NO	1.78	Estimated as propanamide, NIST database.
117	Pyruvic acid	$C_3H_4O_3$	0.1	22
118	Methyl propanoate	$C_4H_8O_2$	0.9	NIST Database
119	Methyl pyridines	C ₆ H ₇ N	2.6	NIST Database methylpyridines average
120	Phenol	C ₆ H ₅ OH	28.0	22
121	Pyrydinamine, methyl diazina	$C_5H_6N_2$	10	Average of 3 isomers, ²²
122	C ₂ substituted pyrroles	C5H7N	145	* From pyyrole
123	Furfurals, other hydrocarbons	$C_5H_4O_2$	35.6	22
124	C ₂ substituted furans	C_6H_8O	132.0	2,5-Dimethylfuran
125	Cyclopentene dimethyl-1, methylcyclohexene	C ₆ H ₁₀	67.4	NIST - considered same as cyclohexene
126	4-methylpentanenitrile	$C_6H_{11}N$	11.0	* From hexane
127	2-Methanol furanone	$C_5H_6O_2$	13.6	* From furan
128	Methylcyclopentanone, cyclohexanone, hexanones	C ₆ H ₁₀ O	6.4	²³ cyclohexanone
129	Dihydrofuranodione	C ₄ H ₄ O ₃	20.0	* From butadione, furan
130	Methyl methacrylate, other hydrocarbon	$C_5H_8O_2$	30.3	22
131	Hexanals, hexanones	C ₆ H ₁₂ O	18.6	²³ average C ₆ carbonyls

132	Acetic anhydride	$C_4H_6O_3$	43.0	* From methylmethacrylate
133	Benzonitrile	C ₇ H ₅ N	1.0	22
134	Styrene	C_8H_8	58.0	23
135	Benzaldehyde	C7H6O	12.0	23
136	Dimethyl + ethyl pyridine, heptyl nitriles	C ₇ H ₉ N	3.2	NIST Database
137	Quinone	$C_6H_4O_2$	4.6	NIST Database
138	Cresol, anisole	C7H8O	26.2	NIST Database
139	Methyl furfural, benzene diols, 2-acetyl furan	$C_6H_6O_2$	80.1	NIST Database; *from furfural
140	C ₃ Substituted furans, other compounds	C7H10O	23.3	* From furan
141	5-Hydroxy 2-furfural, 2- furanoic acid	C5H4O3	49.0	* From 3-furfural
142	2-Hydroxy-3-methyl-2- cclopenten-1-one	$C_6H_8O_2$	57.0	* From methylfuran
143	Nitrofuran	C ₄ H ₃ NO ₃	40.0	* From furan
144	5-Hydroxymethyl-2[3H]- furanone	$C_5H_6O_3$	100.0	* From furan, furanone
145	C ₆ diketone isomers, C ₆ esters	$C_6H_{10}O_2$	20.0	NIST Database average
146	Heptanal, 2,4-dimethyl-3- pentanone, heptanone	C7H14O	21.4	23
147	5-Hydroxymethyl tetrahydro 2-furanone, 5- hydroxy tetrahydro 2- furfural	C ₅ H ₈ O ₃	5.0	* From dimethylfuran, cyclopentane, cyclopentadiene
148	Benzene acetonitrile	C ₈ H ₇ N	1.2	* From benzene
149	Benzofuran	C ₈ H ₆ O	37.0	NIST Database

150	Methyl styrene, propenyl benzene + methyl ethynyl benzene, indane	C ₉ H ₁₀	50.4	23
151	Tolualdehyde	C_8H_8O	16.0	Atkinson 2003 average tolualdehydes
152	Salicylaldehyde	$C_7H_6O_2$	38.0	* From phenol, benzaldehyde
153	Ethylphenol + dimethyl phenol, methyl anidiol	$C_8H_{10}O$	46.6	NIST Database C ₂ phenols, *anisol
154	Hydroxybenzoquinone	$C_6H_4O_3$	4.6	* From benzoquinone
155	Guaiacol	$C_7H_8O_2$	75.0	NIST Database
156	5-Hydroxymethyl 2- furfural	$C_6H_6O_3$	100.0	* From furfural, dimethylfuran
157	Naphthalene	$C_6H_8O_3$	132.0	* From dimethylfuran
158	Methyl benzene acetonitrile	C9H9N	5.6	* From toluene
159	Methylbenzofurans	C ₉ H ₈ O	37.0	22
160	Methylacetephenone	$C_{9}H_{10}O$	4.5	NIST Database
161	C ₁₀ aromatics	$C_{10}H_{14}$	9.5	Atkinson 2003 average C ₁₀ aromatics
162	Methylbenzoic aicd	$C_8H_8O_2$	12.0	* From benzaldehyde
163	Methylguiacol	$C_8H_{10}O_2$	100.0	NIST Database
164	3-Methylcatechol	$C_7H_8O_3$	5	Estimated as same as benzene diols ²²
165	Methylnaphthalene	$C_{11}H_{10}$	50.0	NIST Database
166	Levoglucosan pyrolysis product	$C_6H_8O_4$	4.6	* From benzoquinone
167	Dimethyl benzo furan, ethyl benzo furan	C ₁₀ H ₁₀ O	37.0	* From benzofuran
168	Estragole	$C_{10}H_{12}O$	50.0	NIST Database: 1-methoxy-4- (2-propenyl) benzene
169	C ₁₁ aromatics	$C_{11}H_{16}$	50.0	* From C ₁₀ , C ₁₂ aromatics

170	Vinyl guaiacol	$C_9H_{10}O_2$	100.0	* From methylguaiacol
171	Vanilin	C ₈ H8 _{O3}	85.0	* From guaiacol, benzaldehyde
172	Syringol	$C_8H_{10}O_3$	100.0	* From methylguaiacol
173	Dimethylnaphthalene	$C_{12}H_{12}$	60.0	NIST Database
174	C ₁₂ aromatics	$C_{12}H_{18}$	113.0	Hexamethylbenzene
175	Eugenol, isoeugenol	$C_{10}H_{12}O_2$	100.0	* From methylguaiacol

^{*a*} Not included in final calculation due to sensitivity being too different from the NMVOCs used to build the transmission curve but included in table to show that low-rate constant likely has little influence on OH reactivity.

ESI10 – Toxicity equivalence factors

Compound	TEF	Ref
Naphthalene	0.001	24
Methylnaphthalene	0.001	24
Dimethylnapthalene	0.001	*
Biphenyl	0.001	*
9-Fluorenone	0.001	*
Acenaphthylene	0.001	24
Acenapthene	0.001	24
Dibenzofuran	0.001	
Fluorene	0.0005	25
Phenanthrene	0.0005	25
Anthracene	0.0005	25
Carbazole	0.001	*
Fluoranthene	0.05	25
Pyrene	0.001	25
Benzo[a]anthracene	0.082	25
Chrysene	0.017	25
Benzo[b]fluoranthene	0.25	25
Benzo[k]fluoranthene	0.11	25
Benzo[a]pyrene	1	25
Indeno[1,2,3-cd]pyrene	0.1	25
Dibenzo[a,h]anthracene	1.1	25
Benzo[g,h,i]perylene	0.02	25

Table S5. TEF values used for individual PAHs in calculation of fuel toxicity.

* = lower limit value used equivalent to TEF for naphthalene as TEF values for these PAHs not found in literature.

References

- 1. L. K. Sahu and P. Saxena, *Atmospheric Research*, 2015, **164-165**, 84-94.
- 2. L. K. Sahu, R. Yadav and D. Pal, *Journal of Geophysical Research: Atmospheres*, 2016, **121**, 2416-2433.
- 3. R. Taipale, T. M. Ruuskanen, J. Rinne, M. K. Kajos, H. Hakola, T. Pohja and M. Kulmala, *Atmos. Chem. Phys.*, 2008, **8**, 6681-6698.
- 4. F. Brilli, B. Gioli, P. Ciccioli, D. Zona, F. Loreto, I. A. Janssens and R. Ceulemans, *Atmospheric Environment*, 2014, **97**, 54-67.
- 5. C. E. Stockwell, P. R. Veres, J. Williams and R. J. Yokelson, *Atmos. Chem. Phys.*, 2015, **15**, 845-865.
- A. R. Koss, K. Sekimoto, J. B. Gilman, V. Selimovic, M. M. Coggon, K. J. Zarzana, B. Yuan, B. M. Lerner, S. S. Brown, J. L. Jimenez, J. Krechmer, J. M. Roberts, C. Warneke, R. J. Yokelson and J. de Gouw, *Atmos. Chem. Phys.*, 2018, 18, 3299-3319.
- 7. R. Holzinger, Atmos. Meas. Tech., 2015, 8, 3903-3922.
- G. J. Stewart, B. S. Nelson, W. J. F. Acton, A. R. Vaughan, N. J. Farren, J. R. Hopkins, M. W. Ward, S. J. Swift, R. Arya, A. Mondal, R. Jangirh, S. Ahlawat, L. Yadav, S. S. M. Yunus, C. N. Hewitt, E. G. Nemitz, N. Mullinger, R. Gadi, A. R. Rickard, J. D. Lee, T. K. Mandal and J. F. Hamilton, *Atmos. Chem. Phys. Discuss.*, 2020, DOI: https://doi.org/10.5194/acp-2020-860.
- 9. N. J. Farren, N. Ramírez, J. D. Lee, E. Finessi, A. C. Lewis and J. F. Hamilton, *Environmental Science & Technology*, 2015, **49**, 9648-9656.
- G. J. Stewart, W. J. F. Acton, B. S. Nelson, A. R. Vaughan, J. R. Hopkins, R. Arya, A. Mondal, R. Jangirh, S. Ahlawat, L. Yadav, R. E. Dunmore, S. S. M. Yunus, C. N. Hewitt, E. Nemitz, N. Mullinger, R. Gadi, A. R. Rickard, J. D. Lee, T. K. Mandal and J. F. Hamilton, *Atmos. Chem. Phys. Discuss.*, 2020, DOI: <u>https://doi.org/10.5194/acp-2020-892</u>.
- 11. Y. Zhao, N. T. Nguyen, A. A. Presto, C. J. Hennigan, A. A. May and A. L. Robinson, *Environmental Science & Technology*, 2016, **50**, 4554-4563.
- C. L. Loza, J. S. Craven, L. D. Yee, M. M. Coggon, R. H. Schwantes, M. Shiraiwa, X. Zhang, K. A. Schilling, N. L. Ng, M. R. Canagaratna, P. J. Ziemann, R. C. Flagan and J. H. Seinfeld, *Atmos. Chem. Phys.*, 2014, 14, 1423-1439.
- 13. B. Yuan, W. W. Hu, M. Shao, M. Wang, W. T. Chen, S. H. Lu, L. M. Zeng and M. Hu, *Atmos. Chem. Phys.*, 2013, **13**, 8815-8832.
- A. W. H. Chan, K. E. Kautzman, P. S. Chhabra, J. D. Surratt, M. N. Chan, J. D. Crounse, A. Kürten, P. O. Wennberg, R. C. Flagan and J. H. Seinfeld, *Atmos. Chem. Phys.*, 2009, 9, 3049-3060.
- 15. N. L. Ng, J. H. Kroll, A. W. H. Chan, P. S. Chhabra, R. C. Flagan and J. H. Seinfeld, *Atmos. Chem. Phys.*, 2007, **7**, 3909-3922.
- L. D. Yee, K. E. Kautzman, C. L. Loza, K. A. Schilling, M. M. Coggon, P. S. Chhabra, M. N. Chan, A. W. H. Chan, S. P. Hersey, J. D. Crounse, P. O. Wennberg, R. C. Flagan and J. H. Seinfeld, *Atmos. Chem. Phys.*, 2013, 13, 8019-8043.
- 17. L. E. Hatch, W. Luo, J. F. Pankow, R. J. Yokelson, C. E. Stockwell and K. C. Barsanti, *Atmos. Chem. Phys.*, 2015, **15**, 1865-1899.
- Y. Liu, F. Siekmann, P. Renard, A. El Zein, G. Salque, I. Haddad, B. Temime-Roussel, D. Voisin, R. Thissen and A. Monod, *Atmospheric Environment*, 2011, 49.
- 19. A. Lee, A. H. Goldstein, J. H. Kroll, N. L. Ng, V. Varutbangkul, R. C. Flagan and J. H. Seinfeld, *Journal of Geophysical Research: Atmospheres*, 2006, **111**.

- 20. E. A. Bruns, I. El Haddad, J. G. Slowik, D. Kilic, F. Klein, U. Baltensperger and A. S. H. Prévôt, *Scientific Reports*, 2016, **6**, 27881.
- 21. C. M. Strollo and P. J. Ziemann, Atmospheric Environment, 2013, 77, 534-543.
- J. B. Gilman, B. M. Lerner, W. C. Kuster, P. D. Goldan, C. Warneke, P. R. Veres, J. M. Roberts, J. A. de Gouw, I. R. Burling and R. J. Yokelson, *Atmos. Chem. Phys.*, 2015, 15, 13915-13938.
- 23. R. Atkinson and J. Arey, *Chemical Reviews*, 2003, **103**, 4605-4638.
- 24. I. C. T. Nisbet and P. K. LaGoy, *Regulatory Toxicology and Pharmacology*, 1992, **16**, 290-300.
- 25. J. C. Larsen and P. B. Larsen, *Air pollution and Health*, Royal Society of Chemistry, London, UK, 1998.