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Fig. S1. (a) Ni2P/NiTe2 electrode in 0.5 M H2SO4 without applying a cathodic 
potential. (b) The stability of the Ni2P/NiTe2 electrode at a current density of -50 mA 
cm-2 in 0.5 M H2SO4.
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Fig. S2. Digital image of the prepared NiTe and Ni2P/NiTe2 electrodes.
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Fig. S3. SEM images of (a) NiTe and (b) Ni2P/NiTe2 nanosheets prepared with 12 
mmol NaH2PO2.
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(011) Side view (101) Side view

(011) Top view (101) Top view

Fig. S4. The side view and top view of the (011) and (101) planes of the NiTe 
hexagonal structure.

It should be noted that in hexagonal structure of the same material, (101) and (011) 
are crystallographically equivalent, because they are in the same family of planes of 
NiTe (Hexagonal, a=b≠c, α=β=90o, γ=120o), by extension, {011} family. Fig. S4 also 
demonstrates the same structure of (101) and (011) of NiTe. Therefore, these two 
planes have the same surface structure and same d spacing of 2.9 Å. Thus, both of 
descriptions in the present work and literatures are valid and either one can be used.
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Fig. S5. XRD patterns of NiTe before and after annealing in Ar.
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Fig. S6. XRD patterns of NiTe, Ni2P and NiTe annealed with red phosphorous (P-
NiTe) in Ar.
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Fig. S7. High-resolution XPS spectra on P2p of Ni2P/NiTe2.
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Fig. S8. High resolution XPS spectra of (a) Ni2p, (b) Te3d and (c) P2p of different 
amount NaH2PO2 (0 mmol, 6 mmol, 12 mmol and 18 mmol) treated NiTe catalysts.

To investigate the electronic interaction between Ni2P and NiTe2, the XPS spectra for 
all the prepared samples with different molar concentration of P precursors (from 0 
mmol NaH2PO2 to 18 mmol NaH2PO2) were carried out. In Fig. S8a for Ni2p XPS, 
the peaks at around 856.3 eV and 874.0 eV can be assigned to Ni2+ 2p3/2 and Ni2+ 
2p1/2 of Ni2P/NiTe2 or Ni2P/NiTe, respectively. The other two peaks at about 853.2 
eV and 871.7 eV belong to Ni0 derived from nickel foam. For Te3d XPS in Fig. S8b, 
the peaks at 572.9 eV and 583.3 eV correspond to Te2− 3d5/2 and Te2− 3d3/2 of NiTe2 
and NiTe in Ni2P/NiTe2 or Ni2P/NiTe, respectively. For P2p, the XPS peaks at 129.7 
eV and 134.0 eV corresponds to metal phosphide and phosphate, respectively. As 
seen from Fig. S8a-c, there is no obvious XPS peaks shift for the prepared samples, 
which indicates the electronic interaction between Ni2P and NiTe2 are not the reason 
for the enhanced HER activity.

Additionally, we have measured metal phosphide/phosphate peak data ratio from XPS. 
As shown in Fig. S8c, the XPS peaks data ratios for metal phosphide/phosphate are 
8.9%, 12.3% and 16.2%, respectively, with the increment of the amount of NaH2PO2 
from 6 mmol to 18 mmol, indicating a higher degree of metal phosphide formed at 
high NaH2PO2 concentration.
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Fig. S9. The HER polarization curves of NiTe and pure nickel foam.
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Fig. S10. The HER polarization curves of Ni2P/NiTe2 prepared with different amount 
of NaH2PO2 precursor.
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Fig. S11. XRD patterns of Ni2P/NiTe2 prepared with different amount of NaH2PO2 
precursor.
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Fig. S12. SEM image of Ni2P/NiTe2 on NF (a) and its magnified morphology (b, c) 
prepared with 18 mmol NaH2PO2 precursor.
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Fig. S13. AFM topographic images with height profiles of NiTe nanosheets. 
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Fig. S14. AFM topographic images with height profiles of Ni2P/NiTe2 nanosheets 
prepared with 12 mmol NaH2PO2 as PH3 precursor.
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Fig. S15. AFM topographic images with height profiles of Ni2P/NiTe2 nanosheets 
prepared with 18 mmol NaH2PO2 as PH3 precursor.
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Fig. S16. Tafel plots of NiTe, Ni2P and Ni2P/NiTe2 to calculate the exchange current 
density.
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Fig. S17. Time-dependent potential curves of the Ni2P/NiTe2 electrode under a static 
current density of -50 mA cm-2 without iR correction for 50 h.
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Fig. S18. XRD patterns of Ni2P/NiTe2 before and after HER stability test.
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Fig. S19. TEM-EDS mapping of Ni2P/NiTe2 after HER stability test.
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Fig. S20. XPS of Ni2P/NiTe2 before and after HER stability test.

We have compared the XPS spectra of the Ni2P/NiTe2 catalyst before and after HER 
stability. As shown in Fig. S20a, the peaks at around 852.8 eV and 871.7 eV are 
attributed to Ni0 from the nickel foam substrate, which can also be observed before the 
stability test. The existence of Ni2p3/2 and Ni2p1/2 peaks can be assigned to Ni2+ 
oxidation state in the Ni2P/NiTe2 composite. In addition, by comparing the XPS 
spectra before and after stability, we have not observed clear shift of binding energies 
at Ni2p. However, a positive binding energy shift were observed at the Te3d and P2p 
XPS spectra after HER, which can be attributed to the oxidation when the sample was 
exposed to air or the oxidation of the element by the dissolved oxygen in the 
electrolyte. For the valence state of Te, the peaks at Te3d5/2 and Te3d3/2 correspond 
to Te2− in the Ni2P/NiTe2 catalyst (Fig. S20b), while the corresponding satellite peaks 
result from the oxidation of Te on the surface. For P2p in Fig. S20c, both metal 
phosphide and phosphate were observed before and after HER, however, different 
from the slightly positive shifted metal phosphate peak, the metal phosphide peak 
shows less change, demonstrating the formed Ni2P are stable during long-term water 
electrolysis.
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Fig. S21. Theoretical vs. experimental amounts of H2 during bulk water electrolysis. 
The electrolysis was carried out in a two compartment gastight H-cell at a potential of 
–1.2 V (vs. SCE) and the generated H2 is detected online by a gas chromatograph 
system at the electrolysis time of 8 min, 16 min and 24 min, respectively.

The plot of the theoretical and experimental amounts of H2 against time is shown in 
Fig. S21. The electrolysis was carried out in a two compartment gastight H-cell at a 
potential of –1.2 V (vs. SCE) and the generated H2 is detected online by a gas 
chromatograph system, respectively. The Faradaic efficiency (FE) was calculated to 
be 99.2 ± 1% by using the following equation.

𝐹𝐸 =
2𝐹𝑉ʋ𝑝0

𝑅𝑇0𝐼
× 100%

𝐹𝐸 =
2 × 96,485 × 𝑉ʋ × 1.01 × 105

8.314 × 298.15 × 𝐼
× 100% =

0.315 × 𝑉 × ʋ 
𝐼

× 100%

FE = Faradaic efficiency; ʋ = volume concentration of H2 in the exhaust gas from the 
cell; V = Ar flow rate (20 mL min-1).
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Fig. S22. CV charging current measured in a non-Faradaic potential range at different 
scan rates for the prepared electrodes.
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Fig. S23. ECSA-normalized HER polarization curves of the fabricated electrodes.
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Fig. S24. EIS Nyquist plots of different electrode at overpotential (η) = 200 mV.
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Fig. S25. The top (up) and side (down) views of theoretical model structures of (a) 
Ni2P(111), (b) NiTe2(011), (c) NiTe(011), (d) Ni2P/NiTe2(011), and (e) 
Ni2P/NiTe(011). The steel blue, dark orange and magenta balls represent Ni, Te and P 
atoms, respectively.
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Fig. S26. The calculated reaction energy diagram of water dissociation on NiTe2(011), 
NiTe(011), Ni2P/NiTe2(011) and Ni2P/NiTe(011).

For alkaline HER, the water dissociation reaction is considered as a key rate 
determining step. Fig. S26 shows the calculated reaction energy diagram of water 
dissociation on NiTe2(011), NiTe(011), Ni2P/NiTe2(011) and Ni2P/NiTe(011). The 
energy barriers for water dissociation are 1.85 eV and 1.78 eV on NiTe(011) and 
NiTe2(011), respectively, and such high energy barriers clearly hinders the 
dissociation of water on NiTe(011) and NiTe2(011). However, the water dissociation 
barrier is reduced to 1.45 eV on Ni2P/NiTe2(011) surface, which indicate 
Ni2P/NiTe2(011) surface can promote water dissociation substantially and increase the 
rate of H* formation.
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Fig. S27. The top (up) and side (down) views of the optimized structures of H* 
adsorbed on (a) Ni2P(111), (b) NiTe2(011), and (c) NiTe(011). The steel blue, dark 
orange, magenta and white balls represent Ni, Te, P and H atoms, respectively.
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(a) (b)
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Fig. S28. The top (up) and side (down) views of the optimized structures of (a) NiTe 
(101) and (b) Ni2P/NiTe(101). The top (up) and side (down) views of the optimized 
structures of H* adsorbed on (c) NiTe(101) and Ni2P/NiTe(101). The calculated 

are listed below.
Δ𝐺

𝐻 *

To further elucidate the NiTe (011) plane is the same as NiTe (101) plane that widely 

used in the literatures, we have calculated the free energy of H* ( ) at NiTe(101) 
Δ𝐺

𝐻 *

and Ni2P/NiTe(101) as well. The calculation results show that they have the same 
value of 0.54 eV and 0.16 eV, respectively, as that calculated on NiTe(011) and 
Ni2P/NiTe(011), because they are in the same family of planes of NiTe, that is the 
{011} family.
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Fig. S29. XRD patterns of Ni3S2 and Ni2P/NiS2.
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Fig. S30. (a) TEM and (b-d) the corresponding elemental mapping images for Ni, S, P 
and (e) the overlapping of S and P elements in Ni2P/NiS2 nanosheets.
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Fig. S31. CV charging current measured in a non-Faradaic potential range at different 
scan rates for the prepared samples.
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Fig. S32. Extraction of the Cdl from Ni3S2 and Ni2P/NiS2 electrodes.
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Fig. S33. ECSA-normalized HER polarization curves of the fabricated Ni3S2, Ni2P 
and Ni2P/NiS2 electrode.
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Table S1. Comparison of the Ni2P/NiTe2 electrode HER catalytic activity with 
recently reported HER catalysts from non-precious materials in 1 M KOH.

Catalysts η (mV) at 10 
mA cm-2

Catalyst 
loading 
[mg cm−2]

Reference

Ni2P/NiTe2/NF 62 1.4 This work
Ni3N‐VN/NF 64 1.5 Adv. Mater, 2019, 31, 

1901174.
Co-NiS2/NF 80 1.02 Angew. Chem. Int. Ed, 

2019, 58, 18676.
NiCo2S4/NF 110 N/A Adv. Funct. Mater, 

2019, 29, 1807031.
CoP/NPC/TF 80 1.5 Adv. Energy Mater, 

2019, 9, 1803970.
Ni11(HPO3)8(OH)6/NF 121 3 Energy Environ. Sci, 

2018, 11, 1287.
Se-(NiCo)Sx/(OH)/NF 103 N/A Adv. Mater, 2018, 30, 

1705538.
Co-MoS2/CFP 48 2 Adv. Mater, 2018, 30, 

1801450.
Mo-Ni2P/NF 78 1.13 Nanoscale, 2017, 9 

16674.
h-niSx/NF 60 142.2 Adv. Energy Mater, 

2016, 6, 1502333.
NiSe/NF 96 2.8 Angew. Chem. Int. Ed, 

2015, 54, 9351.
MoSe2/Ni0.85Se/NF 117 6.48 ACS Cent. Sci, 2017, 4, 

112.
NiFe 
LDH@NiCoP/NF

120 2 Adv. Funct. Mater, 
2018, 28, 1706847

CeO2/Cu3P/NF 148 @ -20 mA 
cm−2

N/A Nanoscale, 2018, 10, 
2213

Co/Co3O4/NF 90 N/A Nano Lett. 2015, 15, 
6015

NiCo2S4/Ni3S2/NF 119 N/A ACS Appl. Mater. 
Interfaces, 2018, 13, 
10890.

Ni(OH)2/MoS2/CC 80 N/A Nano Energy, 2017, 37, 
74.

MoS2/NiCo-LDH/CFP 78 N/A Joule, 2017, 1, 383.
Ni/CeO2-CNT/NF 90 0.8 Nano Lett, 2015, 15, 

7704.

https://doi.org/10.1039/1754-5706/2008
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Table S2. DFT calculated charge state on Ni at different samples.

Sample Charge state on Ni

Ni2P(111) 0.13

NiTe(011) 0.01

NiTe2(011) -0.02

Ni2P(111)/NiTe(011) 0.04

Ni2P(111)/NiTe2(011) 0.03


