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Fig. S1. (a) NiyP/NiTe, electrode in 0.5 M H,SO, without applying a cathodic
potential. (b) The stability of the Ni,P/NiTe, electrode at a current density of -50 mA
cm2 in 0.5 M H,SO,.
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Fig. S2. Digital image of the prepared NiTe and Ni,P/NiTe, electrodes.
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Fig. S3. SEM images of (a) NiTe and (b) Ni,P/NiTe, nanosheets prepared with 12
mmol NaH,PO,.
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Fig. S4. The side view and top view of the (011) and (101) planes of the NiTe
hexagonal structure.

It should be noted that in hexagonal structure of the same material, (101) and (011)
are crystallographically equivalent, because they are in the same family of planes of
NiTe (Hexagonal, a=b#c, 0=f=90°, y=120°), by extension, {011} family. Fig. S4 also
demonstrates the same structure of (101) and (011) of NiTe. Therefore, these two
planes have the same surface structure and same d spacing of 2.9 A. Thus, both of
descriptions in the present work and literatures are valid and either one can be used.
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Fig. S5. XRD patterns of NiTe before and after annealing in Ar.



#NiTe ANi,P ©TeO,

Intensity / a.u.

30 40 50 60
2 Theta / Degree

Fig. S6. XRD patterns of NiTe, Ni,P and NiTe annealed with red phosphorous (P-

NiTe) in Ar.
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Fig. S7. High-resolution XPS spectra on P2p of Ni,P/NiTe,.
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Fig. S8. High resolution XPS spectra of (a) Ni2p, (b) Te3d and (c) P2p of different
amount NaH,PO, (0 mmol, 6 mmol, 12 mmol and 18 mmol) treated NiTe catalysts.

To investigate the electronic interaction between Ni,P and NiTe,, the XPS spectra for
all the prepared samples with different molar concentration of P precursors (from 0
mmol NaH,PO, to 18 mmol NaH,PO,) were carried out. In Fig. S8a for Ni2p XPS,
the peaks at around 856.3 eV and 874.0 eV can be assigned to Ni*>* 2p3/2 and Ni**
2p1/2 of Ni,P/NiTe, or Ni,P/NiTe, respectively. The other two peaks at about 853.2
eV and 871.7 eV belong to Ni° derived from nickel foam. For Te3d XPS in Fig. S8b,
the peaks at 572.9 eV and 583.3 eV correspond to Te?>” 3d5/2 and Te?> 3d3/2 of NiTe,
and NiTe in Ni,P/NiTe, or Ni,P/NiTe, respectively. For P2p, the XPS peaks at 129.7
eV and 134.0 eV corresponds to metal phosphide and phosphate, respectively. As
seen from Fig. S8a-c, there is no obvious XPS peaks shift for the prepared samples,
which indicates the electronic interaction between Ni,P and NiTe, are not the reason
for the enhanced HER activity.

Additionally, we have measured metal phosphide/phosphate peak data ratio from XPS.
As shown in Fig. S8c, the XPS peaks data ratios for metal phosphide/phosphate are
8.9%, 12.3% and 16.2%, respectively, with the increment of the amount of NaH,PO,
from 6 mmol to 18 mmol, indicating a higher degree of metal phosphide formed at
high NaH,PO, concentration.
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Fig. S9. The HER polarization curves of NiTe and pure nickel foam.

10



0 0 mmol P precusor
1—— 6 mmol P precusor
-20{—— 12 mmol P precusor
~ |—— 18 mmol P precusor,
&40
E -604
~—
-
-804
-100 . . :
-0.5 04 -0.1 0.0

03 02
E/Vvs. RHE

Fig. S10. The HER polarization curves of Ni,P/NiTe, prepared with different amount
of NaH,PO, precursor.
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Fig. S11. XRD patterns of Ni,P/NiTe, prepared with different amount of NaH,PO,
precursor.
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prepared with 18 mmol NaH,PO, precursor.
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Fig. S13. AFM topographic images with height profiles of NiTe nanosheets.
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Fig. S14. AFM topographic images with height profiles of Ni,P/NiTe, nanosheets
prepared with 12 mmol NaH,PO, as PH; precursor.
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Fig. S15. AFM topographic images with height profiles of Ni,P/NiTe, nanosheets
prepared with 18 mmol NaH,PO, as PH; precursor.
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Fig. S16. Tafel plots of NiTe, Ni,P and Ni,P/NiTe, to calculate the exchange current

density.
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Fig. S17. Time-dependent potential curves of the Ni,P/NiTe, electrode under a static
current density of -50 mA c¢m without iR correction for 50 h.
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Fig. S18. XRD patterns of Ni,P/NiTe, before and after HER stability test.



Fig. S19. TEM-EDS mapping of Ni,P/NiTe, after HER stability test.
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Fig. S20. XPS of Ni,P/NiTe, before and after HER stability test.

We have compared the XPS spectra of the Ni,P/NiTe, catalyst before and after HER
stability. As shown in Fig. S20a, the peaks at around 852.8 eV and 871.7 eV are
attributed to Ni® from the nickel foam substrate, which can also be observed before the
stability test. The existence of Ni2p3/2 and Ni2pl/2 peaks can be assigned to Ni**
oxidation state in the Ni,P/NiTe, composite. In addition, by comparing the XPS
spectra before and after stability, we have not observed clear shift of binding energies
at Ni2p. However, a positive binding energy shift were observed at the Te3d and P2p
XPS spectra after HER, which can be attributed to the oxidation when the sample was
exposed to air or the oxidation of the element by the dissolved oxygen in the
electrolyte. For the valence state of Te, the peaks at Te3d5/2 and Te3d3/2 correspond
to Te? in the Ni,P/NiTe, catalyst (Fig. S20b), while the corresponding satellite peaks
result from the oxidation of Te on the surface. For P2p in Fig. S20c, both metal
phosphide and phosphate were observed before and after HER, however, different
from the slightly positive shifted metal phosphate peak, the metal phosphide peak
shows less change, demonstrating the formed Ni,P are stable during long-term water

electrolysis.
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Fig. S21. Theoretical vs. experimental amounts of H, during bulk water electrolysis.
The electrolysis was carried out in a two compartment gastight H-cell at a potential of
—1.2 V (vs. SCE) and the generated H, is detected online by a gas chromatograph
system at the electrolysis time of 8 min, 16 min and 24 min, respectively.

The plot of the theoretical and experimental amounts of H, against time is shown in
Fig. S21. The electrolysis was carried out in a two compartment gastight H-cell at a
potential of —1.2 V (vs. SCE) and the generated H, is detected online by a gas
chromatograph system, respectively. The Faradaic efficiency (FE) was calculated to
be 99.2 + 1% by using the following equation.

2FVup,

FE = X 100%

0

2 X 96,485 X Vv x 1.01 x 10° 0315xV x v
= X 1009% = X 100%
8.314 x 298.15 X I i

FE = Faradaic efficiency; v = volume concentration of H, in the exhaust gas from the
cell; V = Ar flow rate (20 mL min!).
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Fig. S22. CV charging current measured in a non-Faradaic potential range at different
scan rates for the prepared electrodes.

23



0.0 _NiTe
<002 _Nfzp _
g |—NiP/NiTe
o 2 2
£ 004
(3]
E -0.06
; |
-0.08/
-0.10 . —L 1
) ) 0.0

302 04
E/Vvs.RHE
Fig. S23. ECSA-normalized HER polarization curves of the fabricated electrodes.
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Fig. S24. EIS Nyquist plots of different electrode at overpotential () =200 mV.
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Fig. S25. The top (up) and side (down) views of theoretical model structures of (a)
NipP(111), (b) NiTe,(011), (c¢) NiTe(011), (d) Ni,P/NiTey(011), and (e)
Ni,P/NiTe(011). The steel blue, dark orange and magenta balls represent Ni, Te and P
atoms, respectively.
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Fig. S26. The calculated reaction energy diagram of water dissociation on NiTe,(011),
NiTe(011), Ni,P/NiTe,(011) and Ni,P/NiTe(011).

For alkaline HER, the water dissociation reaction is considered as a key rate
determining step. Fig. S26 shows the calculated reaction energy diagram of water
dissociation on NiTe,(011), NiTe(011), Ni,P/NiTe,(011) and Ni,P/NiTe(011). The
energy barriers for water dissociation are 1.85 eV and 1.78 eV on NiTe(011) and
NiTe,(011), respectively, and such high energy barriers clearly hinders the
dissociation of water on NiTe(011) and NiTe,(011). However, the water dissociation
barrier is reduced to 1.45 eV on Ni,P/NiTey(011) surface, which indicate
Ni,P/NiTe,(011) surface can promote water dissociation substantially and increase the
rate of H* formation.
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Fig. S27. The top (up) and side (down) views of the optimized structures of H*
adsorbed on (a) Ni,P(111), (b) NiTe,(011), and (c) NiTe(011). The steel blue, dark
orange, magenta and white balls represent Ni, Te, P and H atoms, respectively.
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(d)

AGy+ =0.16 eV
Fig. S28. The top (up) and side (down) views of the optimized structures of (a) NiTe
(101) and (b) Ni,P/NiTe(101). The top (up) and side (down) views of the optimized

structures of H* adsorbed on (c¢) NiTe(101) and Ni,P/NiTe(101). The calculated

AG %
H are listed below.

To further elucidate the NiTe (011) plane is the same as NiTe (101) plane that widely

AG
used in the literatures, we have calculated the free energy of H* ( H ) at NiTe(101)

and Ni,P/NiTe(101) as well. The calculation results show that they have the same
value of 0.54 eV and 0.16 eV, respectively, as that calculated on NiTe(011) and
Ni,P/NiTe(011), because they are in the same family of planes of NiTe, that is the
{011} family.
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Fig. S29. XRD patterns of Ni;S, and Ni,P/NiS,.
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Fig. S30. (a) TEM and (b-d) the corresponding elemental mapping images for Ni, S, P
and (e) the overlapping of S and P elements in Ni,P/NiS, nanosheets.
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Fig. S31. CV charging current measured in a non-Faradaic potential range at different
scan rates for the prepared samples.
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Fig. S32. Extraction of the (3 from Ni3S, and Ni,P/NiS, electrodes.

33



|—Nip
g 002l —NiS,
o |—Ni,PINiS,
£ -0.04
o
E -0.06}
; ]
-0.08]
010 —— :
0.4 0.1

3 02
E/V vs. RHE

Fig. S33. ECSA-normalized HER polarization curves of the fabricated NizS,, Ni,P

and Ni,P/NiS, electrode.
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Table S1. Comparison of the Ni,P/NiTe, electrode HER catalytic activity with
recently reported HER catalysts from non-precious materials in 1 M KOH.

Catalysts n (mV) at 10 | Catalyst Reference
mA cm loading
[mg cm™?]

Ni,P/NiTe,/NF 62 1.4 This work

NizsN-VN/NF 64 1.5 Adv. Mater, 2019, 31,
1901174.

Co-NiS,/NF 80 1.02 Angew. Chem. Int. Ed,
2019, 58, 18676.

NiCo0,S4/NF 110 N/A Adv.  Funct. Mater,
2019, 29, 1807031.

CoP/NPC/TF 80 1.5 Adv. Energy Mater,
2019, 9, 1803970.

Nij(HPO;)s(OH)s/NF | 121 3 Energy Environ. Sci,
2018, 11, 1287.

Se-(NiCo)Sx/(OH)/NF | 103 N/A Adv. Mater, 2018, 30,
1705538.

Co-MoS,/CFP 48 2 Adv. Mater, 2018, 30,
1801450.

Mo-Ni,P/NF 78 1.13 Nanoscale, 2017, 9
16674.

h-niSx/NF 60 142.2 Adv. Energy Mater,
2016, 6, 1502333.

NiSe/NF 96 2.8 Angew. Chem. Int. Ed,
2015, 54, 9351.

MoSe,/Nij gsSe/NF 117 6.48 ACS Cent. Sci, 2017, 4,
112.

NiFe 120 2 Adv.  Funct. Mater,

LDH@NiCoP/NF 2018, 28, 1706847

CeO,/CusP/NF 148 @ -20 mA | N/A Nanoscale, 2018, 10,

cm 2 2213

Co/Co304/NF 90 N/A Nano Lert. 2015, 15,
6015

NiCo0,S4/Ni3S,/NF 119 N/A ACS  Appl.  Mater.
Interfaces, 2018, 13,
10890.

Ni(OH),/MoS,/CC 80 N/A Nano Energy, 2017, 37,
74.

MoS,/NiCo-LDH/CFP | 78 N/A Joule, 2017, 1, 383.

Ni/CeO,-CNT/NF 90 0.8 Nano Lett, 2015, 15,
7704.
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Table S2. DFT calculated charge state on Ni at different samples.

Sample Charge state on Ni
Ni,P(111) 0.13
NiTe(011) 0.01
NiTe,(011) -0.02

Ni,P(111)/NiTe(011) 0.04
Ni,P(111)/NiTe,(011) 0.03
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