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Oxygen evolution reaction mechanism  

The reaction rate as well as equilibrium equations for a considered rds are deduced for 

quasi equilibrium. A general example is given below. 

 

Reaction  

𝜈𝐴 + 𝐵 ⥂ 𝐶 + 𝑛 𝑒−        (1) 

Reaction rate for product c 

𝜕𝑐𝑐

𝜕𝑡
=

𝑗

𝑛 𝐹
=  𝑘+1 𝑐𝐴

𝜈 𝑐𝐵  𝑒
𝐹𝛽

𝑅𝑇
𝐸          (2) 

 

Quasi-equilibrium  

𝑛 𝐹 𝑘+1  𝑐𝐴
𝜈 𝑐𝐵 𝑒

𝛽𝐹

𝑅𝑇
𝐸 = 𝑛 𝐹 𝑘−1  𝑐𝑐 𝑒

−(1−𝛽)𝐹

𝑅𝑇
𝐸     (3) 

𝐾 𝑐𝐴
𝜈 𝑐𝐵  𝑒

𝐹

𝑅𝑇
𝐸  =  𝑐𝑐        (4) 
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The reaction rates and reaction orders of hydrogen and oxygen were determined for every 

reaction step of the four proposed mechanism in literature considering present step is the 

theoretical rate determining step. 

Bockris’s Oxide Path (BOP)  

𝐇𝟐𝐎 ↔ 𝐎𝐇∗ + 𝐞− + 𝐇+         (5.1) 

𝑛 𝐹 𝑘+1 (1 − 𝜃𝑂𝐻) 𝑐𝐻2𝑂 𝑒
𝛽𝐹

𝑅𝑇
𝐸 = 𝑛 𝐹 𝑘−1  𝜃𝑂𝐻 𝑐𝐻+  𝑒

−(1−𝛽)𝐹

𝑅𝑇
𝐸    (5.2) 

𝐾1   
𝑐𝐻2𝑂

𝑐𝐻+
 𝑒

𝐹

𝑅𝑇
𝐸 =  

 𝜃𝑂𝐻

(1−𝜃𝑂𝐻)
          (5.3) 

𝑖 = 𝑛 𝐹 𝑘+1(1 − 𝜃𝑂𝐻) 𝑐𝐻2𝑂   𝑒
𝐹𝛽

𝑅𝑇
𝐸        (5.4) 

 

𝟐𝐎𝐇∗ ↔ 𝐎∗ + 𝐇𝟐𝐎          (6.1) 

𝑛 𝐹 𝑘+2 𝜃𝑂𝐻
2  = 𝑛 𝐹 𝑘−2 𝜃𝑂 𝑐𝐻2𝑂         (6.2) 

𝐾2   
1

𝑐𝐻2𝑂
 =  

 𝜃𝑂

𝜃𝑂𝐻
2         (6.3) 

𝑖 = 𝑛 𝐹 𝑘+2 ((1 − 𝜃𝑂𝐻)𝐾1   
𝑐𝐻2𝑂

𝑐𝐻+
 𝑒

𝐹

𝑅𝑇
𝐸)

2

          (6.4) 

𝑖 = 𝑛 𝐹 𝑘+2(1 − 𝜃𝑂𝐻)2𝐾1
2   

𝑐𝐻2𝑂
2

𝑐𝐻+2  𝑒
2𝐹

𝑅𝑇
𝐸        (6.5) 

 

𝟐𝐎∗ ↔ 𝐎𝟐            (7.1) 

𝑖 = 𝑛 𝐹 𝑘+3 (𝐾2   
1

𝑐𝐻2𝑂
∗ (1 − 𝜃𝑂𝐻)2𝐾1

2   
𝑐𝐻2𝑂

2

𝑐𝐻+ 2  𝑒
2𝐹

𝑅𝑇
𝐸)

2

     (7.2) 

𝑖 = 𝑛 𝐹 𝑘+3𝐾2
2𝐾1

4(1 − 𝜃𝑂𝐻)4  
𝑐𝐻2𝑂

2

𝑐𝐻+
4  𝑒

4𝐹

𝑅𝑇
𝐸        (7.3) 

 

 

Bockris’s Electrochemical Oxide Path (BEOP)  

𝐇𝟐𝐎 ↔ 𝐎𝐇∗ + 𝐞− + 𝐇+         (8.1) 

The reaction rate and equilibrium equations are consistent with Eqs. 5.1 to 5.4 
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𝐎𝐇∗ ↔ 𝐎∗ + 𝐞− + 𝐇+                (9.1) 

𝑛 𝐹 𝑘+2 𝜃𝑂𝐻 𝑒
𝛽𝐹

𝑅𝑇
𝐸 = 𝑛 𝐹 𝑘−2 𝜃𝑂 𝑐H+  𝑒

−(1−𝛽)𝐹

𝑅𝑇
𝐸        (9.11) 

𝐾2   
1

𝑐H+
 𝑒

𝐹

𝑅𝑇
𝐸 =  

 𝜃𝑂

𝜃𝑂𝐻
         (9.12) 

𝑖 = 𝑛 𝐹 𝑘+2  𝐾1  (1 − 𝜃𝑂𝐻) 
𝑐𝐻2𝑂

𝑐𝐻+
 𝑒

(1+𝛽)𝐹

𝑅𝑇
𝐸       (9.13) 

 

𝟐𝐎∗ ↔ 𝐎𝟐                 (10.1) 

𝑖 = 𝑛 𝐹 𝑘+3 (𝐾2   
1

𝑐H+
 𝑒

𝐹

𝑅𝑇
𝐸 ∗ 𝐾1   

𝑐𝐻2𝑂

𝑐𝐻+
 𝑒

𝐹

𝑅𝑇
𝐸 ∗ (1 − 𝜃𝑂𝐻))

2

    (10.11) 

𝑖 = 𝑛 𝐹 𝑘+3𝐾2
2 𝐾1

2 (1 − 𝜃𝑂𝐻)2  
𝑐𝐻2𝑂

2

𝑐𝐻+4  𝑒
4𝐹

𝑅𝑇
𝐸       (10.12) 

 

 

Krasil`shchkov’s Path (KP) 

𝐇𝟐𝐎 ↔ 𝐎𝐇∗ + 𝐞− + 𝐇+       (11.1) 

The reaction rate and equilibrium equations are consistent with Eqs. 5.1 to 5.4 

 

𝐎𝐇∗ ↔ 𝐎− ∗ + 𝐇+       (12.1) 

𝑛 𝐹 𝑘+2 𝜃𝑂𝐻 𝑒
𝛽𝐹

𝑅𝑇
𝐸 = 𝑛 𝐹 𝑘−2 𝜃𝑂−  𝑐H+  𝑒

−(1−𝛽)𝐹

𝑅𝑇
𝐸       (12.11) 

𝐾2   
1

𝑐H+
 𝑒

𝐹

𝑅𝑇
𝐸 =  

 𝜃𝑂−

𝜃𝑂𝐻
        (12.12) 

𝑖 = 𝑛 𝐹 𝑘+2  𝐾1  (1 − 𝜃𝑂𝐻) 
𝑐𝐻2𝑂

𝑐𝐻+
 𝑒

(1+𝛽)𝐹

𝑅𝑇
𝐸       (12.13) 

 

𝐎− ∗ ↔ 𝐎∗ + 𝐞−        (13.1) 

𝑛 𝐹 𝑘+3 𝜃𝑂−  𝑒
𝛽𝐹

𝑅𝑇
𝐸 = 𝑛 𝐹 𝑘−3 𝜃𝑂∗   𝑒

−(1−𝛽)𝐹

𝑅𝑇
𝐸       (13.11) 

𝐾3   𝑒
𝐹

𝑅𝑇
𝐸 =  

 𝜃𝑂∗

𝜃𝑂−
         (13.12) 
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𝑖 = 𝑛 𝐹 𝑘+3  𝑒
𝛽𝐹

𝑅𝑇
𝐸  𝐾2   

1

𝑐H+
 𝑒

𝐹

𝑅𝑇
𝐸𝐾1  (1 − 𝜃𝑂𝐻)  

𝑐𝐻2𝑂

𝑐𝐻+
 𝑒

𝐹

𝑅𝑇
𝐸    (13.13) 

𝑖 = 𝑛 𝐹 𝑘+3  𝐾2 𝐾1(1 − 𝜃𝑂𝐻)
𝑐𝐻2𝑂

𝑐𝐻+
2  𝑒

(2+𝛽)𝐹

𝑅𝑇
𝐸         (13.14) 

 

𝟐𝐎∗ ↔ 𝐎𝟐            (14.1) 

𝑖 = 𝑛 𝐹 𝑘+4 (𝐾3   𝑒
𝐹

𝑅𝑇
𝐸 ∗ 𝐾2   

1

𝑐H+
 𝑒

𝐹

𝑅𝑇
𝐸 ∗ 𝐾1   

𝑐𝐻2𝑂

𝑐𝐻+
 𝑒

𝐹

𝑅𝑇
𝐸(1 − 𝜃𝑂𝐻))

2

     (14.11) 

𝑖 = 𝑛 𝐹 𝑘+4𝐾3
2𝐾2

2𝐾1
2(1 − 𝜃𝑂𝐻)2 𝑐𝐻2𝑂

2

𝑐𝐻+
4

𝑒
6𝐹

𝑅𝑇
𝐸         (14.12) 

 

 

Wade and Hackerman’s Path (WHP) 

𝟐𝐇𝟐𝐎 ↔ 𝐎∗ + 𝐇𝟐𝐎∗ + 𝟐𝐞− + 𝟐𝐇+           (15.1)  

𝑛 𝐹 𝑘+1 (1 − 𝜃𝑂 − 𝜃𝐻2𝑂) 𝑐𝐻2𝑂
2 𝑒

𝛽𝐹

𝑅𝑇
𝐸 = 𝑛 𝐹 𝑘−1  𝜃𝑂 𝜃𝐻2𝑂 𝑐𝐻+

2 𝑒
−(1−𝛽)𝐹

𝑅𝑇
𝐸   (15.11) 

𝐾1   
𝑐𝐻2𝑂

2

𝑐𝐻+2
 𝑒

𝐹

𝑅𝑇
𝐸 =  

 𝜃𝑂 𝜃𝐻2𝑂

(1−𝜃𝑂−𝜃𝐻2𝑂)
          (15.12) 

𝑖 = 𝑛 𝐹 𝑘+1 (1 − 𝜃𝑂 − 𝜃𝐻2𝑂) 𝑐𝐻2𝑂
2 𝑒

𝛽𝐹

𝑅𝑇
𝐸       (15.13) 

 

𝐎∗ + 𝟐𝐎𝐇− ∗ ↔ 𝐇𝟐𝐎∗ + 𝑶𝟐 + 𝟐𝐞−        (16.1) 

𝑖 = 𝑛 𝐹 𝑘+2 𝜃𝑂𝐻−
2𝐾1

(1−𝜃𝑂−𝜃𝐻2𝑂)

𝜃𝐻2𝑂
  

𝑐𝐻2𝑂
2

𝑐𝐻+2
 𝑒

(1+𝛽)𝐹

𝑅𝑇
𝐸      (16.11) 

 

 

Rossmeisl’s peroxide path (RPP) 

𝟐𝐇𝟐𝐎 ↔ 𝐇𝟐𝐎 + 𝐇𝐎∗ + 𝐞− + 𝐇+        (17.1)  

The reaction rate and equilibrium equations are consistent with Eqs. 5.1 to 5.4 

 

𝐇𝟐𝐎 + 𝐇𝐎∗ + 𝐞− + 𝐇+ ↔ 𝐇𝟐𝐎 + 𝐎∗ + 𝟐𝐞− + 𝟐𝐇+    (18.1) 
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The reaction rate and equilibrium equations are consistent with Eqs. 9.1 to 9.13. 

 

𝐇𝟐𝐎 + 𝐎∗ + 𝟐𝐞− + 𝟐𝐇+ ↔ 𝐇𝐎𝐎∗ + 𝟑𝐞− + 𝟑𝐇+       (19.1) 

𝑛 𝐹 𝑘+3 𝜃O 𝑐𝐻2𝑂 𝑒
𝛽𝐹

𝑅𝑇
𝐸 = 𝑛 𝐹 𝑘−3 𝛳OOH 𝑐𝐻+ 𝑒

−(1−𝛽)𝐹

𝑅𝑇
𝐸     (19.11) 

𝐾3  
𝑐𝐻2𝑂

 𝑐𝐻+ 
𝑒

𝐹

𝑅 𝑇
 𝐸 =

𝛳OOH

 𝛳𝑂
        (19.12) 

𝑖 = 𝑛 𝐹 𝑘+3 𝑐𝐻2𝑂 𝑒
𝛽𝐹

𝑅𝑇
𝐸𝐾2   

1

𝑐H+
 𝑒

𝐹

𝑅𝑇
𝐸𝐾1   

𝑐𝐻2𝑂

𝑐𝐻+
 𝑒

𝐹

𝑅𝑇
𝐸(1 − 𝜃𝑂𝐻)   (19.13) 

i = 𝑛 𝐹 𝑘+3 𝐾2𝐾1(1 − 𝜃𝑂𝐻)
𝑐𝐻2𝑂

2

𝑐𝐻+
2  𝑒

(2+𝛽)𝐹

𝑅𝑇
𝐸          (19.14) 

 

𝐇𝐎𝐎∗ + 𝟑𝐞− + 𝟑𝐇+ ↔ 𝐎𝟐 + 𝟒𝐞−+𝟒𝐇+       (20.1) 

𝑖 = 𝑛 𝐹 𝑘+4  𝑒
𝛽𝐹

𝑅 𝑇
 𝐸  𝐾3  

𝑐𝐻2𝑂

 𝑐𝐻+ 
𝑒

𝐹

𝑅 𝑇
 𝐸  𝐾2   

1

𝑐H+
 𝑒

𝐹

𝑅𝑇
𝐸𝐾1   

𝑐𝐻2𝑂

𝑐𝐻+
 𝑒

𝐹

𝑅𝑇
𝐸(1 − 𝜃𝑂𝐻)   (20.11) 

𝑖 = 𝑛 𝐹 𝑘+4 𝐾3 𝐾2 𝐾1(1 − 𝜃𝑂𝐻)
 𝑐𝐻2𝑂

2

𝑐𝐻+3   𝑒
(3+𝛽)𝐹

𝑅 𝑇
 𝐸      (20.12) 

 

Temperature dependence of Tafel slope b 

The experimentally determined Tafel slopes in dependence of temperature and loading are 

shown in Figure S1. 

 

Figure S1.  Tafel slope as function of loading and temperature. 
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Loading dependence of the kinetic regime 

The iR-free cell voltages are plotted in a semi-logarithmic plot in the kinetic governed 

regime for loading between 1.0 to 3.0 mg cm-2. A decrease of kinetic overpvoltages for 

higher loadings can be observed which is related to higher apparent exchange current 

densities scaling proportionally with kinetic active sites. Decreasing the cell temperature 

from 80°C (Figure a) to 70°C (Figure b) an increase in iR-free cell voltages is observed due 

to a shift in Nernst voltage as well as increased kinetic losses. 

 

Figure S2.  iR-free cell voltage curves in dependence of loading at 80 °C and 70 °C are shown in Figure a) 

and b) respectively. 

 


