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Oxygen evolution reaction mechanism

The reaction rate as well as equilibrium equations for a considered rds are deduced for
quasi equilibrium. A general example is given below.
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The reaction rates and reaction orders of hydrogen and oxygen were determined for every
reaction step of the four proposed mechanism in literature considering present step is the
theoretical rate determining step.

Bockris’s Oxide Path (BOP)
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Bockris’s Electrochemical Oxide Path (BEOP)
H,0 & OH*+ e~ + H* (8.1)

The reaction rate and equilibrium equations are consistent with Egs. 5.1 to 5.4
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Krasil'shchkov’s Path (KP)
H,0 & OH*+ e~ + H* (11.1)

The reaction rate and equilibrium equations are consistent with Egs. 5.1 to 5.4
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The reaction rate and equilibrium equations are consistent with Egs. 5.1 to 5.4

H,0 + HO* + e~ + H* & H,0 + O0* + 2e~ + 2H" (18.1)



The reaction rate and equilibrium equations are consistent with Eqgs. 9.1 to 9.13.
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Temperature dependence of Tafel slope b

The experimentally determined Tafel slopes in dependence of temperature

shown in Figure S1.
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Figure S1. Tafel slope as function of loading and temperature.
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Loading dependence of the kinetic regime

The iR-free cell voltages are plotted in a semi-logarithmic plot in the kinetic governed
regime for loading between 1.0 to 3.0 mg cm™. A decrease of kinetic overpvoltages for
higher loadings can be observed which is related to higher apparent exchange current
densities scaling proportionally with kinetic active sites. Decreasing the cell temperature

from 80°C (Figure a) to 70°C (Figure b) an increase in iR-free cell voltages is observed due

to a shift in Nernst voltage as well as increased kinetic losses.
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Figure S2. iR-free cell voltage curves in dependence of loading at 80 °C and 70 °C are shown in Figure a)

and b) respectively.
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