Supplementary Information

Mg₃(Bi,Sb)₂ single crystals towards high thermoelectric performance

Yu Pan,*^a† Mengyu Yao,^a† Xiaochen Hong,^b Yifan Zhu,^{c,d} Fengren Fan,^a Kazuki Imasato,^e Yangkun He,^a Christian Hess,^b Jörg Fink,^{a,b,f} Jiong Yang,^c Bernd Büchner,^{b,f} Chenguang Fu,*^a G. Jeffrey Snyder, ^e and Claudia Felser^a

^aMax Planck Institute for Chemical Physics of Solids, Nöthnitzer Str. 40, 01187, Dresden, Germany. *E-mail: yu.pan@cpfs.mpg.de; chenguang.fu@cpfs.mpg.de

^bLeibniz-Institute for Solid State and Materials Research (IFW-Dresden), Helmholtzstraße 20, 01069, Dresden, Germany.

^cMaterials Genome Institute, Shanghai University, 99 Shangda Road, Shanghai 200444, China.

^dState Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China.

^eDepartment of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA.

^fInstitute for Solid-State and Materials Physics, Technical University Dresden, 01062 Dresden, Germany

[†]*These authors contributed equally.*

Fig. S1 Sample setup for thermal conductivity measurement by steady state method. Thermal gradient is along the *ab* plane direction (parallel to the layered plane of the single crystals).

Fig. S2 Temperature dependence of the resistivity for three samples from the same batch of Y-doped $Mg_3Bi_{1.25}Sb_{0.75}$ single crystals.

Fig. S3 Phase diagram of Mg-Sb.

For all three single crystals, the backscattering Laue XRD diffraction patterns show clear diffraction spots, and no impurity dots are found, indicating the high quality and crystallinity of the as-grown single crystals.

Fig. S5 (a)-(c) SEM images and (d)-(f) EDX patterns of Mg_3Bi_2 , Mg_3Sb_2 and $Mg_3Bi_{1.25}Sb_{0.75}$, respectively.

SEM with EDX analysis demonstrates the chemical compositions of Mg_3Bi_2 and Mg_3Sb_2 agree well with the stoichiometric compositions (**Fig. S5**). The ternary compound is revealed to be $Mg_3Bi_{1.25}Sb_{0.75}$ according to the EDX analysis. It is worth noting that the compositions of the single crystals are very close to the Mg : X = 3 : 2 relation (X = Bi, Sb) without an uncontrollable large amount of excess Mg as in polycrystalline samples.

Fig. S6 Electrical transport properties of Mg_3Sb_2 . (a) Temperature dependence of resistivity, (b) magnetic field dependence of Hall resistivity, (c) Hall carrier concentration, (d) Hall mobility.

Pure Mg₃Sb₂ show a semiconducting behavior with a first decrease and then increase resistivity with increasing temperature, as shown in **Fig. S6**(a). As a semiconductor, the pure Mg₃Sb₂ sample show very high resistivity, demonstrating the high quality of the single crystal. Linear magnetic field dependence of the Hall resistivity with a positive slop indicates the p-type transport behavior of the sample. The hole concentration is pretty low and hardly changes in the whole temperature range. The mobility shows a $T^{-1.5}$ dependence which implies the dominant scattering as phonon scattering. Although Mg₃Sb₂ shows a p-type behavior, the single crystals can be doped into n-type since they are rich of Mg.

Fig. S7 ARPES intensity at different kz. (a) Mg₃Bi₂, (b) Mg₃Bi_{1.25}Sb_{0.75}, (c) Mg₃Sb₂.

Fig. S8 K-doped Mg₃Bi_{1.25}Sb_{0.75} photoemission. (a) K-doped Mg₃Bi_{1.25}Sb_{0.75} core-level spectra, obtained with hv = 95 eV. (b)-(d) Series of ARPES intensity plots along Γ -K.

Fig. S9 ARPES intensity plots of three compounds along high symmetry directions, (a)-(c) Γ -M, (d)-(f) Γ -A. The red lines are parabolic fitting lines.

The effective mass can be calculated by fitting the band dispersions with parabola. As shown in **Fig. S9**, we fit the hole bands of the three compounds along the Γ -M and Γ -A directions. Effective mass values of Mg₃Bi₂ are 0.72 m_e and 0.24 m_e along in-plane (Γ -M) and cross-plane (Γ -A) directions, respectively. Mg₃Sb₂ shows 0.9 m_e and 0.16 m_e and Mg₃Bi_{1.25}Sb_{0.75} shows 0.72 m_e and 0.24 m_e along in-plane and cross-plane directions, respectively.