Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is © The Royal Society of Chemistry 2020

Supporting Information

for

Graphene-Nanoplatelets Supported NiFe-MOF: High-Efficient and Ultra-Stable Oxygen Electrodes for Sustained Alkaline Anion Exchange Membrane Water Electrolysis

Pandiarajan Thangavel¹, Miran Ha^{1,2} Shanmugasundaram Kumaraguru³ Abhishek Meena¹,

Aditya Narayan Singh¹, Ahmad M. Harzandi¹ and Kwang S. Kim^{1*}

¹Center for Superfunctional Materials, Department of Chemistry, Ulsan National Institute of

Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Korea.

²Department of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Korea.

³CSIR-Central Electrochemical Research Institute, Karaikudi-630003, Tamilnadu, India.

*E-mail: kimks@unist.ac.kr

Supplementary Note:

Fourier transform infrared (FTIR) spectra were obtained to analyze the surface functional groups (**Fig. 2c**). The absorption peaks at 1370 and 1427 cm⁻¹ corresponding to the asymmetric vibrations, while the peak at 1514 cm⁻¹ represents the symmetric vibrations of carboxylic group in the MOFs.¹ Similarly, a broad peak centered at 3450 cm⁻¹ indicating the stretching mode of OH group originates from the surface-absorbed water molecules in MOFs.² In addition, the peaks observed at 724 and 1313 cm⁻¹ are assigned to the -C-H- and C-C stretching vibrations of the benzene ring in the organic linker.³ Peaks at 540 and 1643 cm⁻¹ are attributed to bond between metal ions and COO- groups of BTC, which reveals the successful coordination of Ni/Fe with the BTC linker.⁴⁻⁶

The surface characteristics of NiFe-BTC-GNPs are also evaluated using Raman spectroscopy (**Fig. 2d**). All MOF samples exhibit characteristic Raman active mode at 1000 and 3085 cm⁻¹ corresponding to v(CH) stretching of the organic linker⁷. Similarly, the bands at 1610 and 1006 cm⁻¹ are related to v(C=C) modes of the benzene ring; the peaks at 824 and 724 cm⁻¹ are attributed to out-of-plane ring (C-H) bending vibrations and out-of-plane ring bending, respectively. Further, the doublet located at 1550 and 1460 cm⁻¹ indicate the presence of asym(C-O₂) and asym(C-O₂) groups.⁸ In the case of NiFe-BTC-GNPs and NiFe-BTC MOFs, three additional bands at 480, 565 and 719 cm⁻¹ are assigned to the characteristic bands of M-O-M and M-O (M=Ni^{2+/} Fe³⁺) in the corresponding MOF.^{9, 10} These results are consistent with FTIR-spectral data in **Fig. 2c**. Particularly, the absence of the COOH peak around 1760–1690 cm⁻¹ would be a direct evidence of metal coordination with BTC.⁴⁻⁶ Furthermore, the Raman spectra of NiFe-BTC-GNPs displays the major Raman features of graphene at 1350, 1582 and 2708 cm⁻¹ corresponding to D, G and 2D bands, respectively. The appearance of low-intensity D band indicates the high quality of the graphene in NiFe-BTC-GNPs. Besides, the sharp narrow 2D band

along with an I_{2D}/I_G value of 5.0 implies the presence of few-layer graphene in the composite material.^{11, 12}

Supplementary Figures

Fig. S1 SEM and HRTEM images of NiFe-BTC and NiFe-BTC-GNPs MOFs. a, SEM images of NiFe-BTC. **b-d**, SEM (b,c) and HRTEM (d) images of NiFe-BTC-GNPs. **f**, HRTEM-EDS mapping of NiFe-BTC-GNPs.

Fig. S2 Elemental analysis Of NiFe-BTC-GNPs MOF. EDAX-XRF Analysis of NiFe-BTC-GNPs at different locations.

Fig. S3 Electrochemical and Physical characterization of the MOF samples. **a**, Polarization curves of the NiFe-BTC-GNPs MOF loaded on Nickel Foam (NF) in 1M KOH Solution. **b**, Nyquist plots of NiFe-BTC-GNPs electrode measured as a function of applied potential in 1M KOH solution. **c**, Four Point Probe analysis of MOF samples. **d**, Contact angle measurements of the MOF samples (from bottom to top: Ni-BTC, NiFe-BTC, and NiFe-BTC-GNPs MOF).

Fig. S4 Faradaic efficiency calculation measured through ORR-OER method **a**, RRDE Setup. **b**, Rotating ring disk electrode (RRDE) voltammogram of NiFe-BTC-GNPs. **C**, Electron-transfer number (n) as a function of applied potential calculated from fig.b.

Fig. S5 Elemental and crystal Phase analysis of NiFe-BTC-GNPs MOF after long-term stability studies. **a**, HRTEM image of NiFeBTC-GNPs after continuous electrolysis. **b**, ICP-MS analysis as – prepared sample and after stability. **c**, XRD Pattern of NiFe-BTC-GNPs. **d**,**e**, High-resolution O1S spectra of NiFe-BTC-GNPs MOF (d) after and (e) before continuous electrolysis.

Theoretical overpotential of OER | DFT+U+TS

NiFe-BTC

Fig. S6 DFT-predicted structures of each intermediates on the active sites, their free energy differences and overpotentials. Fe site of NiFe-BTC (Fe: yellow, Ni: grey, C: brown, O: red, and H: cyan, respectively).

Fig. S7 OER activity of MOF in Conventional Electrolyser: OER Performance of MOF measured in the conventional electrolyser using 20 wt% Pt/C as a cathode. **a**, Polarization plots of the electrolyser obtained in 1M aqueous KOH solution at RT with scan rate of 1mV S.⁻¹ **b**, Long-term stability of the electrolyser with NiFe-BTC-GNPs anode measured by applying a constant potential of 1.55 V for 12 days. The conventional electrolyser (fine frit-separator) was fabricated by utilizing the as-synthesized BTC-derived catalysts on CFP as anode electrodes and the commercial 20% Pt/C on CFP as cathode electrodes. For comparison, the state-of-the-art IrO₂ and Co₃O₄ based anodes were also fabricated. NiFe-BTC-GNPs based electrolyzer exhibits excellent performance compared to other anode catalysts, requiring smaller η =250/330mV to reach j=10/100 mA cm⁻² (a). These values are even better than the stateof-the-art IrO₂/(Pt/C) electrodes which demands larger η to achieve similar current densities. The NiFe-BTC-GNPs based electrolyser demonstrates excellent long-term stability for 12 days on continuous electrolysis operation (b).

Fig. S8 Components of Prototype AAEMWE . (a) AAEMWE setup used in this study. (b) Demonstration of AAEMWE for practical hydrogen generation.

Fig. S9 Electrochemical characterization of Commercial AAEMWE **a**, LSV curves of AAEMWE and PEM electrolyser with Commercial 20% Pt/C cathode and IrO₂ anode in ultrapure water electrolyte at 70°C. **b**, Stability of MEA with commercial catalysts (20 % Pt/C cathode and IrO₂ anode) at 25°C.**c**, Polarization curve obtained with commercial Pt/C loaded on CFP in 1M KOH solution.

Fig. S10 Electrochemical characterization of NiFe-BTC-GNPs based AAEMWE **a**, Nyquist plots of AEM water electrolyser measured as a function of applied potential in the ultra-pure water. **b**, Long-term durability of the cell with pt/C cathode at constant potential 1.8 V. **c**, Faradaic efficiency measured through water displacement method.

Fig. S11 Solar-to-hydrogen (STH) conversion: Demonstration of PV-powered AAEMWE for solar hydrogen production. Experimental set up used for the Solar to Hydrogen Efficiency (STH) Measurements. The single cell comprising NiFe-BTC-GNPs MOF as anode catalyst was integrated with commercial silicon solar cell.

Supplementary Tables

Table S1. Summary of the OER	performance of our	catalysts compared	with high performance
catalysts reported in the literature	<u>ه</u>		

Catalysts	Electrolyte	η O ₂ @ j=10 mA cm ⁻² (mV)	Stability (hrs)	Reference
NiFe-BTC-GNPs MOF/CFP	1M KOH	220	1000*	This work
NiFe-BTC-GNPS MOF/NF	1M KOH	180 (j=20)		This Work
NiFeLDH/NF	1M KOH	250	96	This work
IrO ₂ /CFP	1M KOH	280	32	This Work
Ultrathin Nico- MOF/NF	1M KOH	189	11	13
Ultrathin NiFe- MOF/NF	1М КОН	240	5.5	14
Fe1Ni2- BDC MOF/GCE	1M KOH	260	10	3
Co0.6Fe0.4-MOF- 74/GCE	1M KOH	280	12	15
NaNi _{0.8} Fe _{0.2} O ₂	1M KOH	320	30	16
O ₂ -Cat-1/Fe Plate	1M KOH	269	100	17
NiFe hydroxide/ Nickel Foam	1M KOH	245	10	18
NiFe LDH/Nickel Foam	1M KOH	240	10	19
Ni–Co–P Hollow Nano bricks	1М КОН	270	20	20
cobalt-vanadium hydr(oxy)oxide	1M KOH	250	170	21
Ni _{0.75} V _{0.25} -LDH	1M KOH	320	25	22

Some of the information was not specified in the literature and was estimated according to the data graphs.

CFP: Carbon Fiber Paper , NF: Nickel Foam

GCE : Glassy carbon electrode

*Overall stability : cv cycles, half-cell stability and electrolyser stability

References:

- W. J. Li, S. Watzele, H. A. El-Sayed, Y. C. Liang, G. Kieslich, A. S. Bandarenka, K. Rodewald, B. Rieger and R. A. Fischer, *Journal of the American Chemical Society*, 2019, 141, 5926-5933.
- Q. Sun, M. Liu, K. Li, Y. Han, Y. Zuo, F. Chai, C. Song, G. Zhang and X. Guo, *Inorganic Chemistry Frontiers*, 2017, 4, 144-153.
- J. Li, W. Huang, M. Wang, S. Xi, J. Meng, K. Zhao, J. Jin, W. Xu, Z. Wang, X. Liu, Q. Chen, L. Xu, X. Liao, Y. Jiang, K. A. Owusu, B. Jiang, C. Chen, D. Fan, L. Zhou and L. Mai, ACS Energy Letters, 2018, 4, 285-292.
- 4. O. M. Yaghi, H. Li and T. L. Groy, *Journal of the American Chemical Society*, 1996, **118**, 9096-9101.
- 5. L. T. L. Nguyen, T. T. Nguyen, K. D. Nguyen and N. T. S. Phan, *Applied Catalysis A: General*, 2012, **425-426**, 44-52.
- C. E. Santolalla-Vargas, V. Santes, C. Ortega-Niño, A. Hernández-Gordillo, F. Sanchez-Minero, L. Lartundo-Rojas, R. Borja-Urby, J. C. López-Curiel, O. Goiz and I. I. Padilla-Martinez, *Catalysis Today*, 2018, DOI: 10.1016/j.cattod.2018.02.010.
- 7. Y. Kim, K. Cho, K. Lee, J. Choo, M.-s. Gong and S.-W. Joo, *Journal of Molecular Structure*, 2008, **878**, 155-161.
- C. Prestipino, L. Regli, J. G. Vitillo, F. Bonino, A. Damin, C. Lamberti, A. Zecchina, P. L. Solari, K. O. Kongshaug and S. Bordiga, *Chemistry of Materials*, 2006, 18, 1337-1346.
- L. Cai, J. Zhao, H. Li, J. Park, I. S. Cho, H. S. Han and X. Zheng, *ACS Energy Letters*, 2016, 1, 624-632.
- M. W. Louie and A. T. Bell, *Journal of the American Chemical Society*, 2013, 135, 12329-12337.
- 11. J. B. Wu, M. L. Lin, X. Cong, H. N. Liu and P. H. Tan, *Chem Soc Rev*, 2018, 47, 1822-1873.
- M. Jahan, Q. Bao and K. P. Loh, *Journal of the American Chemical Society*, 2012, 134, 6707-6713.
- S. Zhao, Y. Wang, J. Dong, C.-T. He, H. Yin, P. An, K. Zhao, X. Zhang, C. Gao, L. Zhang, J. Lv, J. Wang, J. Zhang, A. M. Khattak, N. A. Khan, Z. Wei, J. Zhang, S. Liu, H. Zhao and Z. Tang, *Nature Energy*, 2016, 1.
- 14. J. Duan, S. Chen and C. Zhao, *Nature Communications*, 2017, **8**, 15341.

- 15. X. Zhao, B. Pattengale, D. Fan, Z. Zou, Y. Zhao, J. Du, J. Huang and C. Xu, *ACS Energy Letters*, 2018, **3**, 2520-2526.
- B. Weng, F. Xu, C. Wang, W. Meng, C. R. Grice and Y. Yan, *Energy & Environmental Science*, 2017, 10, 121-128.
- 17. Y. Liu, X. Liang, L. Gu, Y. Zhang, G. D. Li, X. Zou and J. S. Chen, *Nature Communications*, 2018, 9, 2609.
- 18. X. Lu and C. Zhao, *Nature Communications*, 2015, **6**, 6616.
- J. Luo, J.-H. Im, M. T. Mayer, M. Schreier, M. K. Nazeeruddin, N.-G. Park, S. D. Tilley, H. J. Fan and M. Grätzel, *Science*, 2014, 345, 1593.
- 20. E. Hu, Y. Feng, J. Nai, D. Zhao, Y. Hu and X. W. Lou, *Energy & Environmental Science*, 2018, **11**, 872-880.
- J. Liu, Y. Ji, J. Nai, X. Niu, Y. Luo, L. Guo and S. Yang, *Energy & Environmental Science*, 2018, **11**, 1736-1741.
- K. Fan, H. Chen, Y. Ji, H. Huang, P. M. Claesson, Q. Daniel, B. Philippe, H. Rensmo, F. Li, Y. Luo and L. Sun, *Nature Communications*, 2016, 7, 11981.