Electronic Supplementary Information

Self-Powered Electrocatalytic Ammonia Synthesis Directly from

Air as Driven by Dual Triboelectric Nanogenerators

Kai Han,^{ab} Jianjun Luo,^{ab} Yawei Feng,^{ab} Liang Xu,^{ab} Wei Tang*^{abc} and Zhong Lin Wang*^{abd}

^aCAS Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, P. R. China

Email: tangwei@binn.cas.cn

^bSchool of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China

^cCenter on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning 530004, P.R. China

^dSchool of Material Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245, USA.

Email: <u>zlwang@gatech.edu</u>

Ref.	Anode	Cathode	Т	Р	Raw mater ials	Electrolyt e	NH ₃ yeild (μg h ⁻¹)	Power
1	Pt sheet	Nanoporous Pd on a glassy carbon disk electrode (0.29 mg cm ⁻ ² , 0.28 cm ²)	Ambient conditions		N ₂ , H ₂ O	0.1 M PBS	1.66 (5.92 µg h ⁻¹ cm ⁻²) (20.4 µg h ⁻¹ mg ⁻¹)	-0.15 V vs. RHE
2	Graphite plate	Au nanorods on a carbon paper (1 cm ²)	Ambient conditions		N ₂ , H ₂ O	0.1 M KOH	1.648 (1.648 μg h ⁻¹ cm ⁻²)	-0.2 V vs. RHE
3	Pt mesh	Au ₆ /Ni on a carbon cloth (2.0 mg cm ⁻² , 1 cm ²)	Ambient conditions		N ₂ , H ₂ O	0.05 M H ₂ SO ₄	14.8 (14.8 μg h ⁻¹ cm ⁻²) (7.4 μg h ⁻¹ mg ⁻¹)	-0.14 V vs. RHE
4	Pt foil	Au sub- nanoclusters/Ti O ₂ on a carbon paper (1 mg, 1 cm ²)	Ambient conditions		N ₂ , H ₂ O	0.1 M HCl	21.4 (21.4 µg h ⁻¹ cm ⁻²) (21.4 µg h ⁻¹ mg ⁻¹)	-0.2 V vs. RHE
5	Pt foil	Fe-N-C on a carbon paper (1 mg cm ⁻² , 1 cm ²)	Ambient conditions		N ₂ , H ₂ O	0.1 M KOH	7.48 (7.48 µg h ⁻¹ cm ⁻²) (7.48 µg h ⁻¹ mg ⁻¹)	0 V vs. RHE
6	Graphite rod	Cu/PI-300 on a carbon cloth (1 cm ²)	Ambient conditions		N ₂ , H ₂ O	0.1 M KOH	17.2 (17.2 µg h ⁻¹ ст ⁻²)	-0.4 V vs. RHE
7	Pt foil	Plasma R-O-Bi on a carbon paper	Ambi conditi	ent ons	N ₂ , H ₂ O	0.2 M Na ₂ SO ₄	2.4 (2.400 μg h ⁻¹ cm ⁻²)	-0.9 V vs. RHE

Table. S1 State of the art in electrocatalytic ammonia synthesis and our self-powered synthetic method.

		$(0.5 \text{ mg cm}^{-2}, 1)$					(5.453 µg h ⁻¹	
		cm ²)					mg_{Bi}^{-1})	
	Graphite rod	on a carbon					$(2.547 \text{ µg h}^{-1})$	-0 40 V
8		paper	Ambi	ent	N_2 ,	0.5 M	cm ⁻²)	VS.
		(0.1 mg, 1	conditi	ons	H ₂ O	LICIO ₄	(25.47 µg h ⁻¹	RHE
		cm ²)					mg ⁻¹)	
		C-doped T_1O_2					8.88	0.4 V
9	Pt foil	on a carbon	Ambient		N ₂ ,	0.1 M	$(8.88 \ \mu g \ n^{-2})$	-0.4 V
		$(0.60 \text{ mg cm}^{-2})$	conditi	ons	H ₂ O	LiClO ₄	$(14.8 \ \mu g \ h^{-1})$	RHE
		1 cm ²)					mg ⁻¹)	
10	Pt wire	$WO_{3-x}(Vo)_H_2$					5.04	0.10.17
		on a carbon	Ambient		N ₂ ,	PH=1,	$(4.2 \ \mu g \ h^{-1})$	-0.12 V
		(1.2 mg, 1 x)	conditi	ons	H ₂ O	HCl	$(4.2 \ \mu g \ h^{-1})$	RHE
		1.2 cm^2)					mg ⁻¹)	
11	Graphite rod	PC/Sb/SbPO ₄			t N ₂ ,	0.1 M HCl	5	
		on a carbon	Ambi	ent			$(5 \ \mu g \ h^{-1} \ cm^{-1})$	-0.25 V
11		$(0.2 \text{ mg cm}^{-2}.1)$	conditi	ons H	H ₂ O		(25 µg h ⁻¹	RHE
		cm ²)					mg ⁻¹)	
	Graphite rod	Defect-rich		ent ons		0.1 M Na ₂ SO ₄	2.928	
12		MoS_2 on a	Ambi		N ₂ ,		$(11.712 \ \mu g \ h^{-1})$	-0.4 V
12		(0.1 mg 0.5 x)	conditi		H ₂ O		$(29.28 \text{ µg h}^{-1})$	VS. RHE
		0.5 cm^2)					mg ⁻¹)	
		Few-layer						
	Pt plate	black					6 274	071
13		nanosheets on	Ambi	ent N_2 , ons H_2O	0.01 M	$(31.37 \text{ µg h}^{-1})$	-0.7 V	
15		a carbon fiber	condit		H ₂ O	HCI	mg^{-1}	RHE
		substrate						
		(about 0.2 mg)					12.52	
	Pt foil	nitrogen-doped		ent ions	N ₂ , H ₂ O	0.1M KOH	$(12.53 \text{ µg h}^{-1})$	-0 2 V
14		carbon	Ambi				cm ⁻²)	VS.
		nanosheet	conditi				(12.53 µg h ⁻¹	RHE
		$(1 \text{ mg}, 1 \text{ cm}^2)$					mg ⁻¹)	
	Pt wire		90 °C	AP	Air, H ₂ O	2 M	279.1	
1.5		MOF(Fe) on a					$(93.02 \ \mu g \ h^{-1})$	1.0.17
15		carbon paper $(1 \times 3 \text{ cm}^2)$				КОН	cm^{-2}) (1.52 x 10 ⁻⁹)	1.2 V
							$mol s^{-1} cm^{-2}$	
							9.4	
	$\begin{array}{c} Pr_{0.6}Ba_{0.4} \\ Fe_{0.8}Cu_{0.2} \\ O_{3-\delta} \end{array}$	Pro Bao 4 Feo C		AP	Wet	$2O_{0.8}Ou_{0.}$	0.4 (6.56 µg h ⁻¹	
16		$u_{0.2}O_{3-\delta}$	400 °C		air (3)	(CGO)-	$(0.50 \ \mu g \ h)$ cm ⁻²)	1.4 V
		(1.281 cm^2)			H_2O	(Li,Na,K)	(1.07 x 10 ⁻⁶	
					1120)	$2CO_3$	$mol s^{-1} m^{-2}$	
	$\begin{array}{c} La_{0.8}Cs_{0.2} \\ Fe_{0.8}Ni_{0.2} \\ O_{3-\delta} \end{array}$	La. Cs. Fe.			Wet	$ce_{0.8}Ga_{0.}$	(5.64 µg h ⁻¹	
17		$Ni_{0.2}O_{3-\delta}$	600 °C	AP	air (3	(CGO)-	cm^{-2}	1.4 V
		(1.281 cm^2)			mol%	(Li,Na,K)	(9.21 x 10 ⁻⁷	
	20 10/	20 10/ 10/0			1120)	₂ CO ₃	$mol s^{-1} m^{-2}$	
18	30 wt% Pt/C on a gas diffusion layer	30 wt% Pt/C	RT	AP	Air, H ₂ O	solid electrolyt e	09.// 69.77.ug.h ⁻¹	
		diffusion layer					$(0.77 \mu g \mathrm{m})$ cm ⁻²	-1.6 V
		$(1 \text{ mg cm}^{-2}, 1)$					(1.14 x 10 ⁻⁵	
		cm ²)					$mol m^{-2} s^{-1}$	
19	30 wt% Pt/C on a carbon paper	30 wt% Pt/C	80 °C	amb ient	Air, H ₂ O	0.1 M Li ₂ SO ₄	57.34	
		on a carbon					cm^{-2}	1.2 V
		paper (1 cm^2)	_				(9.37 x 10 ⁻⁶	
	Puper				NG	100	$mol m^{-2} s^{-1}$	
1 h1s	Graphite	11O ₂ /carbon	Ambi	ent	NO ₃ -,	100 mg	1.9	-3 V

	plate	cloth		H_2O	L ⁻¹ NO ₃ -		
work		$(1 \text{ mg cm}^{-2}, 1)$	conditions				
		cm ²)					
	Graphite plate	TiO ₂ /carbon		NO ₃ -, H ₂ O	100 mg L ⁻¹ NO ₃ -	5.7	TENC
		cloth					1ENG (5000 m
		$(1 \text{ mg cm}^{-2}, 1)$					(30001
		cm ²)					min ¹)
	Graphite plate	TiO ₂ /carbon cloth (1 mg cm ⁻² , 1 cm ²)		NO ₃ -, H ₂ O	100 mg L ⁻¹ NO ₃ -	20.8	TENG
							with
							transfor
							mer
							(5000 r
							min^{-1})
	Graphite plate	$TiO_2/carboncloth(1 mg cm-2, 2.5x 2.5 cm2)$		Air, H ₂ O	mixed NO ₃ ⁻ and NO ₂ ⁻	2.4	Self-
							powere
							d
							(3.5 m^3)
							min^{-1})

Note: T, temperature. P, pressure. RT, room temperture. AP, atmospheric presssure. RHE, reversible hydrogen electrode. PBS, phosphate buffer solution. Eex-COF, Eletrochemically excitated covalent organic frameworks. PC, phosphorus-doped carbon.

References

1 W. Xu, G. Fan, J. Chen, J. Li, L. Zhang, S. Zhu, X. Su, F. Cheng, J. Chen, *Angew. Chem. Int. Ed.*, 2020, 59, 3511-3516.

2 D. Bao, Q. Zhang, F.-L. Meng, H.-X. Zhong, M.-M. Shi, Y. Zhang, J.-M. Yan, Q. Jiang, X.-B. Zhang, *Adv. Mater.*, 2017, **29**, 1604799.

3 Z.-H. Xue, S.-N. Zhang, Y.-X. Lin, H. Su, G.-Y. Zhai, J.-Tan Han, Q.-Y. Yu, X.-H. Li, M. Antonietti, J.-S. Chen, J. Am. Chem. Soc., 2019, 141, 14976-14980.

4 M.-M. Shi, D. Bao, B.-R. Wulan, Y.-H. Li, Y.-F. Zhang, J.-M. Yan, Q. Jiang, Adv. Mater., 2017, 29, 1606550.

5 M. Wang, S. Liu, T. Qian, J. Liu, J. Zhou, H. Ji, J. Xiong, J. Zhong, C. Yan, *Nat. Commun.*, 2019, **10**, 341.

6 Y.-X. Lin, S.-N. Zhang, Z.-H. Xue, J.-J. Zhang, H. Su, T.-J. Zhao, G.-Y. Zhai, X.-H. Li, M. Antonietti, J.-S. Chen, *Nat. Commun.*, 2019, **10**, 4380.

7 Y. Wang, M. Shi, D. Bao, F. Meng, Q. Zhang, Y. Zhou, K. Liu, Y. Zhang, J. Wang, Z. Chen, D. Liu, Z. Jiang, M. Luo, L. Gu, Q. Zhang, X. Cao, Y. Yao, M. Shao, Y. Zhang, X.-B. Zhang, J. G. Chen, J. Yan, Q. Jiang, *Angew. Chem. Int. Ed.*, 2019, **58**, 9464-9469.

8 T. Wu, Z. Xing, S. Mou, C. Li, Y. Qiao, Q. Liu, X. Zhu, Y. Luo, X. Shi, Y. Zhang, X. Sun, *Angew. Chem. Int. Ed.*, 2019, **58**, 18449-18453.

9 Q. Qin, Y. Zhao, M. Schmallegger, T. Heil, J. Schmidt, R. Walczak, G. Gescheidt-Demner, H. Jiao, M. Oschatz, *Angew. Chem. Int. Ed.*, 2019, **58**, 13101-13106.

10 Z. Sun, R. Huo, C. Choi, S. Hong, T.-S. Wu, J. Qiu, C. Yan, Z. Han, Y. Liu, Y.-L. Soo, Y. Jung, *Nano Energy*, 2019, **62**, 869-875.

11 X. Liu, H. Jang, P. Li, J. Wang, Q. Qin, M. G. Kim, G. Li, J. Cho, Angew. Chem. Int. Ed., 2019, 58, 13329-13334.

12 X. Li, T. Li, Y. Ma, Q. Wei, W. Qiu, H. Guo, X. Shi, P. Zhang, A. M. Asiri, L. Chen, B. Tang, X. Sun, *Adv. Energy Mater.*, 2018, **8**, 1801357.

13 L. Zhang, L.-X. Ding, G.-F. Chen, X. Yang, H. Wang, Angew. Chem. Int. Ed., 2019, 58, 2612-2616.

14 S. Liu, M. Wang, T. Qian, H. Ji, J. Liu, C. Yan, Nat. Commun., 2019, 10, 3898.

15 X. Zhao, F. Yin, N. Liu, G. Li, T. Fan, B. Chen, J. Mater. Sci., 2017, 52, 10175-10185.

16 R. Lan, K. A. Alkhazmi, I. A. Amar, S. Tao, Appl. Catal., B, 2014, 152-153, 212-217.

17 R. Lan, K. A. Alkhazmi, I. A. Amar, S. Tao, *Electrochim. Acta*, 2014, 123, 582-587.

18 R. Lan, J. T. S. Irvine, S. Tao, Sci. Rep., 2013, 3, 1145.

19 R. Lan, S. Tao, RSC Adv., 2013, 3, 18016-18021.

Chemical Reagents

Hydrochloric acid (Beijing Chemical Works, HCl, 36.0-38.0%), ammonium sulfamate (Aladdin, $H_6N_2O_3S$, AR, 99.0%), sulfanilamide (Aladdin, $C_6H_8N_2O_2S$, standard for GC, >99.8%), N-(1-naphthy) ethylenediamine dihydrochloride (Aladdin, $C_{12}H_{14}N_2$ ·2HCl, ACS, >98%), potassium nitrate (Aladdin, KNO₃, 99.99% metals basis), potassium nitrite (Aladdin, KNO₂, AR, 97%), sodium hydroxide (Beijing Chemical Works, NaOH, AR, 99%), salicylic acid (Aladdin, $C_7H_6O_3$, AR, 99.5%), sodium citrate dihydrate (MACKULIN, Na₃C₆H₅O₇·2H₂O, AR, 99.0%), ammonium nitrate-15N (Aladdin, NH₄¹⁵NO₃, 99atom%,

 \geq 98.5%), sodium hypochlorite solution (Aladdin, NaClO, available chlorine, \geq 5.0%), sodium nitroferricyanide dihydrate (Aladdin, C₅FeN₆Na₂O·2H₂O, 99.98% metals basis).

Determination of NO3⁻

A 5 mL of original or diluted solution is removed as the test sample. A 100 μ L of 1 M HCl solution and a 400 μ L of 5 wt% H₆N₂O₃S aqueous solution are added into the sample in order, followed by 4.5 ml pure water. The mixed solution is measured by an ultraviolet-visible spectrophotometer (UV-3600, SHIMADZU Ltd.). The characteristic absorption of NO₃⁻ is at the wavelength of 210 nm. In addition, the absorbance at 275 nm is used to eliminate the potential interference. The absorbance calculation formula is as follows.

 $A_{NO_{3}} = A_{210} - 2 * A_{275}$

Determination of NO₂-

A 5 mL of original or diluted solution is removed as the test sample. A 100 μ L of 10 g L⁻¹ sulfanilamide solution containing 10% concentrated HCl solution is added into the sample. After 5 minutes, a 100 μ L of 1 g L⁻¹ C₁₂H₁₄N₂·2HCl is also added into to the sample. After 15 minutes, the mixed solution is measured. The characteristic absorption of NO₂⁻ is at the wavelength of 543 nm.

Determination of NH3

 NH_3 is determined by the indophenol blue method. A 2 mL of original or diluted solution is removed as the test sample. Then, a 2 mL of mixed solution containing 1 M NaOH, 5 wt% $C_7H_6O_3$ and 5 wt% $Na_3C_6H_5O_7$ is added into the sample, followed by a 1 mL of 0.05 mol L⁻¹ NaClO and a 0.2 mL of 1 wt% $C_5FeN_6Na_2O$ solution. After 2 h, the solution is measured. The characteristic absorption of NH_3 is at the wavelength of 655 nm.

Fig. S1 Rectified current and peak power of (a) TENG-1 and (b) TENG-2.

Fig. S2 Schematic diagram of the basic working principle of ten-stage voltage multiplier circuit. Description of the principle

Since the output signal of TENG is alternating, diode D1 will be on and D2 will be off when the signal is in one half cycle as shown in the process (i). Meanwhile, capacitor C1 will be charged and the maximum voltage of C1 can reach to the same value U of TENG. In the process (ii), the output signal is in another half cycle, D2 will be on and D1 will be off. Similarly, Capacitor C2 can be charged with the maximum voltage value U. Then C3 and other capacitors will be charged gradually until all of them reach the same condition, as shown in process (iii) and (iv). Since each capacitor has the same voltage polarity, the voltage in the circuit is the sum of the voltages of ten capacitors. The voltage at end a is negative and end b is positive.

Fig. S3 Standard calibration curve of different concentrations of (a) NO₃⁻ and (b) NO₂⁻.

Fig. S4 Residual solution volume in the gas-washing bottle after 6 h air discharge when using needle as the positive or the negative electrode.

Fig. S6 Concentration variations of (a) NO_3^- and (b) NO_2^- using 100 mg L⁻¹ NO_3^- as electrolyte in a single cell with a DC power (-3 V) drive.

Fig. S7 Standard calibration curve of different concentrations of NH₃.

Fig. S8 Concentration variations of (a) NO_3^- , (b) NH_3 and (c) NO_2^- using 10 mg $L^{-1} NO_2^-$ as electrolyte in a single cell with a DC power (-3 V) drive.

Fig. S9 Concentration variations of (a) NO_{3^-} , (b) NH_3 and (c) NO_{2^-} using 100 mg $L^{-1} NO_{3^-}$ as electrolyte in a constant current condition with -0.25 mA by an electrochemical station.

Fig. S10 Concentration variations of (a) NO_3^- , (b) NO_2^- using 100 mg L⁻¹ NO_3^- as electrolyte in a single cell with rectified TENG-2 drive.

Fig. S11 (a) Voltage variation and (b) current variation of the single cell using different concentrations of NO_3^- with voltage regulating and rectified TENG-2 drive.

Fig. S12 Comparasion of NH_3 in mass yield per hour by DC (-3 V), DC (-0.25 mA), TENG-2 and TENG-2 with transformer.

Fig. S13 Comparison of Faraday efficiency by DC (-0.25 mA) and TENG-2. Calculation process mn + E

Faraday efficiency (%) =
$$\frac{mn_t tr}{\int_{o}^{t} idt} \times 100\%$$

m is the number of electrons of reducing NO_3^- into NH_3 , n_t is the average mole yield per unit time of NH_3 , *t* is the reaction time, *F* is Faraday constant, *i* is the current.

Since the output of TENG after rectification is pulsed signal, the current data are integrated.

Fig. S14 Absorption curves in (a) ultraviolet and (b) visible region of electrolyte solution after 6 h reaction with or without dilution in a single cell driven by voltage step-down (350:12) and rectified TENG-2.

Fig. S15 Pictures of (a) a piece of TiO_2 /carbon cloth, (b) an assembly of nafion membrane (NRE-211) and TiO_2 /carbon cloth with silicone seal, (c) a graphite electrode and d) a dual-compartment electrocatalytic cell.

Fig. S16 (a) Voltage variation and (b) current variation of the dual-compartment electrocatalytic cell using 100 mg L^{-1} NO₃⁻ as electrolyte with voltage regulating and rectified TENG-2 drive.

Fig. S17 Concentration variation of NH_3 from 1 to 6 h in the cathode with voltage step-down (350:4) and rectified TENG-2 drive.

Fig. S18 (a) Voltage variation and (b) current variation of the dual-compartment electrocatalytic cell using electrolyte from air discharge with voltage regulating and rectified TENG-2 drive at a gas flow rate of $3.5 \text{ m}^3 \text{ min}^{-1}$.

Fig. S19 (a) Concentration of NO_3^- in the cathode compartment by self-powered synthesis for 10 h. (b) Concentration of NO_2^- in the cathode compartment by self-powered synthesis for 10 h.