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Figure S2  Schematic illustration of the preparation of samples for measuring TE 
properties and SEM images for out-plane and in-plane directions.

The SEM image along out-plane structure displayed a relatively isotropic 

microstructure. While the strong layered structure can be observed along the in-plane 

direction, which indicate a highly preferred orientation. 

 

Figure S3 The in-plane and out-plane temperature dependence of (a) electrical 
conductivity, (b) Seebeck coefficient (c) thermal conductivity and (d) ZT values for 

0.2Sb sample.
As well known, the anisotropy of Bi2Te3 based alloy is very strong. Generally, their 
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electrical and thermal conductivities along the a-axis (in the c-plane, vertical to SPS 

direction in this work) are approximately four and two times higher, respectively, than 

those along the c-axis (parallel to SPS direction in this work) of Bi2Te3. However, the 

Seebeck coefficient is less dependent on the crystallography. Therefore, we should 

measure the electrical and the thermal properties along the same direction to avoid the 

over-estimation of TE properties. We used 0.2Sb sample as an example to illustrate as 

shown in Figure S3. It can be observed that the in-plane properties is much higher than 

the out-plane properties. Therefore, the TE properties of all samples stated above were 

measured along the direction vertical to the SPS (in-plane) in the main text. 

Figure S4  (a) σ, (b) S (c) κ and (d) ZT value of Bi2Te2.7Se0.3 + x% Te sample, where 
x=0, 5, 10 and 15.

Figure S5 (a)XRD patterns vertical to the press direction and (b) orientation factor F 
of Bi2Te2.7Se0.3 + x% Te (x=0, 5, 10, 15).

In order to understand the effect of liquid Te phase sintering on the preferred orientation 
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for n-type Bi2(Te, Se)3 alloys, we measured the in-plane XRD patterns of Bi2Te2.7Se0.3 

+ x wt.% Te (x=0, 5, 10, 15) products, as shown in Figure S5(a). As can be seen, all 

the reflection peaks can be indexed to a rhombohedral phase (JCPDS#50-0954). With 

increasing Te content, the enhanced intensity of the (001) peak and almost invariable 

intensity of the (015) peak could be observed, indicating the (001) is the preferred 

orientation. The orientation degree F of the (001) planes is used to roughly evaluate the 

texture degree of samples,1 as plotted in Figure S5(b). The values of F rapidly rise from 

0.02 for 0Te sample to 0.47 for 15Te sample, demonstrating that the preferred 

crystalline orientation is enhanced remarkably by increasing Te content. The enhanced 

preferred orientation may be the result of promoted plane slipping and recrystallization 

by liquid Te during the SPS process, as reported in p-type Bi0.5Sb1.5Te3 sample.2

Figure S6 (a) The XRD patterns (b) the enlarged view of (015) peaks and (c) the 
calculated lattice parameters of all Sb doped samples.

According to the mechanism of point defect formation, Sb could suppress the formation 

of vacancy in n-type Bi-Te-Se system, so the decreased electron concentration could be 

expected. Therefore, we doped Sb into 15Te sample, the XRD patterns of all Sb doped 

samples are shown in Figure S6(a), in which all diffraction peaks could be indexed as 

PDF#51-0643 and the intensity of (00l) peaks are very similar with 0Sb sample, which 

may indicate the Sb-doping shows a little effect on preferred orientation. This find is 

important because it is beneficial for maintaining carrier mobility and thus electrical 

conductivity. Figure S6 (b) shows the enlarged view of (015) peaks shifting for different 

Sb containing samples. The calculated lattice parameters are consistent with the 

Vegard’s law (Figure S6 (c)), which demonstrated that the Sb has been successfully 

doped into matrix. It should be mentioned that the calculated of F values for all Sb 

samples are all around 0.45, which further suggest the Sb doping have little effect on 
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the texturing.

The calculation of L number

For metals or heavily doped degenerate semiconductors, L is constant and equals to

, whereas it approaches  for nondegenerate 2.44 × 10 ‒ 8 𝑊Ω𝐾 ‒ 2 1.5 × 10 ‒ 8 𝑊Ω𝐾 ‒ 2

semiconductors. On the basis of the single parabolic band (SPB) model with acoustic 

phonon scattering dominating, the Lorenz number, L, can be derived from the following 

equations:
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Where is the Boltzmann constant, e is the electron charge,  is the scattering 𝑘𝐵  𝜆

parameter which equals to -0.5 for acoustic phonon scattering,  is the n-th order 𝐹𝑛(𝜂)

Fermi integral and  is the reduced Fermi energy, which can be calculated from the 𝜂

measured Seebeck coefficient according to Equation S3. The results are shown in the 

Figure S7.
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Figure S7 The Lorentz number for all samples.

The calculation of Edef and κb

At first the minor carrier (hole) concentration should be calculated. 

Only the law of mass action at temperature T, the electrons (n) and holes (p) 

concentration is shown here,

n        (S4)(𝑇)𝑝(𝑇) = 𝐴𝑇3𝑒𝑥𝑝( ‒ 𝐸𝑔 𝑘𝐵𝑇)

where n and κB are the electron carrier concentration and Boltzmann constant 

respectively, and A is temperature-independent constant. Based on n and p data at 300 

K, A can be calculated and listed at Table R1. At temperatures above 300 K, material’s 

intrinsic excitation has to be considered, the equation S1 can be re-written as

(n300K      (S5)+ Δ)(𝑝300𝐾 + Δ) = 𝐴𝑇3𝑒𝑥𝑝( ‒ 𝐸𝑔 𝑘𝐵𝑇)

where  represents the excited concentration of electron-hole pairs at temperature T. Δ

The actual n and p values above 300 K are then calculated as shown in Figure S8. In 

p-type Bi2Te3–based materials, acoustic phonon scattering is also the dominant carrier 

scattering mechanism around 300 K. Thus, the hole mobility (μp) also obey the 

relationship of μp ~ T-3/2. Based on Figure S8(b), we found that the calculated hole 

concentration (p) for all samples varies as with the empirical relationship of p ~T7.5. 

Thus, a qualitative expression between μe and ne is derived as μp ≈ Bn-1/5, where B is a 

temperature independent constant for a fixed composition (Table S2).
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Figure S8 Temperature dependence of calculated (a) n and (b) p.

The Deformation potential Edef calculation:

Based on the electron and hole concentration and mobility calculated above, 

Deformation potential Edef in valance and conduction band can be roughly estimated by 

Equation S3, when the acoustic phonon scattering is dominant

     (S6)
𝐸 2

𝑑𝑒𝑓 =
(8𝜋)0.5(ℎ 2𝜋)4𝑒𝜌𝑣2

𝐿

3(𝑚 ∗
𝑏 )2.5(𝑘𝐵𝑇)1.5𝜇𝑖

Where ρ and vL are density and longitudinal velocity of sound, i=electron or hole, mb
* 

is the single valley effective , Nv is the multiple degenerate valleys. 𝑚 ∗
𝑏 = 𝑚 ∗ 𝑁 ‒ 2 3

𝑣

The calculated Edef in valance and conduction are shown in Figure 2(c) and (d), 

respectively.

The bipolar thermal conductivity calculation:

The electron partial electrical conductivity σe and bipolar can be calculated by the 

following equation:

                 (S7)
𝑘𝑏 = (𝑘𝐵

𝑒 )2𝑇(5 + 2𝜆 +
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)2
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By subtracting the κb value from the κl+κb (shown in Figure 1(e)), the experiment κl 

value can be attained (shown in Figure 4(a), orange plots).



8

Figure S9 The in-plane and out-plane carrier mobility as a function of Te content.
In this work, the μ is simultaneously influenced by the texturing and potential well. we 

measured the out-plane μ as shown in Figure S9. As can be seen, Indeed, the decreased 

μ along the out-plane direction is the result of potential well and texturing, it is difficult 

to separating respective contribution because we could not get a sample only has 

potential well or texturing. However, μ is apparently increased along in-plane direction 

(texturing direction), which is the result of increased texturing. Generally speaking, the 

potential well could not provide positive effect on carrier mobility due to the 

localization of carrier. But in this work potential well is accompanied with texturing, 

which significantly improve mobility along the in-plane direction. As a result, potential 

well enhance S and texturing improve σ, a high PF could be obtained in our samples.in 

additional Te series samples.

Figure S10 The Sb-rich nano second phase.
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Figure S11 The temperature dependence of (a) electrical conductivity, (b) Seebeck 
coefficient (c) thermal conductivity and (d) ZT values for repeat 0.2Sb sample.

In order to insure the accuracy of our data, I have prepared 0.2Sb sample three times, 

and their TE properties are shown in the Figure S11. The error bars in Figure S10 are 

machine errors, which are widely accepted in TE society. As can be seen, TE properties 

of the repeat samples are closed to each other and within the error bars. Therefore, we 

can conclude our data is reliable and accurate.

Figure S12 The cycle measurement for 0.2Sb sample.
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The cycling measurement has also been carried out, as shown in Figure S12. After 2 

heating-cooling cycle measurement (about 20 hours), the maximum still over 1.3, 

which suggest a good cyclability.

Figure S13 The image of squeezed out Te.

The calculation of κl

The Callaway model
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where  is the reduced phonon frequency, w is the phonon frequency, κB is 𝑥 = ℏ𝜔/𝑘𝐵𝑇

the Boltzmann constant,  is the reduced Planck constant, wD is the Debye temperature,  ℏ

and τC is the overall phonon scattering relaxation time. Six phonon scattering 

mechanisms are considered here, including phonon-phonon Umklapp scattering (U), 

Grain boundary scattering (GB), point defect scattering (PD), dislocation strain 

scattering (DS), dislocation core scattering (DC) and nano precipitate scattering (P). 

The overall phonon scattering relaxation time is expressed as

   (S9)𝜏 ‒ 1
𝐶 = 𝜏 ‒ 1

𝐺𝐵 + 𝜏 ‒ 1
𝑈 + 𝜏 ‒ 1

𝑃𝐷 + 𝜏 ‒ 1
𝐷𝑆 + 𝜏 ‒ 1

𝐷𝐶 + 𝜏 ‒ 1
𝑃

For common grain boundary, there is perfect acoustic mismatch at the interface between 

the material and vacuum, the relaxation times of phonons will be independent with the 

phonon frequency. The frequency-independent  is given by 𝜏𝐺𝐵
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Where  is the average sound velocity and d is the experimentally determined grain 𝜈

size. Umklapp scattering occurs when phonons in a crystal are scattered by other 

phonons. Its relaxation time is of the form
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Where V, , and M are the atomic volume, Gruneisen parameter, and the atomic mass. 𝛾

The parameter AN takes normal phonon-phonon scattering (total crystal momentum 

conserving process) into account. Point-defect scattering arises from an atomic size 

disorder in alloys. The disorder is described in terms of the scattering parameter ( ) Γ

within the  formula as𝜏𝑃𝐷
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 is related to the difference in mass ( ) and lattice constant ( ) between two Γ ∆𝑀 ∆𝑎

constituents of an alloy.

For a material with dislocations, the scattering caused by the dislocations strain and 

cores(DS) should be considered. Relaxation time of dislocation scattering can be 

considered 3 
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ND, BD, γ, γ, r, νL, νT are dislocation density, effective Burger’s vector, Grüneisen Δ

parameter, change in Grüneisen parameter due to the dislocation strain , Poisson’s ratio, 

longitudinal phonon velocity and transverse phonon velocity, respectively. γ can be  Δ

expressed as

 (S14)
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Where C0 is the concentration of Bi2Se3 in Bi2Te3-xSex, K is the bulk modulus of Bi2Te3, 

Ta is the sample smelting temperature, VBS and VBT are the atomic volume of Bi2Se3 

and Bi2Te3, and MBS and MBT are the atomic mass of Bi2Se3 and Bi2Te3.

For nanoscale precipitate, the relaxation time of nano precipitate can be expressed as:

 (S17)𝜏 ‒ 1
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𝑙 ) ‒ 1𝑉𝑃
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 (S20)Δ𝐷 = 𝐷𝑚𝑎𝑡𝑟𝑖𝑥 ‒ 𝐷𝑝𝑟𝑒𝑐𝑖𝑝𝑖𝑡𝑎𝑡𝑒

Where v, Vp, R, Dmatrix and Dprecipitate are average sound speed, number density of nano 

precipitates, average radius of the precipitates, mass density of matrix and precipitates 

respectively.

To use this corrected Callaway’s model to calculate the lattice thermal conductivity, all 

the parameters should be fixed based on experimental results. But the parameter AN 

used to calculate the  can’t be fixed based on experimental data, which takes normal 𝜏𝑈

phonon-phonon scattering (total crystal momentum conserving process) into account. 

Thus we use the in-plane lattice thermal conductivity of full dense, large grained ZM 

Bi2Te2.7Se0.3 sample to calculate the parameter AN. Compared with the ZM ingots, the 

grains of our samples are much refined, the effect of grain boundary on depressing 

lattice thermal conductivity are calculated and shown in the blue dash line of Figure 

4(b). Similarly, the depressed lattice thermal conductivity from the dislocation and 

precipitate have also been calculated and plotted in Figure 4(a). We can concluded that 

the dislocation and nanoscale precipitate result in as much as ~50% and 30% total 

reduction of lattice thermal conductivity. Meanwhile, the frequency dependence of 

phonon scattering process has also been calculated and shown in Figure 4(b). The 

conclusion is that the grain boundary (plane defect) and point defect will scatter 
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phonons in the low and high range respectively. While the dislocation (line defect) and 

nanoscale precipitate scatter phonons in the low and middle range. These plane, line 

and point defects could scatter whole range phonons and decrease lattice thermal 

conductivity as large as possible. And all the parameters are listed in the Table S1.

The calculation of theory efficiency:

The theory efficiency of TE module could be given as following equations:

·  (S21)
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Figure S14 The comparison of experiment and theory conversion efficiency.
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Figure S15 The resistivity for TE module
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Table. S1 Physical properties used to calculate κl based on various phonon scattering 

processes

Parameters Values

Debye temperature θD (K) 1644

Parameter AN 1.5

Longitudinal sound velocity υL(ms-1) 28004

Transverse sound velocity υT (ms-1) 16004

Sound velocity υ(ms-1) 1778

Average atomic mass of Bi2Te3 MBT (kg) 2.66×10-25

Average atomic mass of Bi2Se3 MBS (kg) 2.18×10-25

Average atomic volume of Bi2Te3 VBT (m3) 3.48×10-29

Average atomic volume of Bi2Se3 VBS (m3) 3.19×10-29

Sample density ρ (g cm-3) 7.28

Grain size d (um) 10

number density of nano precipitates Vp (m-3) 2.55×1020

Point defect scattering parameter Γ 0.23 

Dislocation density ND of Bi2Te2.7Se0.3 (cm-2) 1.5×1011

Average radius of nanoscale precipitates R (nm) 20

Mass density of matrix Dmatrix (g/cm3) 7.8

Mass density of nanoscale precipitates Dprecipitate (g/cm3) 6.7

Number density of nanoscale precipitates VP (m-3) 2×1020

Magnitude of Burger’s vector BD 12 

Poisson’s ratio r 0.145

Grüneisen parameter γ 1.56

Bulk modulus K (GPa) 37.44
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Table S2: Calculated parameter A and by B using the minor and major carrier 

concentration at 300 K. 

Samples 0Sb 0.1Sb 0.2Sb

A(1030cm-6) 2.58 2.68 3.12

B 121.1 116.5 119.2
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