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1 Supplementary Note: Components of the prototype
The main components of the distiller are summarized in Supplementary Fig. S1.
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Figure S 1. Main components of the solar desalination prototype. a) Aerosol based black absorber (Zynolyter Hi-Temp aerosol
spray paint); b) hydrophilic layer (evaporator side); c) hydrophilic layer (condenser side) and plexiglass frame (porous air gap);
d) heat sink for rejecting the heat in the saltwater basin. Note that input and output strips are not directly exposed to air during
experiments: each strip is covered by a LLDPE film to suppress natural evaporation towards the surrounding ambient.
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2 Supplementary Note: Description of the prototype
The proposed device represents a synergy between the passive and multi-stage device with enhanced yield reported in ref. [1] and
the salt rejecting solution described in ref. [2]. Here, the approaches are rationalized for both enhancing distillate productivity
and salt rejection in passive solar desalination systems.

In Supplementary Fig. S2, the resizing procedure, of the evaporating and salt rejecting areas is summarized, and the evaporator
and condenser surfaces are schematically shown for both devices.
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Figure S 2. Illustrative picture of the geometry of the distillers: details on the salt rejecting and evaporating areas for the device
reported in ref. [1] and the current version. The size of the evaporator and condenser in case of ref. [1] and current distiller are
shown on the left and on the right side, respectively.

First, in the current device (on the right in Supplementary Fig. S2), the width of the strips/channels through which seawater
is supplied by capillary action to each evaporator is increased (namely WD2,E = 12 cm > WD1,E = 3 cm). In addition, the
seawater reaches each evaporator via both sides rather than one, thus increasing the salt rejecting surfaces and, as consequence,
improving the rejection performance (see blue arrows). Finally the horizontal extension of the hydrophilic layers is reduced
(namely LD2,E = 3.5 cm < LD1,E = 12 cm). Therefore, the longest path that the salt particles have to cover to reach the
border and to flow back to the sea is minimized and reduced by a factor ≈ 7 (≈ LD1,E

LD2,E
2

).

Moreover, in the current distiller the selective absorber used in ref. [1] is substituted by a more robust aerosol-based black
paint, and the 3D printed convection reducer is removed. Removing the convection reducer is a good strategy for improving
the long-term stability, since these films suffer from ultraviolet degradation (yellowing and clouding) limiting the useful life
of the product. In addition, the membrane (thermal conductivity equal to 472 W m−2 K−1) is substituted with a plexiglass
spacer (thermal conductivity equal to 42 W m−2 K−1, which means ≈ 91% reduction compared to the classic membrane-based
solution) that creates the air gap between the evaporator and the condenser. In table S1, the main differences between the solar
passive multistage device reported in ref. [1] and the here developed distiller are summarized.

Further details on the air gap and solar absorber are reported in the Supplementary Notes 3.2 and 3.4.
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Ref. [1] Current Distiller
Evaporating area AD1=LD1,E×HD1,E AD2≈0.3LD1,E×HD1,E

Salt-rejecting length WD1,E 2WD2,E=8×WD1,E

Gap Membrane (dm ≈ 150 µm) Spacer (da ≈ 1.65 mm)
Solar absorber Selective - TiNOXr Black paint - Zynolyter

Table S 1. Main differences between the solar passive multistage device reported in ref. [1] and the here developed distiller.
Note that LD1,E = HD1,E = HD2,E = WD2,E = 12 cm and WD1,E ≈ 3 cm. Details on evaporating area and salt-rejecting length
are reported in Supplementary Fig. S2, whilst details on the used gap between evaporator and condenser and the solar absorber
are discussed in Supplementary Notes 3.2 and 3.4.
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3 Supplementary Note: Characterization of the components of the
prototype

3.1 Wicking properties of hydrophilic layer
An experimental campaign is carried out to characterize the wicking properties of the hydrophilic layer employed as evapora-
tor/condenser. In detail, the hydrophilic layer should be able to drive water from the sea level to each evaporator of the modular
device exploiting only capillary action. Then, a suitable and sufficient capillary rise (namely h, measured in m) has to be ensured.
In addition, the ability of the porous material to allow fluids to pass through has to be as large as possible. This second key
parameter is the permeability (namely k, measured in m2) which depends on the porosity (ε = VV OID

VSAMPLE
, namely the ratio

between the volume of air and sample).

Capillary rise. In Supplementary Fig. S3, the experimental setup used for measuring the capillary rise is shown. The
hydrophilic layer is immersed in a colored distilled water basin and the final level, reached by the water, is measured. Different
materials suitable for the hydrophilic layer of the distiller have been tested.

The first option is to use the cellulose-based fabric (commercially known as Zorb) exploited in the floating solar still described in
ref. [2] (see white sample in Supplementary Fig. S3). However, this wick is not a suitable option to be used in a modular device,
since the limited capillary rise (≈ 3.5 cm) is not sufficient for feeding each evaporator. Thus, dry out is observed in the stage
farthest from the free surface of the 3-stage configuration device. A commercial viscous fiber-based wick (commercially know as
Sungbocleamy), see sample on the right in Supplementary Fig. S3A, is then tested, proving a sufficient capillary rise (≈ 5.5 cm).

BASIN

SAMPLES

CAPILLARY 

RISE

A

B

C

Figure S 3. A) Experimental setup for measuring the capillary rise; B) contact angle measurements of the Zorb hydrophilic
layer; C) contact angle measurements of the Sungbocleamy hydrophilic layer.

It is worth to point out that the capillary rise of water in a sample, namely h, mainly depends on the pore size and contact angle.
[3] In detail, the driving capillary pressure is defined as:

∆Pcap = ρgh =
2γlgcos(θ)

r
(1)
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where γlg is the surface tension at the liquid gas interface, θ is the contact angle and r is the average pore size. The contact angle
is measured with an imaging analysis software and it is equal to ≈ 27.5◦ (see Figs. S3B and C).

Porosity. Then, the porosity of the hydrophilic layers (Sungbocleamy) is evaluated. In detail, a wick sample is immersed in a
ticked basin filled with deionized water. The volume variation, measured through the height of the liquid column, corresponds to
the volume occupied by the fibers of the hydrophilic layer itself. The evaluated porosity is equal to 0.900 ± 0.033.

Permeability. Another key parameter that has to be considered is the permeability of the porous medium, which is related to
the porosity, but also to the shape of the pores in the medium and their level of connectedness. This property is evaluated by
measuring the propagation of the fluid through the hydrophilic layer (Sungbocleamy) as function of time.

The experimental setup (see Supplementary Fig. S4) consists of: 1) a water basin filled with deionized water, 2) a initially dried
wick sample, 3) a sample clip and 4) a high speed camera. Once one extremity is immersed in the water basin, the water starts to
rise through sample and the wicking process monitored by the high speed camera (Vision research Phantom 7.1). An imaging
analysis software is used for post processing the frames.

Sample Clip

SampleWater Reservoir

Translation Stage

Camera

Figure S 4. Experimental setup for measuring the permeability of the hydrophilic layer.

In Supplementary Fig. S5, red circles and blue squares represent data of two different experiments carried out for proving
the repeatability of the measurements. The inset is a zoom-in of the most populated zone of data. These data, namely the
fluid propagation front as function of time, are fitted using the Darcy’s equation with gravitational effect, and the permeability
coefficient evaluated as [4]:

dy

dt
=
−k
µε

(
−∆Pcap

y
− ρg

)
(2)

where y is the vertical coordinate and represents the position of the propagation front with time, k is the permeability of the wick
(measured in m2), µ and ρ are the viscosity and density of water, respectively. ∆Pcap is the driving capillary pressure, which
acts against the gravity g (see eq. 1).

The permeability of the wick can be found explicitly by using the following relation [4], where k is the fitting parameter:

t =
A ln(A−By) +By −A ln(A)

B2
(3)
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Figure S 5. Liquid front propagation as function of time, measured to estimate the permeability of the wick. Red circles and
blue squares represent data of two independent experiments. Black line refers to equation 3.

A =
k∆Pcap
µε

(4)

B =
kρg

µε
(5)

The fitted permeability value on the experimental results reported in Supplementary Fig. S5 is equal to ≈ 1.0 × 10−10 m2,
with R2 = 0.99. This value is important for understanding and studying possible advective components of the flow in a porous
medium, which may affect the discharging process of the accumulated salt.
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3.2 Mass transfer through air gap

Air gap optimization. In traditional membrane distillation (MD), the flow rates and temperature drop (order of magnitude ≈
10◦ C between evaporator and condenser) are actively controlled via pumps and thermostats, respectively. Thus, in traditional
MD application, it has been demonstrated that hundred microns represents the optimal thickness for maximizing the distillate
flow rate, aiming at keeping high permeability but low thermal conductivity at the same time. [5]

On the other hand, in case of passive and quasi-static conditions where temperatures are not imposed at the inlet channels of
the device but are a consequence of the available solar flux and the thermal insulation given by the stratigraphy, an air gap of
hundreds microns would be responsible of low distillate flow rates due to the almost negligible temperature drop (namely 1-2
order of magnitude smaller with respect to classic MD module). Hence, the theoretical model described in Supplementary Note
8 is used for optimizing sensitivity analysis figuring out the best air gap thickness and thus the maximum distillate productivity
of the passive distiller.

Contrarily to the previous version of the distiller [1], where a commercial hydrophobic membrane was used for separating the
evaporator from the condenser, here a tailored plastic porous frame is used (see Supplementary Fig. S6, left-hand side panel).

Two parameters of the spacer affect the vapour flux, namely the normalized effective area through which the vapour flows,
indicated as γspacer, and the porosity εspacer. As far as concerns the normalized effective area, a calipers is used to measure
γspacer = 0.743 ± 0.167. The porosity, defined as ratio between volumes (namely εspacer = VV OID

VTOT
) is equal to εspacer = 0.805

± 0.065, which has been evaluated using a scale with a precision of 0.001 g and considering the bulk density of plexiglass (1.18
g cm−3). The mismatch between γspacer and εspacer values is due to the high operating temperature during the prototyping
process, done by laser cutter. In fact, the plexiglass spacer presents areas where the material is slightly melted thus causing
micro-metric variations in the average thickness of the spacer. However, these variations do not affect the distillate productivity
neither in terms of mass flow rate nor in terms of salt contamination.

In Supplementary Fig. S6, the model predictions, in case of 1-stage configuration device, are shown. In the sensitivity analysis
reported in Supplementary Fig. S6 (right-hand side) carried out with the model detailed in the Supplementary Note 8, the average
values of γspacer and εspacer are used.
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Figure S 6. Left-hand side: detail of the plexiglass spacer made with laser cutting. Right-hand side: modelling estimates of
distillation performance as function of the air gap thickness as obtained by eqs. 28 and 29. A 1-stage configuration device fed
with saltwater with NaCl concentration equal to 35 g L−1 is simulated. In the model, the considered equivalent solar irradiance
is 950 W m−2.

Even if the optimal value of the gap thickness in terms of distillate productivity reported in Supplementary Fig. S6 is ≈ 0.5 mm,
the effective thickness of the gap used for the experiments is higher than the predicted theoretical one, being equal to 1.65 ± 0.05
mm. This choice is necessary for avoiding contamination between evaporator and condenser. In fact, it is worth to point out that
the gap has millimeter-sized pores (namely low liquid entry pressure values) and larger thickness values are necessary for being
conservative and avoid contamination of distillate by the saltwater in the evaporating layer. Experiments showed that a 1.65
mm-thick gap is sufficient to avoid contamination in all the experiments carried out.
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Perspectives. The theoretical model in eqs. 28 and 29 is exploited to estimate the performance of the device as function of the
number of stages, air gap thickness and with two different solar absorber: black paint and selective absorber. The analysis is
limited to a device with a maximum number of stages equal to 10, because of the limited capillary rise of the low-cost hydrophilic
materials considered here.

When the black non selective absorber is considered, the optimal air gap thickness is ≈ 350 µm, and the related productivity is
≈ 4 L m−2 h−1 in case of 10-stages configuration device (see black line in Supplementary Fig. S7, left-hand side).

When the selective absorber is installed, the optimal thickness is ≈ 500 µm, and the related productivity is ≈ 6 L m−2 h−1 in
case of 10-stages configuration device (see black line in Supplementary Fig. S7, right-hand side).
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Figure S 7. Modelling estimates of optimized distillation performance in case of black absorber (left-hand side) and selective
absorber (right-hand side). The effect of the number of stages and air gap thickness are explored by the model.

It is worth pointing out that, although the strength of the selective absorber is obviously the water yield due to the reduced
radiative losses, a key parameter that should be also taken into account in practical application is the robustness and the long-term
stability. The black absorber turned out to be more robust durign tests, being less affected by deterioration when exposed to
ambient (e.g. reduced optical performance after dust accumulation).
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3.3 Thermal resistance of heat sink
A finned heat sink is placed below the last stage condenser, to efficiently dissipate the thermal energy flux into the environment
and thus increase the temperature drop throughout the distillation device. An experimental procedure is used for evaluating
its heat transfer coefficient (namely U ). The employed experimental setup (see Supplementary Fig. S8) consists of 2 silicone
heaters (57.6 ohms; francoCorradi) to provide a homogeneous and controllable heat flux. The 2 heaters reproduce the solar flux
(≈ 950 W m−2) and are powered by a power supplier (PS 3003, HQ Power). Then, 3 K-type thermocouples RS Pro (2 applied
on the top and 1 immersed in the basin, which acts as a thermostat) measure the temperature drop across the heat sink.

Heat sink

Power supplier

Silicone heaters

DAQ 

device

TC1 TC2

TC3

Figure S 8. Experimental setup for measuring the heat transfer coefficient of the heat sink. Thermocouples (TC) are represented
by green lines.

In Supplementary Fig. S9, the temperature profiles, temperature drop and the effective heat transfer coefficient (namely 153
W m−2 K−1) are shown.
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Figure S 9. Left-hand side: temperature profile during the characterization of the heat sink. Red line represents the average
of the temperatures indicated with TC1 and TC2 in Supplementary Fig. S8 (Ttop = (TC1+TC2)/2), whilst blue dashed line
represents the temperature indicated with TC3 (= Twater) in Supplementary Fig. S8. Right-hand side: temperature drop (∆T =
(TC1+TC2)/2 - TC3) across the heat sink (top panel, red line) and heat transfer coefficient (bottom panel, blue line).
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3.4 Optical properties of solar absorber
Here, to reduce the cost, the aluminum foil placed on the top surface of the device is coated with Zynolyter Hi-Temp aerosol
spray paint. It is worth pointing out that the adopted aerosol-based solar absorber does not have optically selective properties,
which would have ensured low emissivity in the infrared region and thus better thermal properties.

The coating is deposited with the same procedure extensively discussed by Cooper and co-workers. [6] In detail, five coating
layers are first deposited. Then, the paint is dried at room temperature for 30 minutes and 2 heating cycles from room temperature
to 250◦ C carried out.

To fully characterize its radiative losses, the emissivity of the aerosol-based black absorber is measured in the infrared region
using an infrared camera (FLIR tg167). A thermocouple (Omega Engineering, 5TC-TT-K-40-36) is used to measure the
temperature of the heated sample. Then, this value is compared with the temperature measured by the camera’s sensor in order to
infer the emissivity, which results to be ≈ 0.95 (see Supplementary Fig. S10).

Figure S 10. Emissivity of the black absorber. Photo made with the infrared camera. The emissivity is evaluated at ≈ 62◦C.

The result of emissivity found in our experiments is in good agreement with the value reported by Cooper and co-workers. [6]
They determined the emittance of a similar material by measuring the infrared hemispherical reflectance spectrum via FTIR
(Fourier Transform Infrared Spectroscopy). They found the spectral emittance to be relatively constant with an averaged value
equal to 0.941 (minimum and maximum value equal to 0.9 and 0.97, respectively, over the range 2.5 µm to 20 µm).
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4 Supplementary Note: Productivity over time
The experimental productivity as function of time and its derivative are reported in Fig. S11. During daytime, the vapor
generation from saltwater leads to salt accumulation in the hydrophilic layers used as evaporators. However, we did not observe
the formation of any salt crust layer during the 8-hours tests of evaporation, which mimic a typical daylight duration. During
these tests, the observed experimental performance already considers salt accumulation and its possible detrimental effect on
evaporation; however, no appreciable decay in the evaporation rate has been noticed during the 8 hours of test.
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Figure S 11. Distillate production over time expressed as L m−2 (left-hand side) and its derivative expressed as L m−2 h−1

(right-hand side). Without losing generality, here we report the productivity of the 3-stage configuration device.
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5 Supplementary Note: Marangoni effect

High concentration Low concentration

Surface flow 

direction

High surface

tension zone
Low surface

tension zone

Surface

Figure S 12. Schematic of the Marangoni effect. The surface tension gradient is associated to a salt concentration gradient. The
latter induces localized viscous stresses because of the resulting asymmetric interactions experienced by the molecules at the
interface. Then, an interfacial flow, directed from the lower surface tension regions to the higher ones, takes place.
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6 Supplementary Note: Salt rejection

6.1 Modeling the salt rejection from the evaporator
Fluid flow and transport of diluted species in porous medium. A finite element method is implemented to better interpret
the salt rejection mechanism observed in the experiments. A two-dimensional model is developed by means of COMSOL
Multiphysicsr. In detail, the "Darcy Law" and the "Transport of diluted species" [7, 8] physics are employed. The simulations
are performed under transient regime. The boundary conditions of the problem are summarized in Supplementary Fig. S13. It is
worth pointing out that the 3D hydrophilic layer is reduced to a 2D geometry composed by 2 portions (on the same simulation
plane): one without gravity effect (mimicking the hydrophilic layer used as evaporator, which is placed horizontally in the
distillation device), and one where the gravitational force is applied (reproducing the strips through which the water is transported
from the sea level up to the evaporator). An extremely fine mesh is employed and the Peclet number is ensured to be lower than
four, for having convergence and stability.

𝑐(𝑥, 0, 𝑡) = 35
𝑔

𝑙

SIMMETRY

𝑔 = 0
EVAPORATOR

𝑚

𝑐 𝑥, 𝑦, 0 = 200
𝑔

𝑙𝑚

SIMMETRY

𝑔

No flux

Figure S 13. Finite element model of the hydrophilic layer. The considered configuration is meshed by COMSOL Multiphysicsr
with 34820 degrees of freedom (plus 497 internal degrees of freedom). The transient process is simulated for 10 hours.

First of all, the solute (salt) is assumed to be inert, the fluid viscosity µ constant and the porous domain saturated by the solution,
homogeneous and isotropic. The properties (namely, permeability k and porosity ε) of the latter are experimentally evaluated
(see Supplementary Note 1). Due to strong interaction between the various physics involved in the model, the fully coupled
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approach (generally used in multiphysics problems) is set. In fact, the problem involves total density variations of ≈ 20%, which
makes this a strongly coupled flow case. [9]

The solution density ρ varies linearly with the solute concentration as follow:

ρ = ρ0(1 + γc), (6)

where ρ0 is the density of freshwater, γ = ρs−ρ0
cs−c0 is the proportionality constant between concentration and density, c0 and cs are

the salt concentrations of freshwater (namely 0 mol m−3) and saturated salt water, respectively. ρs is the density of saturated salt
water. The continuity equation applied to the porous medium (with ε porosity) is written as:

∂(ερ)

∂t
+∇ · (ρu) = 0, (7)

being u the fluid velocity. The momentum balance equation for variable density fluid flow in a porous medium, namely the
Darcy’s equation, can be written as follows:

u = −k
µ

(∇p− ρg), (8)

where k is the permeability (1 × 10−10 m2, see Supplementary Note 3.1) of the porous medium. The gravity vector is
g = (0,−g). The transport of diluted species in a porous medium is governed by the following advection-diffusion equation:

ε
∂ci
∂t

+∇ ·
(
−εDeff,i

τwick
∇ci

)
+ u∇ci = 0, (9)

where ci is the concentration of specie i (namely, mass of solute as a proportion of the total mass of solution), Deff,i is the
effective diffusion coefficient and τwick is the tortuosity of the porous medium. Theoretically, both molecular and mechanical
dispersion occur in solute transfer processes (the hydrodynamic dispersion coefficient is the sum of the molecular diffusion
coefficient and mechanical dispersion coefficient). [10] Here, the hydrodynamic coefficient is only due to molecular diffusion,
whilst the dispersion coefficient is neglected due to low velocities.

As far as the boundary conditions used in the described problem are concerned, no mass fluxes are considered through the
sidewalls, which are therefore impermeable:

−n · ρu = 0 (10)

−n · (−Di∇ci) = 0 (11)

A Dirichlet boundary condition is applied at the bottom of the simulation domain to reproduce the fixed concentration of seawater
(namely 35 g l−1 or 600 mol m−3). On the other hand, the initial concentration of the horizontal portion of the evaporator is set
to 200 g l−1 (namely 3450 mol m−3, considering that the molecular weight of sodium chloride is 58.5 g mol−1). The symmetry
of the physics is exploited to reduce the computational cost of the simulation. Results are reported in Fig. 2a (see black dashed
line).

Effective diffusion coefficient - Including Marangoni effect. In equation 9, a diffusion coefficient enhanced (namely ≈
1.65 × 10−7 m2 s−1) with respect to the classical one (namely ≈ 1.5 × 10−9 m2 s−1 [11]) should be used to better mimic
the salt rejection mechanism observed in the experiments. The discrepancy between the molecular diffusion coefficient under
classical conditions and the effective one actually observed in the experiments is investigated and interpreted. As a matter of
fact, an additional driving force for both the solvent and NaCl motion through the hydrophilic evaporator comes from the salt
concentration gradient across the considered domain. In fact, this salt concentration gradient creates a surface tension gradient at
the solution-air interface (see Supplementary Fig. S14), which gives rise to the so called Marangoni effect. [12]

Hence, to quantify the Marangoni effect acting in our distillation device, the effective diffusion coefficient used in equation 9 is
evaluated by means of an additional COMSOL Multiphysicsr simulation. The simulation domain (see Supplementary Fig. S15)
consists of a saltwater thin film of thickness equal to 1 mm (namely the thickness of the hydrophilic layer, δl) and length equal to
1.75 cm (half of the horizontal portion of the evaporator). This simulation domain, which mimics the experiments presented in
Fig. 2, is meshed by COMSOL Multiphysicsr with 813564 degrees of freedom (plus 13187 internal degrees of freedom).
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Figure S 14. Surface tension of aqueous NaCl solutions. [13, 14]
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Figure S 15. Simulation domain and boundary conditions employed to quantify Marangoni effect in the evaporating layer. Note
that, for the sake of clarity, the simulation domain is not in scale.

Two sets of equations are solved numerically to investigate the diffusion phenomenon in presence of a solution-air interface (see
boundary 4 in Supplementary Fig. S15). In detail, "Laminar flow" and "Transport of diluted species" [7, 8] are coupled and
solved. In the model, the Navier-Stokes equation is written as:

u · ∇ρu = −∇p+∇ ·
(
µ
(
∇u + (∇u)T

)
− 2

3
µ(∇ · u)I

)
(12)

where µ is the viscosity of the solution. The boundary conditions reported in Supplementary Fig. S15 are applied. In detail, a
Dirichlet boundary condition is applied at the left side of the simulation domain (labeled as 1) to reproduce a fixed arbitrary
concentration of NaCl (c1). On the other hand, the initial concentration of the entire domain is set to c0 equal to 35 g l−1 (namely
the seawater concentration). Then, no slip boundary condition (namely u=0) is applied at boundaries 1 and 3 (because of the
contact of the hydrophilic layers with a not moving wall, namely the support), and an open boundary condition is applied on 2.
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The latter can be formalized as follows:
c = c0, if u · n < 0 (13)

−n · (−Di∇ci) = 0, if u · n ≥ 0 (14)

Note that the no flux boundary condition applied on bounday 3 is equivalent to eqs. 10 and 11. Finally, a slip condition is applied
on the boundary labeled as 4 to reproduce the velocity at the surface under the existence of surface tension gradient, namely
Marangoni effect:

[−pI + µ(∇u + (∇u)T )− 2

3
µ(∇ · u)I]n = σ∇c (15)

where σ ≈ 1.76× 10−6 N m−1

mol m−3 is the concentration derivative of the surface tension γ (namely σ = ∂γ
∂c ). Note that the pressure

is set to 1 atm at the outlet section (boundary labeled as 2).

The simulation results are reported in Supplementary Fig. S16.
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Figure S 16. Stationary velocity profiles of the saltwater solution in case of Marangoni effect. The profiles are evaluated at the
outlet section (x = L). The minimum and the maximum values of the concentration of the saltwater solution are 35 and 200 g l−1,
respectively.

The stationary velocity profiles at the outlet section (x = L) are reported as function of the driving force (Marangoni effect),
which depends on the concentration c1 applied on boundary 1, namely ∆γ L−1 = σ ∆c L−1 = σ (c1 − c0) L−1. The back
flow is due to the slip condition at the water-air interface (boundary labeled as 2 in Supplementary Fig. S15) together with the
no-slip condition at the sidewall labeled with 1 in Supplementary Fig. S15.

The transient concentration surface plots after 5 seconds, 5 minutes and at stationary conditions are reported in the main text
(see Fig. 2c). In Fig. 2c (left side), the results of a classic diffusion mechanisms are represented. On the other hand, simulation
results obtained by including the Marangoni effect (see equation 15) are shown in Fig. 2c (right side).

We stress that the fluid flow in the subsurface is considered to be a continuum process, where average bulk properties are used
instead of considering a pore-scale flow. In the latter case, the shape and the orientation of the interstices should be also taken
into account. For example, scanning electron microscope could provide images of a sample of the hydrophilic layer to simulate
the exact geometry of the domain, thus reproducing a more realistic flow.

Finally, it is worth pointing out that – in case of classic molecular diffusion – the order of magnitude of the diffusion velocity
is D

δl
≈ 10−6 m s−1 and the related Reynolds number ρuδlµ ≈ 10−3. This means that creeping flow occurs and Navier-Stokes

equation could be replaced by Stokes equations. On the other hand, considering the slip boundary condition applied on boundary
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4 (Marangoni effect), the resulting Reynolds number increases up to ≈ 10−1 and Navier-Stokes equation have to be used to
solve the laminar flow.
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6.2 Theoretical analysis of Marangoni effect
The fluid flow that takes place in case of Marangoni effect and the associated velocity are evaluated by reducing and analytically
solving the Navier-Stokes equations. The imposed boundary conditions are consistent with the ones already used in the numerical
analysis reported in Supplementary Note 6.1. In detail, to reduce the complexity of the equations we assume that the width (W )
and length (L) of the hydrophilic layer are sufficiently larger with respect to the depth (δl). Also, we assume that the density and
concentration gradient along x direction are fixed (see Supplementary Fig. S15) and that the flow is incompressible.

The governing continuity and momentum equations, in case of steady-state conditions and 2 dimensional fluid flow, are outlined
as follows:

∂ux
∂x

+
∂uy
∂y

= 0 (16)

ρux
∂ux
∂x

+ ρuy
∂ux
∂y

= −∂p
∂x

+ µ

(
∂2ux
∂x2

+
∂2ux
∂y2

)
(17)

ρux
∂uy
∂x

+ ρuy
∂uy
∂y

= −∂p
∂y

+ µ

(
∂2uy
∂x2

+
∂2uy
∂y2

)
(18)

Further, the term ∂ux

∂x is much smaller than ∂ux

∂y , because δl
L � 1. The reduced ratio δl

L leads us to safely approximate uy = 0.
Thus, the eqs. 16, 17 and 18 are reduced to:

∂p

∂x
= µ

(
∂2ux
∂y2

)
, (19)

which can be integrated obtaining:

ux = y2
∂p

∂x

1

2µ
+ C1y + C2. (20)

First, the no-slip boundary condition at the bottom part of the domain (i.e. the support of the hydrophilic strip) gives us the
integration constant C2:

ux(y = 0) = 0→ C2 = 0. (21)

Second, the slip condition responsible of the velocity at the fluid-air interface provided by the surface tension gradient (Marangoni
effect) is used to figure out the integration constant C1:

∂γ

∂x
= µ

∂ux
∂y
|y=δl → C1 =

1

µ

∂γ

∂x
− δl
µ

∂p

∂x
. (22)

An additional condition is necessary to correlate the pressure gradient and the surface tension gradient: since the fluid is assumed
as incompressible and at steady state, the continuity equation implies that the average velocity over the saltwater thin film
cross-section should be equal to zero, that is

1

δl

∫ δl

0

uxdy = 0→ ∂p

∂x
=

3

2

1

δl

∂γ

∂x
. (23)

The final expression for the fluid velocity along the x axis is:

ux = y2
3

4δlµ

∂γ

∂x
− 1

2µ

∂γ

∂x
y. (24)
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We stress that the analytical formulation is based on the assumption that ux ∂ux

∂x is much smaller than µ
ρ
∂2ux

∂y2 and then is only
valid when:

∆γ

L
� 4µ2L

ρδ3l
. (25)

Considering our geometry (L = 1.75 cm and δl = 1 mm) and operating parameters, the term at the right hand side of equation 25
is ≈ 0.1 Pa (this threshold value is indicated as Γth). In Supplementary Fig. S17, the analytical velocity profiles (red curves) are
compared with the ones obtained by means of COMSOL simulations (blue dashed lines) at different values of ∆γ L−1 = Γ
(namely 1× 10−4 Pa, 2× 10−4 Pa, 5× 10−4 Pa and 1× 10−3 Pa, which correspond to salinity gradients ≈ 3.3, 6.6, 16.5 and
33 g l−1 m−1, respectively).
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Figure S 17. Comparison between analytical (red lines; eq. 24) and numerical (blue dashed lines) velocity profiles.
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7 Supplementary Note: Distillation performance of the prototype
in laboratory conditions

The measurements are carried out at Massachusetts Institute of Technology and Politecnico di Torino to prove the reproducibility
of results. The experimental setup is represented in Supplementary Fig. S18.

DAQ 

device
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TC1

TC3
0.001 g

Distillate water basin

Balance

Distiller

Seawater basin

Sun simulator

Metal halide lamp

Laptop

TC0
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Refractometer

Sun simulator

Ozone free 
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Figure S 18. Laboratory testing of the modular distiller. The experimental tests carried out under laboratory conditions include
the following components: (1) a laptop for data storage and elaboration, (2) a data acquisition board, (3) a refractometer for
salinity measurement, (4) two different sun simulators (the one installed at MIT and the one installed at Politecnico di Torino), (5)
a balance for distillate mass measurement, (6) an output basin for the distilled water, (7) an input basin for the saltwater, and (8)
the modular distiller. The temperatures of the ambient and seawater in the basin are measured with TC0 and TC3 thermocouples,
respectively; the temperatures of the black absorber and last stage condenser are measured with TC1 and TC2 thermocouples,
respectively.

A sun simulator is used to properly reproduce the entire solar spectrum and test the passive distiller. The device is placed in a
glass basin containing up to 5 liters of artificial NaCl solution (salinity equal to 35 g L−1). Due to the large amount of seawater
in the basin with respect to the distillate productivity, the salt concentration does not significantly change during operating
conditions. The distillate flow rate gathered in the distillate water basin is measured by a balance (see Supplementary Fig. S18
and S.19). Steady-state productivities are measured for up to 8 hours of continuous operations.
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Experiments J [L m−2 h−1] R-square
1 (MIT) 0.779 0.985
2 (MIT) 0.695 0.993
3 (MIT) 0.706 0.991
4 (MIT) 0.802 0.997

Table S 2. Distillate flow rate achieved testing the 1-stage configuration device. All the experiments were carried out at MIT.
R-square is evaluated using the Bisquare method.

Experiments J [L m−2 h−1] R-square
1 (MIT) 1.902 0.997
2 (MIT) 1.973 0.999

3 (Polito) 1.608 0.996
4 (Polito) 2.133 0.981

Table S 3. Distillate flow rate achieved testing the 3-stage configuration device. Experiments were carried both at MIT and
Politecnico di Torino. R-square is evaluated using the Bisquare method.

The experimental setup used at MIT [2] employs a ScienceTech, SS-1.6K sun simulator (see Supplementary Fig. S19). The solar
flux is measured using a thermopile (Newport, 818P-040-55, spectral range 0.19 to 11 µm) connected to a calibrated power
meter (Newport, 1918-C). The measured value of solar flux is obtained by averaging five measures from different locations
covering the entire area occupied by the device. Several thermocouples (Omega Engineering, 5TC-TT-K-40-36) are installed in
the experimental setup and recorded using an Omega Engineering DAQPRO. An analog refractometer (accuracy ±0.2%) is used
to measure the salinity of the solutions. The testing facilities used at Politecnico di Torino consist of a infinityPV ISOSun solar

Distiller

Distillate 

water basin 

Balance

Sun 

simulator

Mirror

Seawater 

basin

Figure S 19. Pictures of the experimental setup used at MIT.

simulator [15] (maximum deviation over the area <± 5 % and <± 1 % in the central testing area; stability in time <± 1% at
1000 W m−2 over 24 hours), a laptop for data storage and analysis, a data acquisition board (NI-9213 module for DAQ board,
National Instruments), a digital refractometer (HI 96801 Hanna Instruments, accuracy ±0.2%), a precision scale (Kern PCB
1000-2, 0.01 g resolution) and a pyranometer (LP Pyra 08 BL; Delta OHM). K-type thermocouples (RS Pro) are connected with
the DAQ board.

With both the experimental setups, the imposed solar flux is equal to 950 W m−2. Then, the temperature of the black coating
(absorber), last condenser (namely the last hydrophilic layer interfaced with the heat sink), seawater basin, and ambient are
recorded. Thermocouples are placed at the center of the black coating and of the hydrophilic layer to reduce side effects.

In case of 1-stage configuration device, the results of the four experiments are summarized in Table 2, whilst in case of 3-stages
configuration device the performance are summarized in Table 3.
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For the sake of completeness, a comparison between the performance achieved with the sub-optimal version of the device [1]
and the improved version developed in this work is carried out to validate that the experimental setup employed in this work
provides results coherent with previous observations. [1]

Under the sun simulator installed at Polito, the first version of the distiller shows the same performance (see Supplementary
Fig. S20) published in our previous work [1], namely distillate productivity equal to 1.468 L m−2 h−1 over 8 working hours
tested with 900 W m−2 (maximum discrepancy with the previous results reported ref. [1] equal to 1.8%), therefore validating
the experimental protocol adopted in this work. The temperature profiles are shown in Supplementary Fig. S20.
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Figure S 20. Desalination performance of the version of the 3-stage distiller reported in ref. [1], tested under the sun simulator
at Polito. The device is tested under laboratory conditions, with 900 W m−2 input thermal energy. Temperature profiles of the
distiller tested under the sun simulator are reported as well. Red, black, blue and green lines represent the first stage evaporator
(top side of the distiller), last stage condenser (bottom side of distiller), water and ambient temperatures, respectively.
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8 Supplementary Note: Theoretical model for distillation process
The theoretical model introduced and extensively discussed in ref. [1] for predicting the distillation performance of the device is
exploited to interpret the experimental results. Then, based on the same assumptions and considering a configuration where only
an air gap (with normalized effective area γspacer) of thickness da and τ = 1 is located between evaporator and condenser, the
Maxwell-Stefan and Dusty gas model can be simplified as:

−dxw
dz

=
(1− xw)Nw
PγspacerDwa

TR

(26)

where xw is the mole fraction of water vapour, z is the vertical coordinate, Nw is the molar flux of water vapour, P is the total
pressure of the mixture, Dwa is the diffusion coefficient of water vapour in air, T is the absolute temperature and R is the gas
constant (8.314 J K−1 mol−1).

Then, equation 26 can be integrated within the air gap, considering as boundary conditions xEw = a(YE)pv(TE)
P when z = zE

(evaporator side), xCw = a(YC)pv(TC)
P when z = zC (condenser side). Note that a denotes the activity of water, YE and YC are the

mass fractions (Y = msalt/msolution) of salt in the feed and distilled solution, respectively and pv is the water vapour pressure.

Within the air gap thickness, where the diffusion mechanism is only due to molecular diffusion, the equation is:

−
∫ zC

zE

dxw
1− xw

=

∫ zC

zE

Nwdz
PγspacerDwa

TR

(27)

which yields:

J = C ln

(
1− xCw
1− xEw

)
, (28)

where J = MH2ONw is the specific mass flow rate of the distillate through the stage,MH2O is the molar mass of water (expressed
as kg mol−1) and C =

MH2OPγspacerDwa

RTda
. Note that it is possible to empirically estimate PDwa = 1.19×10−4T 1.75, expressed

as Pa m2 s−1. [16]

In each stage of the distiller, the specific heat flux (q,W m−2) between the evaporating and condensing hydrophilic layers is due
to water phase change and heat transfer by conduction, namely

q =
keff,g
dg

(TE − TC) + J∆hLV + ql, (29)

where keff,g is the effective thermal conductivity in the gap, including conduction through the air and spacer; TE and TC are the
temperatures of the feed and permeate solution, respectively; ∆hLV is the latent heat of vaporization; ql is the specific heat loss
through the lateral surface of the stage.

Setup h [Wm−2K−1] γspacer [-] εspacer [-] da [mm] Tsky [K]
Laboratory 2.5÷7.5 0.576÷0.910 0.74÷0.87 1.6÷1.7 295

Roof 7÷10 0.576÷0.910 0.74÷0.87 1.6÷1.7 263
Table S 4. Uncertainties in the theoretical model. Upper and lower values of the variable considered in the theoretical model
determine the uncertainty of model estimations: h, convective heat transfer coefficient (distiller-ambient); γspacer and εspacer,
normalized effective area and porosity of the air gap, respectively; Tsky , sky temperature for radiative heat losses. As far as h is
concerned, the upper and lower values represent the typical convective heat transfer coefficients for air under natural convection
regime. The upper (mean value + 1 s.d.) and lower (mean value − 1 s.d.) values of γspacer and εspacer are inferred from
experimental evidences.
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9 Supplementary Note: Cost estimation
An estimate of the cost breakdown of various components of the device is carried out using prices of similar items found on
a online wholesale market (Alibaba.com). The tested 3-stage configuration devices are considered, comparing the cost of the
proposed distiller with the one reported in ref. [1].

As far as the distiller described in ref. [1] is concerned, the lab-scale prototype cost is ≈ 6.6 USD. In detail, the hydrophobic
PTFE membrane counts for 20% of the cost, followed by the aluminum sheets for preventing contamination (6%), by the
hydrophilic microfiber wicks (3.5%), by the selective absorber (1.5%), by the 3D printed convection reducer (15%) and by the
heat sink (54%). Then, based on a two-years lifetime, the desalinated water cost is ≈ 52 USD m−3.

Note that, for the sake of simplicity, the following cost contributions are neglected: polystyrene floating element, auxiliaries
(hydraulic/mechanical fittings), distilled basin and pumps for distillate evacuation.

As discussed, in the current distiller, the selective absorber is substituted by a more robust aerosol-based black paint and the 3D
printed convection reducer is removed. In addition, the membrane is substituted with a plexiglass spacer that creates the air gap
between the evaporator and the condenser. Therefore, the bill of materials includes the hydrophilic layers (fabrics), heat sink,
plexiglass frame (namely PMMA) and the aluminum sheets for preventing contamination. The cost of each part is summarized
below:

• hydrophilic layers: 2 USD m−2, quantity used ≈ 0.06 m2 (cost 0.12 USD, which covers 10% of the total cost);
• heat sink: 250 USD m−2 (cost ≈ 1 USD, which covers 79.3% of the total cost);
• plexiglass frame: 2.8 USD m−3, quantity used ≈ 20 grams (cost 0.056 USD, which covers 5.2% of the total cost);
• aluminum sheets: 2.5 USD kg−1, quantity used ≈ 10 grams (cost 0.025 USD, which covers 5.5% of the total cost).

It is worth pointing out that the weight of the plexiglass, and as consequence its cost, considers a bulk sheet and includes the
weight of the scraps too. In addition, the cost of the aerosol-based paint is neglected due to the low value and to the difficulty in
estimating the used quantity for each device. The total cost of the tested device is then ≈ 1.3 USD. In Supplementary Fig. S21,
the estimated total cost of the distiller reported in ref. [1] and the current one are summarized, together with the detailed cost of
each component. Note that the cost of the device can be further reduced by removing the heat sink, which is the most expensive
component, and operating by means of natural convection.

Considering the productivity experimentally obtained with the 3-stage configuration device (namely 1.9 L m−2 h−1) and two
years lifetime, the estimated water production cost is about 26 USD m−3 that means a cost reduction, with respect to the first
version of the distiller, equal to 50%.

For the sake of completeness, a 10-stage configuration device is considered too. A distillate productivity is extrapolated from the
model in which the optimal thickness of the gap and a selective absorber are taken into account. In this case, the cost of the
device would be 1.85 USD (here, the various contributions to the total cost are: 14% aluminum, 24% hydrophilic layers, 4%
plexiglass frame, 57% heat sink and 1% selective absorber). The predicted productivity is ≈ 6 L m−2 h−1, which means a cost
of 12 USD m−3. Two years lifetime is considered.
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Figure S 21. Estimated cost of distillers and their various components. Costs are referred to 2019. The 3-stage configuration
device is considered. Note that, the "stratigraphy" cost contribution includes the hydrophilic layers, aluminum sheets and
membrane (in case of the device reported in ref. [1]) or plexiglass frame (in case of the current distiller).
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