Supporting Information The carbon footprint of the carbon feedstock CO₂

Leonard Jan Müller, Arne Kätelhön, Stefan Bringezu, Sean McCoy, Sangwon Suh, Robert Edwards, Volker Sick, Simon Kaiser, Rosa Cuéllar-Franca, Aïcha El Khamlichi, Jay H. Lee, Niklas von der Assen, André Bardow

Table of contents

S 1.	Literature review current practice "the carbon footprint of the carbon feedstock CO ₂ " 2
S 2.	Detailed description of calculation in section 3.1
S 2.1	Ammonia plant9
S 2.2	Fermentation plant
S 2.3	Direct air capture
S 3.	CO ₂ supply11
S 3.1	Supply of biogas in a low-carbon economy11
S 3.2	Steel and iron mills
S 3.3	Cement plants
S 3.4	Pulp and paper mills
S 4.	Total energy demand to capture CO_2 demand in a low-carbon economy
S 5.	References 19

SI 1. Literature review current practice "the carbon footprint of the carbon feedstock CO_2 "

Author	Year	System boundaries for CO ₂ source	Method to solve multifunctionality	Carbon footprint of captured CO ₂	Reference
Aresta	1999	CO ₂ source included; CO ₂ is supplied from natural gas upgrading, ammonia plant, and fossil fuel-fired power plants; Energy demand and MEA loss is identical for all sources;	Allocation based on other relationship (mass and price as criterion) is applied	Not reported/ no calculation possible based on data; According to author: CFP of CO ₂ > 0 kg CO ₂ e per kg CO ₂	1
Aresta	2002	System boundaries are unclear; CO2 is supplied from a fossil-fired thermal power plant;	No method to solve multifunctionality is reported	Not reported / no calculation possible based on data;	2
Clarens	2008	CO ₂ source included; CO ₂ is supplied from an ammonia synthesis plant; Entire ammonia plant is within system boundaries	Allocation based on other relationship (price as criterion) is applied	CFP of $CO_2 > 0.06$ kg CO_2e per kg CO_2	3
Falter	2015	CO_2 source included; CO_2 is supplied from direct air capture	No method to solve multifunctionality needed	Not reported/ no calculation possible based on data; According to the author: CFP of CO ₂ <0 kg CO ₂ e per kg CO ₂	4
Garcia- Herrero	2016	CO ₂ source included; CO ₂ is captured from a coal power plant with MEA	Substitution is applied	CFP of $CO_2 = -0.86$ kg CO_2e per kg CO_2	5

Giesen	2014	CO ₂ source included; CO ₂ is captured from a coal power plant fired with natural gas or biomass or from ambient air using a direct air capture process;	Multifunctionality does not occur since the entire electricity from the CO ₂ source is used for conversion	Not reported/ no calculation possible based on data; CFP of CO ₂ : For fossil: > 0 kg CO ₂ e per kg CO ₂ For biogenic and direct air capture: < 0 kg CO ₂ e per kg CO ₂	6
Норре	2016	CO ₂ source included; CO ₂ is captured from a biogas purification; CO ₂ is separated in biogas purification step and thus, CO ₂ capture is not considered as part of the CO ₂ based production life cycle	Substitution is applied	CFP of $CO_2 = -0.97$ kg CO_2e per kg CO_2	7
Al-Kalbani	2016	CO ₂ source is excluded; Flue gas from coal power plant enters the system, is purified and serves as CO ₂ source;	No multifunctionality problem since power plant is excluded from system boundaries	Not reported/ no calculation possible based on data; Consuming CO ₂ lead to negative emissions according to authors; CFP of CO ₂ < 0 kg CO ₂ e per kg CO ₂	8
Kim	2000	CO ₂ source included; CO ₂ is captured from an ammonia plant	Allocation based on other relationship is applied (mass and energy as criteria) at different aggregation level, i.e. a sub-division is applied as far as possible followed by an allocation	CFP of CO ₂ ≈ 0.03 kg CO ₂ e per kg CO ₂ (obtained from Fig. 3)	9
Kim	2011	CO ₂ source is excluded; An excess amount of pure CO ₂ is assumed	No method to solve multifunctionality needed	Not reported/ no calculation possible based on data; Consuming CO ₂ leads to negative emissions according to authors: CFP of CO ₂ < 0 kg CO ₂ e per kg CO ₂	10
Kongpanna	2014	CO ₂ source is excluded; An excess amount of pure CO ₂ is assumed	No method to solve multifunctionality needed	CFP of $CO_2 = -0.03$ kg CO_2e per kg CO_2	11

Luu2015CO2 source is excluded;No method to solve multifunctionality needed;CFP of CO2 = -1 kg CO2 eper kg CO2An excess amount of pure CO2 is assumed

Matzen	2016	CO_2 source included; CO_2 is supplied from biomass fermentation	Allocation based on other relationship (economic value as criterion) is applied	CFP of $CO_2 = 0.08 \text{ kg } CO_2 \text{e per kg } CO_2$	13
Overcash	2007	 CO₂ sources included; CO₂ is supplied from: 1) ammonia plants 2) Hydrogen plants (SMR) 3) Natural deposits 4) Fossil fuel combustion 	Allocation based on other relationship (mass as criterion) is applied	Not reported/ no calculation possible based on data; Only allocated life cycle inventories are reported;	14
Parra	2017	 CO₂ sources included; 1) Direct air capture (included in system boundaries) 2) Biogas upgrading (supplies waste CO₂) 	No method to solve multifunctionality needed for direct air capture; For biogas upgrading, CO ₂ is considered as waste with no burdens associated	 According Fig. 9: CFP of CO₂ > 0 kg CO₂e per kg CO₂ CFP of CO₂ = 0 kg CO₂e per kg CO₂ 	15
Pérez- Fortes	2016	CO ₂ source is excluded; Concentrated CO ₂ , but unpressurized enters system boundaries;	No method to solve multifunctionality needed; Credit is given for avoided emissions + capture emissions		16

12

Reiter	2015	CO ₂ sources included; CO ₂ is supplied from fossil sources, e.g. fossil fired power plants; Source of CO ₂ is excluded from system boundaries; Purification is either part of system boundaries or not	Three cases are distinguished: 1) CO_2 has biogenic origin or is a waste product and would be emitted nearly at reaction conditions $\rightarrow CO_2$ is considered to be neutral 2) CO_2 has biogenic origin or is a waste product, but has an additional energy demand for separation $\rightarrow CO_2$ carries the burden of separation 3) CO_2 has a fossil origin and would otherwise be stored, utilized in other processes or company would have to pay for emission allowances \rightarrow allocation is needed	 CFP of CO₂ = 0 kg CO₂e per kg CO₂ CFP of CO₂ = 0 kg CO₂e per kg CO₂ + emissions of seperation/compression CFP of CO₂ > 0 kg CO₂e per kg CO₂ 	17
Schäffner	2014	System boundaries are gate-to-gate Flue gas enters the system and a pure CO ₂ stream is obtained ; CO ₂ source is excluded from system boundaries	No method to solve multifunctionality needed; Credit is given for avoided emissions + capture emissions	Not reported/ no calculation possible based on data; Consuming CO ₂ lead to negative emissions according to authors; CFP of CO ₂ < 0 kg CO ₂ e per kg CO ₂	18
Schakel	2016	CO ₂ source included; Steam methane reforming as CO ₂ source; CO ₂ capture, CO ₂ compression train is modeled	System expansion applied to include both hydrogen and DME	Not reported/ no calculation possible based on data;	19
Souza	2013	CO ₂ source is excluded; An excess amount of pure CO ₂ is assumed	No method to solve multifunctionality needed; Credit is given for avoided emissions	CFP of $CO_2 = -1 \text{ kg } CO_2 \text{e per kg } CO_2$	20
Supekar	2014	CO ₂ source included; Various CO2 sources in the U.S. are considered	Allocation by distinguishing between determining and dependent products according to Weideman	Between 0.13 and 2.42 kg CO_2e per kg CO_2	21

Uusitalo	2017	CO ₂ source is excluded; CO ₂ purification and compression is in system boundaries;	No method to solve multifunctionality needed; However, credit is avoided emissions is given+ capture emissions	Not reported/ no calculation possible based on data; Consuming CO₂ lead to negative emissions according to authors; → CFP of CO₂ < 0 kg CO₂e per kg CO₂	22
Van-Dal	2013	 CO₂ source is excluded; CO₂ is captured from a coal power plant; CO₂ purification and compression is in system boundaries; CO₂ balance only covers methanol synthesis (gate-to-gate analysis) 	No method to solve multifunctionality needed; However, credit is avoided emissions is given+ capture emissions	Not reported/ no calculation possible based on data; Consuming CO ₂ lead to negative emissions according to authors; → CFP of CO ₂ > 0 kg CO ₂ e per kg CO ₂	23
Walker	2017	 CO₂ source is excluded; CO₂ is taken from biogas plant; CO₂ purification and compression is within system boundaries; CO₂ is used to boost methane production 	No method to solve multifunctionality needed;	Not reported/ no calculation possible based on data;	24
Zhang	2017	Two different system boundaries are applied: 1) From cradle-to-gate including CO ₂ source (fossil power plant + cement) 2) Gate-to-gate excluding CO ₂ source	 System expansion is applied (FU = km driven + electricity/cement) Allocation using underlying physical relationship (mass as criterion) (FU = km driven) 	Not reported/ no calculation possible based on data; CFP of CO ₂ > 0 kg CO ₂ e per kg CO ₂ (Fig. 5)	25
Von d Assen	der 2014	System boundaries are cradle-to-gate; CO₂ is taken from a coal power plant	 System expansion is applied (FU = 1 kg Polyol + 0.36 kWh electricity) Sensitivity analysis for solving multifunctionality (100% allocation to CCU system, substitution) 	CFP of $CO_2 = 0.2 \text{ kg } CO_2 \text{e per kg } CO_2 \text{ (worst case allocation)}$ CFP of $CO_2 = -0.8 \text{ kg } CO_2 \text{e per kg } CO_2 \text{ (substitution)}$ CFP of $CO_2 = -1 \text{ kg } CO_2 \text{e per kg } CO_2 \text{ (substitution with ideal } CO_2 \text{ source)}$	

Sternberg	2015	CO ₂ source included;	Substitution is applied	1) CFP of CO ₂ = -1 kg CO ₂ e per kg CO ₂	
		CO ₂ sources are		2) CFP of CO_2 = -0.67 kg CO_2 e per kg CO_2	
		1) Ideal CO ₂ source		3) CFP of $CO_2 = 0 \text{ kg } CO_2 \text{e per kg } CO_2$	26
		2) Coal power plant			
		3) CO_2 is used that would otherwise be			
		stored			
Thonemann	2019	CO ₂ source included;	Substitution is applied	1) CFP of $CO_2 = -0.8$ kg CO_2e per kg CO_2	
		System boundaries are cradle-to-gate		(near term marginal mix)	27
		Various CO ₂ sources are considered		1) CFP of $CO_2 = -0.34$ kg CO_2e per kg CO_2	
				(long term marginal mix)	

SI 2. Detailed description of calculation in section 3.1

The carbon footprint (CFP) for CO₂ source with capture can be calculated from the carbon footprint without capture by subtracting the amount of CO₂ that is captured ($m_{captured CO2}$) and adding the indirect emission ($GW_{indirect.capture}$) for capture (Figure 1):

a) Without capture b) With capture

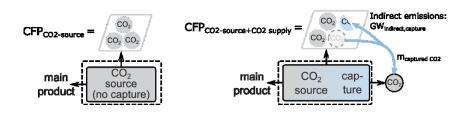


Figure 1: The carbon footprint of a generic CO2 source with and without capture

In our examples, we only account for greenhouse gas emissions related to energy demand. In practice, however, other indirect emissions may also be relevant, e.g. emissions caused by the construction of the capture units. The indirect emissions for the supply of energy to drive the capture process are calculated from the energy demands per kg of CO₂ captured (Thermal energy q_{th} , electricity W_{el} and combustion of natural gas $q_{natural gas}$), the corresponding emission factors per MJ of energy(Thermal energy GW_{th} , electricity GW_{el} and combustion of natural gas of $GW_{natural gas}$) and the amount of captured CO₂ ($m_{captured CO2}$)

$$GW_{indirect,capture} = (q_{th} \cdot GW_{th} + W_{el} \cdot GW_{el} + q_{natural gas} \cdot GW_{natural gas}) \cdot m_{captured CO2}$$

For our calculation, we use the emission factors provided in Table 1.

GW _{th}	$0.057 \ \frac{kg \ CO_2 \ eq}{MJ_{th}}$
<i>GW_{el}</i>	$0.1325 \ \frac{kg \ CO_2 \ eq}{MJ_{el}}$
$GW_{natural\ gas}$	$0.0678 \ \frac{kg \ CO_2 \ eq}{MJ_{natural \ gas}}$

SI 2.1 Ammonia plant

According to the Ecoinvent dataset "*RoW*: ammonia production, steam reforming, liquid ecoinvent 3.3" 1.85 kg CO_2 eq per kg of ammonia (= $CFP_{ammonia}$) are emitted. An average amount of 1.26 kg CO_2 per kg ammonia is formed and available for capture.^{28–31} Consequently, to supply 1 kg as feedstock, 0.8 kg of ammonia is produced. The CO_2 capture is related to 0.401 MJ of electricity and 0.0754 MJ of heat per kg of CO_2 The carbon footprint per 1 kg of CO_2 as feedstock and 0.8 kg ammonia ($CFP_{ammonia+CO2 supply}$) is then the sum of the $CFP_{ammonia}$ for 0.8 kg of ammonia and the indirect emissions caused by CO2 capture minus the amount CO_2 that is captured:

 $CFP_{ammonia+CO2 supply} = CFP_{ammonia} - m_{captured CO2} + GW_{indirect,capture}$

The carbon footprint 0.8 kg ammonia and 1 kg of CO₂ ($GW_{ammonia+CO2 supply}$) are then calculated to:

CFP_{ammonia+CO2} supply

$$= 1.85 \frac{\text{kg}_{\text{CO2}} \text{ eq}}{\text{kg}_{\text{ammonia}}} \cdot 0.8 \text{ kg}_{\text{ammonia}} - 1 \text{ kg} \text{ CO}_2$$
$$+ \left(0.401 \frac{\text{MJ}_{\text{el}}}{\text{kg} \text{ CO2}} \cdot 0.1325 \frac{\text{kg} \text{ CO}_2 \text{e}}{\text{MJ}_{\text{el}}} + 0.008 \frac{\text{MJ}_{\text{heat}}}{\text{kg} \text{ CO2}} \cdot 0.0754 \frac{\text{kg} \text{ CO}_2 \text{eq}}{\text{MJ}_{\text{heat}}} \right) \cdot 1 \text{kg}_{\text{CO2}}$$
$$CFP_{\text{ammonia}+\text{CO2 supply}} = 0.525 \frac{\text{kg}_{\text{CO2}} \text{eq}}{0.8 \text{ kg}_{\text{ammonia}} + 1 \text{ kg}_{\text{CO2}}}$$

SI 2.2 Fermentation plant

According to Kaliyan, 56.4 g CO_2 eq per MJ of ethanol from cradle-to-gate corn is emitted.³³ The lower heating of ethanol is reported to be 21.5 MJ per dm⁻³.³³ The density of ethanol is 0.789 kg per dm⁻³. The CO_2 emission per kg of ethanol calculate as follows:

$$CFP_{ethanol} = 56.4 \frac{g CO_2 eq}{MJ_{ethanol}} = 56.4 \frac{g CO_2 eq}{MJ_{ethanol}} \cdot \frac{21.5 \frac{MJ_{ethanol}}{dm_{ethanol}^3}}{0.789 \frac{kg_{ethanol}}{dm_{ethanol}^3}} = 1.54 \frac{kg CO_2 eq}{kg_{ethanol}}$$

In contrast Kaliyan et al., we include the carbon uptake of plants for the production of ethanol. For each molecule of ethanol, two molecules of carbon dioxide are absorbed from the atmosphere. Consequently, the amount of CO₂ that is absorbed per kg of ethanol calculated as follows:

$$m_{\text{ethanol,CO2 absorbed}} = \frac{m_{\text{ethanol}}}{M_{\text{ethanol}}} \cdot 2 \text{ M}_{\text{CO2}} = \frac{1 \text{ kg}_{\text{ethanol}}}{46 \frac{\text{g}_{\text{ethanol}}}{\text{mol}}} \cdot 2 \cdot 44 \frac{\text{g}_{\text{CO2}}}{\text{mol}} = 1.913 \frac{\text{kg CO}_{2 \text{ absorbed}}}{\text{kg}_{\text{ethanol}}}$$

The carbon footprint per kg of ethanol including carbon uptake calculates then to:

 $CFP_{ethanol,incl.\ biogenic} = 1.54 \frac{kg\ CO_2\ e}{kg_{ethanol}} - 1.913 \frac{kg\ CO_2\ absorbed}{kg_{ethanol}} = -0.373 \frac{kg\ CO_2\ e}{kg_{ethanol}}.$

The ethanol plant produces approximately 0.96 kg of CO₂ per kg ethanol. The CO₂ capture is related to 0.432 MJ of electricity and 0.1325 MJ of heat per kg of CO₂. The total CFP for producing 1 kg of CO₂ and $\frac{1 \text{ kg ethanol}}{0.96 \text{ kg CO}_2} =$ $1.04~\frac{kg~ethanol}{kg~CO_2}$ calculates to:

*CFP*_{ethanol+CO2}supply, incl. biogenic

$$= -0.373 \frac{\text{kg CO}_2 \text{e}}{\text{kg}_{\text{ethanol}}} \cdot 1.04 \frac{\text{kg ethanol}}{\text{kg CO}_2} - 1 \text{ kg CO}_2$$
$$+ \left(0.432 \frac{\text{MJ}_{\text{el}}}{\text{kg CO}_2} \cdot 0.1325 \frac{\text{kg CO}_2 \text{e}}{\text{MJ}_{\text{el}}} + 0.057 \text{ MJ}_{\text{heat}} \cdot 0.0754 \frac{\text{kg CO}_2 \text{e}}{\text{kg CO}_2} \right) \cdot 1 \text{ kg CO}_2$$
$$- 1 \text{ kg CO}_2$$

$$e_{ethanol+CO2supply,incl.\ biogenic} = -1.336 \frac{kg CO_2 e}{(1 kg CO2 + 1,04 kg ethanol)}$$

SI 2.3 Direct air capture

The Direct air capture process only provides CO₂. The process consumes 1.013 MJ electricity and 4.038 MJ of natural gas per captured kg of CO₂. The carbon footprint for capture CO₂ $CFP_{DAC,CO2 supply}$ for direct air capture is then calculated:

$$CFP_{DAC,CO2 \text{ supply}} = -m_{captured CO2} + GW_{indirect,capture}$$

 $CFP_{DAC,CO2 \text{ supply}} = -1 \text{ kg CO}_2$

$$+ \left(1.013 \frac{\text{MJ}_{\text{el}}}{\text{kg CO2}} \cdot 0.0678 \frac{\text{kg CO}_2 \text{ eq}}{\text{MJ}_{\text{el}}} + 4.038 \frac{\text{MJ}_{\text{natural gas}}}{\text{kg CO2}} \cdot 0.0678 \frac{\text{kg CO}_2 \text{ eq}}{\text{MJ}_{\text{natural gas}}}\right) \cdot 1 \text{ kg CO}_2$$

$$CFP_{DAC,CO2 \text{ supply}} = -0.592 \frac{\text{kg CO}_2\text{e}}{\text{kg CO2}}$$

SI 3. CO₂ supply

SI 3.1 Supply of biogas in a low-carbon economy

Name	Capacity TWh (E_{total})	Potential CO ₂ Supply	Comment	Refere nce
AEBIOM Technical potential	779	273.2	5% of arable land in EU, Maize monoculture, not environmentally acceptable	34
EEA - Environmentally acceptable potential	622	218.2		35
Projection 2020 AEBIOM	465	163.1		34
IEA - Energy Technology Perspectives 2017	393	137.8	Biogas generation in 2060 in Europe	36
Projection Agriculture 2020 AEBIOM	364	127.6		34
Biogas beyond 2020, CE Delft	360	126.1	Accelerated 2030 scenario	37
ICCT Projection	324	113.6	Selected has upper bound.	38
Projection 2020 EU	320	112.1		39
EEA - Resource efficient scenario	233	81.8	Biogas from manure and straw Selected has lower bound.	40
Biogasproduction in 2015 (Eurostat)	229	80.2	Biogas supply of today	41
Average	409	143.4		

The potential supply of CO_2 from biogas in a low-carbon economy is separated into the anaerobic digesters and the biogas power plant. After biogas formation in the anaerobic digester, we assume that all biogas is upgraded, i.e. the separation of methane and carbon dioxide. Subsequently, methane is fed to the natural gas grid and combusted in power plants. Therefore, the total CO_2 supply from biogas $m_{supply,biogas}$ is:

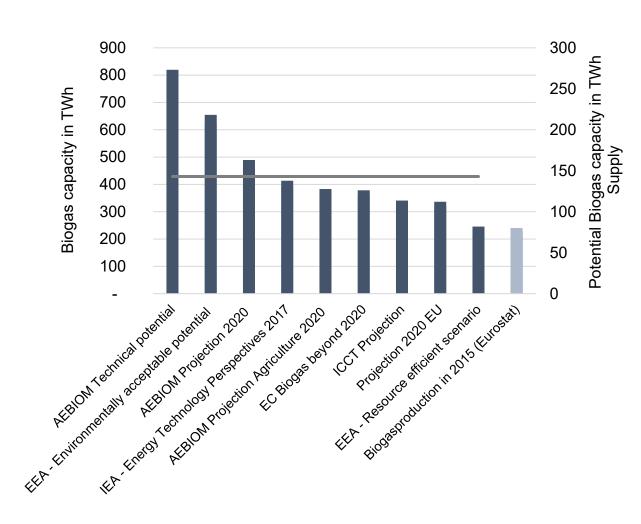
$m_{CO_2 \ supply, biogas} = m_{CO_2 \ supply, upgrading} + m_{CO_2 \ supply, combustion}$

The amount of CO₂ from upgrading at the digesters is calculated as follows: According to AEBIOM, one cubic meter of biogas contains 0.6 m³ biomethane and the remaining volume is filled with CO₂, the lower heating value of upgraded biomethane $LHV_{biomethane}$ is 46.8 MJ per kg and the densities of biomethane $\rho_{biomethane}$ and CO₂ ρ_{CO_2} is 0.73 kg respectively 1.98 kg per norm cubic meter. Therefore, the available mass CO₂ from biomethane upgrading $m_{CO_2 \text{ supply, upgrading}}$ can be calculated from the potential total energy as follow:

 $m_{CO_2 \text{ supply, upgrading}} = V_{CO_2 \text{ supply, upgrading}} \cdot \rho_{CO_2}$

$$V_{CO_2 \ supply, upgrading} = V_{biogas} \cdot (1 - 0.6) \frac{m_{CO_2}^3}{m_{biogas}^3}$$

$$V_{biogas} = \frac{V_{biomethane}}{0.6 \frac{m_{Biomethane}^3}{m_{biogas}^3}}$$


$$V_{biomethane} = \frac{m_{biomethane}}{\rho_{biomethane}}$$

$$m_{biomethane} = \frac{E_{total}}{LHV_{biomethane}}$$

$$\Rightarrow m_{CO_2 \ supply, upgrading} = \frac{E_{total}}{LHV_{biomethane}} \cdot \frac{(1 - 0.6)\frac{m_{CO_2}^3}{m_{biogas}^3}}{0.6\frac{m_{CH_4}^3}{m_{biogas}^3}} \cdot \frac{\rho_{CO_2}}{\rho_{biomethane}}$$

At the power plants, the available mass of CO_2 from the combustion of biomethane $m_{CO_2 supply, combustion}$ assumes that 2.75 kg CO_2 is formed per kg of biomethane. Then, the potential CO_2 supply can be calculated from the potential total energy supply by:

$$m_{CO_2 \text{ supply, combustion}} = m_{biomethane} \cdot 2.75 \frac{kg_{CO_2}}{kg_{biomethane}}$$

 $m_{CO_2 \ supply, combustion} = \frac{E_{total}}{LHV_{biomethane}} \cdot 2.75 \frac{kg_{CO_2}}{kg_{biomethane}}$

SI 3.2 Steel and iron mills

Process	Blast furnace oven	Blast oxygen furnace	Direct Reduction of Iron Ore with hydrogen from electrolysis	Advanced electric arc furnace
Product	Pig Iron	Pig iron to crude steel	Sponge iron	Sponge iron to crude steel
Source	42	42	43	43
	[GJ per tonne]		[GJ per tonne]	[GJ per tonne]
Coke	10.30	7.26		
Coal dust	4.67	4.39		
Net power demand	0.20		10.13	1.26
Power demand N2 and O2	0.12	1.07		
Natural Gas	0.21	3.59	5.62	0
Coke oven gas	0.28			
Oxygen steel furnace gas	0.17			
Export of blast furnace gas	4.72	1.69		
Net Energy demand	11.24	14.62		
Use of hydrogen	[kg per tonne]		[kg per tonne] 58.17	[kg per tonne]

Table 2: Process energy demand for iron and steel making

Table 3: Applied GHG emissions for energy sources and efficiency for converting water electrolysis and methanation (Taken from Otto et al. Table 1)⁴²

GW _{el,fossil}	160	kg CO ₂ eq/GJ
GW _{el,renew}	0	kg CO₂ eq/GJ
GW _{NG}	56	kg CO₂ eq/GJ
GW _{Coke}	105	kg CO₂ eq/GJ
GW _{Hardcoal}	94.2	kg CO₂ eq/GJ
GW _{H2,SMR}	66.64	kg CO₂ eq/GJ
GW _{CH4,synthetic,p2g}	0	kg CO₂ eq/GJ
GW _{cokeovengas}	40	kg CO₂ eq/GJ
GW _{BOFgas}	257.8	kg CO₂ eq/GJ
Efficiency water electrolysis	0.7	kWh hydrogen per kWh electricity
Efficiency methanation	0.84	kWh methane per kWh hydrogen

Table 4: CO_2 supply in a low carbon economy (own calculation using production volumes of Steel Statistical Yearbook 2013)⁴⁴

Total Capacity iron and steel making	169	Mt per year
Direct Reduction of Iron Ore with hydrogen from electrolysis	99	Mt per year
Electrical Arc oven	70	Mt per year
Total GHG Emissions	46	Mt CO ₂ eq per year
Total GHG emissions no primary route	14.5	Mt CO ₂ eq per year

SI 3.3 Cement plants

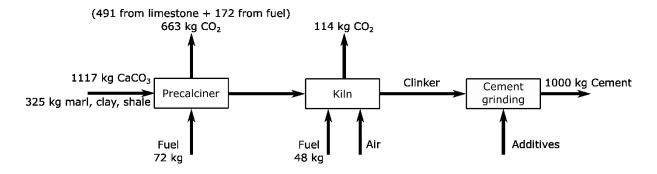
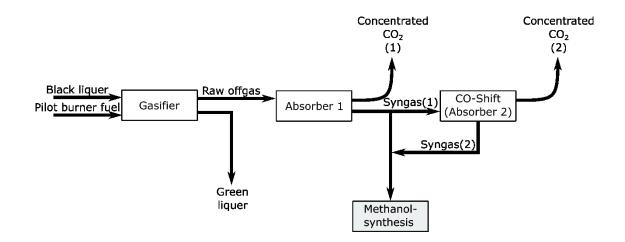


Fig. 1: Carbon flows as reported by Rodriguez et al. ⁴⁶

The emissions of the reference related to fuel combustion are $172 kg CO_2 + 114 kg CO_2 = 286 kg CO_2$. Rodriguez et al. report a lower heating value of 25 MJ per kg of fuel.⁴⁶ The carbon content is 65 % since 172 kg CO₂ are emitted from 72 kg of fuel.^{46,47} Methane has a lower heating value of 50 MJ per kg of methane and a carbon content of 75 %.

The CO₂ formation of using methane instead of the reported fuel calculated after the following equation:


$$e_{CO2,methane} = (72 + 48) \frac{kg_{fuel}}{t_{Cement}} \cdot \frac{25 \frac{MJ}{kg_{fuel}}}{50 \frac{MJ}{kg_{Methane}}} \cdot 0.75 \frac{kg_{C}}{kg_{Methane}} \cdot \frac{44 \frac{kg_{CO2}}{mol}}{12 \frac{kg_{C}}{mol}}$$
$$e_{CO2,methane} = 165 \frac{kg_{CO2}}{t_{Cement}}$$

Therefore, greenhouse gas emissions from fuel combustion are reduced by 16% by switching from the reported fuel to methane:

$$relative \ reduction = \frac{e_{total,methane}}{e_{total,fuel}} = \frac{(165 + 491) \cdot \frac{kg_{CO2e}}{t_{cement}}}{(286 + 491) \cdot \frac{kg_{CO2e}}{t_{cement}}} \approx 84\%.$$

SI 3.4 Pulp and paper mills

All data is based on Ekbom et al. 45

Process unit	Input				Output		
		t/d	CO ₂ [t/d]	CH4 [t/d]		CO ₂ [t/d]	t/d
Gasifier	Black Liquor	3,420			Green Liquor		
	Pilot burner fuel				Raw Gas	1,275	
Absorber 1	Raw Gas	3,164	1,275		CO ₂ (1)	1,261	
					Syngas (1)	14	
Absorber 2	CO Shift Gas	396	1,025		CO ₂ (2)	987	
					Syngas (2)	38	
Methanol synthese	Syngas	1,240	53	33	Methanol		1,183
					Combustible ga	ses	

Greenhouse gas emissions (own Calculations)					
	4477	t CO ₂ eq/d	Reference system		
	2337	t CO₂ eq/d	With methanol production		
	52 %	CO ₂ for capturing in comparison to reference system			

SI 4. Total energy demand to capture CO_2 demand in a low-

carbon economy

The total energy demand to supply the projected CO_2 demand for chemicals (255 Mt CO_2), fuels (415 Mt CO_2), and chemicals and fuels (670 Mt CO_2) is calculated from the projected supply of each CO_2 source and the corresponding energy demand (see Table 5 for results). In our calculation, we first select the CO_2 source with the lowest carbon footprint of feedstock CO_2 until the CO_2 supply capacity is fully exhausted. Then the next CO_2 source with the lowest carbon footprint is exhausted until the projected CO_2 demand is satisfied.

The total energy demand W_{total} is the sum over the energy that is consumed by the CO₂ source i:

$$W_{total} = \sum_{i} \left(\left(q_{th,i} + w_{el,i} + q_{natural gas,i} \right) \cdot m_{CO2 supplied,i} \right)$$

In a low-carbon economy, we assume that thermal energy $(q_{th,i})$ is provided by electrode vessel and natural gas $(q_{natural gas,i})$ is substituted by synthetic natural gas. Consequently, both the thermal energy and the natural gas demand can be expressed through a demand for electricity. For thermal energy, we assume an energy efficiency of 0.99 ($\eta_{electrode vessel}$). Synthetic natural gas is produced from hydrogen, which is produced via electrolysis. We assume an efficiency for electrolysis of $\eta_{electrolysis} = 0.7$ and for the subsequent methanation step $\eta_{methanation} = 0.8$:

$$w_{el,th,i} = \frac{q_{th,i}}{\eta_{electrode\ vessel}} = \frac{q_{th,i}}{0.99}$$

$$w_{el,sng,i} = \frac{q_{natural gas,i}}{\eta_{electrolysis} \cdot \eta_{methanation}} = \frac{q_{natural gas,i}}{0.7 \cdot 0.8}$$

Consequently, the total energy demand is then calculated to

$$W_{total} = \sum_{i} \left(\left(w_{el,i} + \frac{q_{th,i}}{0.99} + \frac{q_{natural gas,i}}{0.7 \cdot 0.8} \right) \cdot m_{CO2 \ supplied,i} \right)$$

Table 5: Total energy demand to supply sufficient CO₂ for chemicals (255 Mt CO₂), fuels (415 Mt CO₂), and chemicals and fuels (670 Mt CO₂)

	Chemicals			Fuels			Chemicals + Fuels			
CO₂ source	CO ₂ supplied [Mt CO ₂]	Energy demand [TWh]	Carbon footprint in [MT CO₂ eq]	CO ₂ supplied [Mt CO ₂]	Energy demand [TWh]	Carbon footprint in [MT CO ₂ eq]	CO ₂ supplied [Mt CO ₂]	Energy demand [TWh]	Carbon footprint in [MT CO₂ eq]	
Biogas upgrading	39	5	-39	39	5	-39	39	5	-39	
Fermentation to										
Ethanol	7	1	-7	7	1	-7	7	1	-7	
Biogas combustion	59	38	-59	59	38	-59	59	38	-59	
Integrated pulp and										
paper mill	37	24	-30	30	24	-30	30	24	-30	
Waste Incineration	41	13	-41	41	13	-41	41	13	-41	
Steel and Iron	40	20	-40	40	20	-40	40	20	-40	
Cement	32	54	-32	123	207	-122	123	207	-122	
Direct Air Capture	0	0	0	69	158	-68	334	740	-320	
Total		156	-254		467	-413		1050	-665	
Total for direct air										
capture		583	-252		948	-410		1531	-662	
Relative difference		73 %	0.8 %		51 %	0.6 %		31 %	0.4 %	

SI 5. References

- 1 M. Aresta and M. Galatola, Journal of Cleaner Production, 1999, 7, 181–193.
- 2 M. Aresta, Carbon dioxide as chemical feedstock, Wiley-VCH, Weinheim, 2010.
- A. F. Clarens, J. B. Zimmerman, G. A. Keoleian, K. F. Hayes and S. J. Skerlos, *Environ. Sci. Technol.*, 2008, 42, 8534–8540.
- 4 C. Falter, V. Batteiger and A. Sizmann, *Environ. Sci. Technol.*, 2016, **50**, 470–477.
- I. Garcia-Herrero, R. M. Cuellar-Franca, V. M. Enriquez-Gutierrez, M. Alvarez-Guerra, A. Irabien and A.
 Azapagic, ACS Sustainable Chem. Eng., 2016, 4, 2088–2097.
- 6 C. van der Giesen, R. Kleijn and G. J. Kramer, Environ. Sci. Technol., 2014, 48, 7111–7121.
- 7 W. Hoppe, S. Bringezu and N. Thonemann, Journal of Cleaner Production, 2016, 121, 231–237.
- 8 H. Al-Kalbani, J. Xuan, S. García and H. Wang, *Applied Energy*, 2016, **165**, 1–13.
- 9 S. Kim and M. Overcash, Int J Life Cycle Assess, 2000, 5, 221–228.
- 10 J. Kim, C. A. Henao, T. A. Johnson, D. E. Dedrick, J. E. Miller, E. B. Stechel and C. T. Maravelias, *Energy Environ. Sci.*, 2011, **4**, 3122.
- P. Kongpanna, V. Pavarajarn, R. Gani and S. Assabumrungrat, *Chemical Engineering Research and Design*, 2015, 93, 496–510.
- 12 M. T. Luu, D. Milani, A. Bahadori and A. Abbas, *Journal of CO2 Utilization*, 2015, **12**, 62–76.
- 13 M. Matzen and Y. Demirel, *Journal of Cleaner Production*, 2016, **139**, 1068–1077.
- 14 M. Overcash, Y. Li, E. Griffing and G. Rice, J. Chem. Technol. Biotechnol., 2007, 82, 1023–1038.
- 15 D. Parra, X. Zhang, C. Bauer and M. K. Patel, Applied Energy, 2017, 193, 440–454.
- M. Pérez-Fortes, J. C. Schöneberger, A. Boulamanti, G. Harrison and E. Tzimas, *International Journal of Hydrogen Energy*, 2016, **41**, 16444–16462.
- 17 G. Reiter and J. Lindorfer, Int J Life Cycle Assess, 2015, 20, 477–489.

- B. Schäffner, M. Blug, D. Kruse, M. Polyakov, A. Köckritz, A. Martin, P. Rajagopalan, U. Bentrup, A. Brückner,
 S. Jung, D. Agar, B. Rüngeler, A. Pfennig, K. Müller, W. Arlt, B. Woldt, M. Grass and S. Buchholz,
 ChemSusChem, 2014, 7, 1133–1139.
- 19 W. Schakel, G. Oreggioni, B. Singh, A. Strømman and A. Ramírez, *Journal of CO2 Utilization*, 2016, 16, 138–149.
- L. F. S. Souza, P. R. R. Ferreira, J. L. de Medeiros, R. M. B. Alves and O. Q. F. Araújo, ACS Sustainable Chem.
 Eng., 2014, 2, 62–69.
- 21 S. D. Supekar and S. J. Skerlos, Environ. Sci. Technol., 2014, 48, 14615–14623.
- 22 V. Uusitalo, S. Väisänen, E. Inkeri and R. Soukka, Energy Conversion and Management, 2017, 134, 125–134.
- 23 É. S. Van-Dal and C. Bouallou, Journal of Cleaner Production, 2013, 57, 38–45.
- S. B. Walker, D. van Lanen, U. Mukherjee and M. Fowler, Sustainable Energy Technologies and Assessments, 2017, 20, 25–32.
- 25 X. Zhang, C. Bauer, C. L. Mutel and K. Volkart, *Applied Energy*, 2017, **190**, 326–338.
- 26 A. Sternberg and A. Bardow, Energy Environ. Sci., 2015, 8, 389–400.
- 27 N. Thonemann and M. Pizzol, Energy Environ. Sci., 2019, 12, 2253–2263.
- 28 J. C.M. Farla, C. A. Hendriks and K. Blok, Energy Conversion and Management, 1995, 36, 827–830.
- 29 F. Ullmann, Ullmann's encyclopedia of industrial chemistry, Wiley, Chichester, 7th edn., 2010.
- M. Weiss, M. Neelis and M. Patel, Non-energy use and related CO₂ emissions in Germany: a carbon flow analysis with the NEAT model for the period of 1990-2003, Utrecht University, Copernicus Institute, Utrecht, 2007.
- 31 European Commission Integrated pollution prevention and control, *Reference Document on best Available Techniques for the Manufacture of large Volume Inorganic Chemicals - Ammonia, Acids and Fertilisers,* available at: http://eippcb.jrc.ec.europa.eu/reference/lvic-aaf.html.
- 32 thinkstep AG, *GaBi Software-System and Database for Life Cycle Engineering*, thinkstep AG, Leinfelden-Echterdingen, 1992-2016.

- 33 N. Kaliyan, R. V. Morey and D. G. Tiffany, *Biomass and Bioenergy*, 2011, **35**, 1103–1113.
- 34 The European biomass association, *A biogas road map for europe*, Brussels, 2009.
- 35 EEA, *How much bioenergy can Europe producewithout harming the environment*?, No 7/2006, Kopenhagen, 2006.
- 36 IEA, Energy Technology Perspectives 2017, Paris, 2017.
- 37 European Commission, Optimal use of biogas from waste streams. An assessment of the potential of biogas from digestion in the EU beyond 2020, 2016.
- 38 ICCT, What is the role for renewable methane in European decarbonization?, Beijing, 2018.
- 39 F. van Foreest, Perspectives for biogas in Europe, The Oxford Institute for Energy Studies, 2012, NG 70.
- 40 European Environmental Agency, EU bioenergy potential from a resource-efficiency perspective. EEA Report No.6/2013, 2013.
- 41 Eurostat, the Statistical Office of the European Union, *Energy statistics supply, transformation and consumption (nrg_10). Primary production nrg_109a*, 2017.
- 42 A. Otto, T. Grube, S. Schiebahn and D. Stolten, Energy Environ. Sci., 2015, 8, 3283–3297.
- 43 K. Schumacher and R. D. Sands, *Energy Economics*, 2007, **29**, 799–825.
- 44 worldsteel association, Steel Statistical Yearbook 2013.
- 45 T. Ekbom, M. Lindblom, N. Berglin and P. Ahlvik, *Technical and Commercial Feasibility Study of Black Liquor Gasification with Methanol/DME Production as Motor Fuels for Automotive Uses - BLGMF*, Nykomb Synergetics AB, Stockholm, 2003.
- 46 N. Rodríguez, M. Alonso, G. Grasa and J. C. Abanades, Environ. Sci. Technol., 2008, 42, 6980–6984.
- M. Bui, C. S. Adjiman, A. Bardow, E. J. Anthony, A. Boston, S. Brown, P. S. Fennell, S. Fuss, A. Galindo, L. A. Hackett, J. P. Hallett, H. J. Herzog, G. Jackson, J. Kemper, S. Krevor, G. C. Maitland, M. Matuszewski, I. S. Metcalfe, C. Petit, G. Puxty, J. Reimer, D. M. Reiner, E. S. Rubin, S. A. Scott, N. Shah, B. Smit, J. P. M. Trusler, P. Webley, J. Wilcox and N. Mac Dowell, *Energy Environ. Sci.*, 2018, **11**, 1062–1176.