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Experimental

Preparation of electrolytes: MgTFSI,/MgCl, in DME. This synthesis was conducted within the glovebox
unless noted otherwise. Magnesium bis(trifluoromethanesulfonimide) (MgTFSly) (Solvionic) is dried at
200 °C under vacuum on a Schlenk line, and then transferred to an argon filled glovebox. Within the
glovebox, the MgTFSI, is dissolved in 1,2-dimethoxyethane (DME, 99.5% inhibitor free, Aldrich), that had
been stored on activated 3 A molecular sieves (Aldrich) for at least 3 days, to form either a 0.25 M
solution or 1 M solution, depending on the concentration of the electrolyte. After dissolving the
MgTFSl,, magnesium chloride (MgCl,) beads (anhydrous, beads, 99.99% Aldrich) were added to the
solution to yield either a 0.5 M or 2 M MgCl, solution (MgTFSI>:MgCl, is 1:2). This procedure was
completed according to the literature.! The resulting solution was stirred until the MgCl, had reacted
and fully dissolved. The MgTFSl>/MgCl, DME solution is then stirred on molecular sieves for at least 24 h
prior to use.

MgHMDS,/AICI; in THF. This synthesis was conducted within the glovebox unless noted otherwise.
Magnesium bis(hexamethyldisilazide) (MgHMDS;) (97%, Aldrich) was recrystallized from heptane
(anhydrous, 99%, Aldrich) within an argon filled glovebox by adding to heptane, heating until dissolved,
then cooling the heptane to precipitate crystallization. The MgHMDS; was collected by filtration. For 2.5
mL scale, 0.302 g recrystallized MgHMDS; were dissolved in 0.9 mL of tetrahydrofuran (THF, anhydrous,
99.9%, inhibitor-free, Aldrich) that had been stored on activated 3 A molecular sieves for at least 3 days.
0.2335 g aluminum chloride (AICl3,anhydrous, 99.99%, Aldrich) were dissolved in 1.9 mL THF
incrementally. The AICI; THF solution was added to the MgHMDS,; THF solution, and the resulting
solution was stirred overnight to allow the formation of the active magnesium complex. This solution is
0.35 M with respect to magnesium, with a 1:2 molar ratio MgHMDS;:AICls.

MgFPB in DEG. This synthesis was conducted according to the literature entirely within the glovebox
unless noted otherwise.? First, 100 mL of DME dried on sieves were stirred over Na metal. The DME and
the metal surface turned orange, and the Na was cut to expose fresh Na. This was repeated until the
surface of the newly exposed Na did not change in appearance. The DME was then distilled under N,



using standard Schlenk techniques to avoid exposure to water and oxygen, yielding a clear colorless
solvent. 2.81 g of hexafluoro-2,3-bis(trifluoromethyl)-2,3-butanediol (hbtp, TCI, 98%) were dissolved in 5
mL of the purified DME, liberating a small amount of vapor. Separately, 108 mg of MgBH, (95%, Aldrich)
were suspended in 20 mL of the purified DME. The 5 mL of hbtp solution were added slowly and
dropwise to the suspended MgBH, in DME, liberating H.. After stirring overnight, this colorless and
slightly cloudy solution was transferred to the Schlenk line, and then concentrated to about 5 mL under
vacuum. The concentrated solution was brought back into the glovebox, then charged with 30 mL of
hexane (anhydrous, 99%, Aldrich). The formation of two phases was noted, a viscous liquid phase about
4 mL at the bottom of the flask, and a top liquid phase. The top phase was removed, and the viscous
phase was washed twice more with 10 mL of hexane. The viscous phase was dried under high-vacuum
to yield a very fine white powder, the magnesium fluorinated pinacolatoborate (MgFPB) salt. This
powder was then dried under dynamic vacuum overnight at room temperature.

For a 0.5 M solution, 1.37 g of MgFPB were dissolved in 2 mL of diethylene glycol dimethyl ether (DEG,
anhydrous, 99.5%, Aldrich) that had been purified with sodium in the same way the DME above was
purified, the only difference being that the DEG was distilled under vacuum instead of N,. The resulting
solution was colorless and slightly cloudy. The MgFPB solution was charged with 100 mg of magnesium
powder (325 mesh, 99.8%, Alfa Aesar) then parafilmed and stirred in a 50 °C oil bath. After stirring for 24
h, the solution was filtered, rendering it ready for use.
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Figure S1. Chemical structures of electrolyte salts. A. MgHMDS, B. MgTFSI, C. MgFPBeDME,
Synthesis of magnesium polysulfides

The Mg polysulfide solution was prepared by mixing Mg powder and S powder (99.98%, Aldrich) in the
0.25 M MgTFSI; + 0.5 M MgCl, DME electrolyte that had been stored on sieves. The electrolyte was



filtered before use. The Mg powder (2 mg), S powder (16 mg) and electrolyte (2 mL) were added into a
20 mL vial with a small stir bar. The mixture was stirred for 2 h under room temperature until the
solution turned light orange. After that, the vial was sealed with Teflon tape and parafilm. The solution
was stirred overnight at 50 °C, deepening in color. After filtration, the magnesium polysulfide solution
was ready for analysis. The nominally 0.2 M (in terms of atomic S) solution is synthesized first, from
which the 0.05 M solution is produced via dilution with additional electrolyte. This synthesis protocol
was repeated for synthesizing magnesium polysulfides in the MgFPB and MgHMDS,/AICI; electrolytes.

Electrochemical measurements

Mg-S cathodes were prepared by punching activated carbon cloth (FM100, double-weave, Charcoal
House) into 3/8” diameter disks. Inside an argon filled glovebox, 0.76 mg of S were added to each
carbon disk to yield 1 mg S/cm?. This was accomplished by dissolving the appropriate amount of sulfur in
sieve-dried THF, then adding 60 L of this solution to the cathode in 15 pL increments, 30 uL on each
side. The THF was evaporated by allowing the cathodes to sit in the open atmosphere of the glovebox.
Then, the cathodes were loaded into a Chemglass glass pressure vessel, sealed, then heated at 155 °C
for 12 h within the glovebox oven to melt infuse the sulfur into the carbon cloth yielding ACC-S.

Magnesium metal (99.9%, 0.1 mm thick, MTI corp.) was punched into disks, from which the oxide layer
was removed via scraping. 2032 type coin cells were assembled with Mg anode, separator, ACC-S
housed in a Teflon spacer (1/32” thick, McMaster Carr), 160 pL of electrolyte added to the ACC-S,
stainless steel spacers, wave spring. All cells used one 3/4” diameter Celgard 2325 separator unless
otherwise noted. Cells with the 1 M MgTFSI, + 2 M MgCl, DME electrolyte used one 3/4” diameter glass
fiber separator (200 °C vacuum dried, Whatman), as this electrolyte does not wet Celgard.

Assembled cells were rested for an appropriate amount of time (cells that were not aged for a time
specified in the manuscript were rested for 1 h), then discharged at a rate of 0.1C with respect to sulfur
loading using a Neware Battery Tester unless otherwise noted. Discharge was controlled on the basis of
potential or capacity, as appropriate.

Lithium-sulfur cells for mass spectrometry technique validation were prepared as follows. Sulfur powder
and disordered mesoporous carbon (ACS material, surface area 600 m?/g) were combined in an 80:20
sulfur:carbon mixture, thoroughly ground together with mortar and pestle, loaded into a sealed glass
pressure vessel and heated at 155 °C for 12 h within the glovebox oven. This resulting S/DMC, super P
conductive carbon (MTI corp.), and polyvinylidene fluoride (Arkema) were combined in an 80:10:10 ratio
with N-methylpyrrolidone (NMP) and stirred for 24 h. The resulting slurry was cast on carbon coated
aluminum (MTI corp.) using a doctor blade, which was then dried at 55 °C for 12 h. Cathodes were
punched from this material in 3/8” diameter, with loadings of 1.1 — 1.5 mg S/cm?. Lithium foil (Alfa
Aesar, 0.75 mm thick, 99.9%) was polished to a reflective shine by removing the oxide layer, then cut
into 3/8” diameter electrodes. Cells were assembled with the cathode, Celgard 2325 separator, and Li
anode. Electrolyte, 1 M LiTFSI (TCl, >98.0%, dried in dynamic vacuum 120 °C for 12 h) dissolved in sieve
dried 1,3-dioxolane (DOL):DME 1:1 v/v, was restricted to 20 pL electrolyte / mg S and was added to the



cell during assembly. Cells were rested for 1 h, then discharged to 2.2 V. Cells were derivatized for UPLC-
MS in the same way as Mg-S cells.

Cyclic voltammetry was carried out using a PARSTAT MC-1000 potentiostat/galvanostat (Princeton
Applied Research), where the magnesium electrochemistry of the various electrolytes was evaluated
within 2032 coin cells using a magnesium counter/reference electrode and stainless steel working
electrode. The potential was swept at a rate of 10 mV/s.

Electrochemical impedance spectroscopy was also carried out on the same PARSTAT-MC-1000
workstation, where the frequency was swept from 1,000,000 Hz to 0. 1 Hz with an amplitude of 5 mV
RMS.

Preparation of UV/VIS samples

Coin cells that had been discharged and aged or aged at OCP as appropriate were opened within the
glovebox, and the cathodes were recovered and placed into 400 L of sieve-dried THF for 5 min. The
choice of THF as an extraction solvent for preparing the UV/VIS samples was one informed by economics
and compared to using the electrolyte as an extraction medium should not alter the conclusion of the
UV/VIS experiments. The resulting solution was collected, filtered through 0.45 um syringe filters, and
added to 1 mm path-length quartz cuvettes (Type 30 Standard Micro Cuvette with PTFE stopper, Firefly
Sciences). The reference/background solution for each electrolyte type was prepared by assembling a
full Mg-S cell using that electrolyte, resting it for 1 h plus the total amount of time required to discharge
an identical cell to 200 mAh/g (about 2 additional h), then preparing it as described above. This ensures
that the background subtraction solution contains the same concentration of solvent and salts as the
sample solutions being analyzed. Therefore, everything observed in the UV/VIS spectrum is a result of a
chemical/electrochemical reaction. The reference for the synthesized Mg polysulfides is the pristine
electrolyte used for the synthesis. The cuvettes are sealed within the glovebox, and then analyzed using
a Jasco V-670 UV-Visible-Near IR Spectrometer from 200 cm? to 650 cm™.

Preparation of ultra performance liquid chromatography — mass spectroscopy (UPLC-MS) samples

Samples for UPLC-MS were prepared similarly to the sample preparation for the UV/VIS samples. In a
typical analysis, a coin was opened within the glovebox, with the cathode and separator recovered and
added to 400 pL of sieve-dried DME for 30 s. The DME was removed, then replaced with fresh DME
twice. The cathode and separator were then transferred to a solution of 5 mg of 4-
(dimethylamino)benzoyl chloride (DBC) (>99.0%, for HPLC derivatization, Aldrich) suspended in 100 pL of
sieve dried DME. The DBC quickly reacts with solid (poly)sulfides in the cathode and separator, yielding a
clear yellow solution (Figure S33). After 5 min, this solution was removed from the glovebox and
charged with 200 pL of 66:34 by vol acetonitrile (ACN):water (both HPLC grade) both with 1 mM
ammonium acetate. After filtration, the clear slightly-yellow solution was analyzed with UPLC-MS. If no
polysulfides were present in the cathode, the solution remained colorless and the DBC did not dissolve
until the addition of the ACN:water.



A Waters Acquity UPLC system consisting of a sample manager and binary solvent manager was used to
inject 20 pL of sample with water:ACN 90:10 v/v 1 mM ammonium acetate onto a Waters Acquity UPLC
BEH C18 column (1.7 um, 2.1 x 100 mm) at a flow rate of 0.4 mL/min. Column temperature was
maintained at 40 °C. During the 20 min operation, the gradient used is as follows: 90% water, 10%
acetonitrile for 2 min, then gradient transition to 100% ACN by 19 min, after which there was a gradient
transition back to the 90:10 water:ACN ending at 20 min. A t-split was used to deliver 50% flow from the
column to the mass spectrometer.

For MS detection, a Waters Acquity TQD Triple Quadrupole was operated in ESI+ mode with the
following parameters: capillary 3.2 kV, cone 15V, extractor 3 V, RF lens 0.1 V, source temp 150 °C,
desolvation temp 350 °C. Nitrogen flow is 650 L/h for desolvation, 50 L/h for cone. From the mass
spectrum, the masses corresponding to the di-functionalized polysulfides (refer to scheme 1) were
detected as a function of retention time. All of the parameters were chosen to maximize analyte signal.
Using the Acquity software, the area under the peaks associated with each polysulfide was integrated
and recorded. By summing these areas (multiplied by the number of sulfur atoms present in each
species), the total ionic sulfur on the basis of sulfur atoms was calculated.

Error was calculated in the following way. Firstly, sets of samples were prepared in triplicate, one set
containing a large amounts of solid ionic polysulfides and one containing amounts near the instrument
detection limit. From the quantitative results for total sulfur content in these samples, relative standard
deviations were calculated and appropriately applied to the data shown in Figure 3 and Figure S26.
Additionally, error from noise and non-analyte ions of matching m/z was calculated by obtaining the
area in the chromatogram to either side of the analyte peak, over a period of total integration that
matches the analyte peak. For example, if the analyte peak was centered at 2.0 min and was 0.5 min
wide, the area from 1.5 min to 1.75 min was summed with the area from 2.25 min to 2.5 min and
applied as additional error to the result.

SEM-EDX

Samples were sealed inside a vacuum transfer chamber (PELCO SEM Pin Stub Vacuum Desiccator) for
transfer to the SEM facility. Electronically conductive samples were transferred directly from the
vacuum chamber into the SEM (Magellan 400 XHR FESEM, equipped with an Everhart-Thornley SE
detector and Bruker EDX spectrometer). Non-conductive samples were sputter coated with 2 nm of
iridium using a 208HR High Resolution Sputter Coater (Ted Pella Inc.), then transferred into the SEM. All
care to minimize sample exposure to air was taken, but it was impossible to completely avoid air
exposure. Samples were analyzed at a working depth of 5 mm, with an operating voltage of 10 kV and
current density of 1.6 nA.

Estimation of sulfur solubility

A small amount of sulfur powder, 1.0 — 1.5 mg, was measured into a vial. To the vial, the solution to be
tested was added in 10 plL increments. The vial was then shaken for at least 1 min, and if sulfur powder
was still visible, another increment was added. The ending volume when sulfur particulate could no
longer be seen was used in conjunction with the original mass of sulfur to estimate the solubility.



Powder X-ray diffraction

The sample was collected in a 0.5 mm borosilicate capillary and mounted on a Bruker Photon-II
diffractometer. The specimen was centered to rotate along the phi-axis of the instrument. The sample
to detector distance was set to 150.0 mm. Data were recorded with Cu-Ka radiation at room
temperature. Five frames at varying 2-theta angles, each exposed for 60 s with a phi-360° rotation
applied to the sample, were recorded. These were composited within APEX-IIl software and the
intensities integrated across the Laue rings to produce the PXRD diffractogram. The effective data range
is 5to 90° in 2-theta, with an effective step size of 0.02° in 2-theta. Spectra were background subtracted
as appropriate.

Synchrotron X-ray absorption spectroscopy (XAS)

Cells containing the 0.25 M MgTFSI; + 0.5 M MgCl, in DME electrolyte were assembled, discharged to
200 mAh/g, and then aged for 168 h, producing the solid magnesium polysulfide precipitate. These cells
were opened, the separator containing the deposit was harvested and washed with anhydrous THF,
then dried. Standard coin cells were modified by drilling a %4” diameter hole in the bottom of the case. A
%" diameter punch of Kapton film (7.5 um thick, Premier Lab Supply, Premier Thin Film TF-475 Kapton
Continuous Roll) was super glued to the inside of the case, making the cell air-tight but allowing for X-
ray penetration to the sample. The separator with target sample was loaded into the cell, with the
sample facing the Kapton window. The cell was sealed with two stainless steel spacers, wave spring, and
unmodified top case. An example of a prepared cell can be seen in Figure S13. A reference Sg sample
was prepared in the same manner, but by mixing 1 wt% sulfur powder with 99 wt% cellulose powder as
the target.

Samples were measured at beamline 9-BM of the Advanced Photon Source at Argonne National
Laboratory. The incident energy was selected with a Si(111) double crystal monochromator, and a
rhodium coated mirror was used to reject higher order harmonics. Samples were analyzed in a helium-
purged chamber, and the monochromator energy was calibrated to the Ss reference. The absorption
spectra were obtained by collecting the sulfur Ka fluorescence as a function of incident energy using a
four element silicon drift detector and dividing this by the incident intensity that was monitored by a
helium filled ion chamber. Using Athena XAS data processing software, the collected spectra were signal
averaged, normalized, and displayed as total fluorescence intensity or Fourier transform magnitude. The
spectra were normalized by first subtracting a line that was fit to the pre-edge region below the onset of
the white line and then division by a constant such that the post edge intensity is roughly equal to one.
Before Fourier transformation, the background was modeled by a spline function and subtracted from
the normalized spectrum and energy was converted into photoelectron wavenumber using an Ep of
2470.4 eV. A window from 3 to 7 A was used for Fourier transformation.

Nuclear magnetic resonance spectroscopy

The magnesium polysulfide precipitate, embedded in a Celgard separator, was immersed into
deuterated DMSO (Aldrich) within the glovebox, immediately resulting in a blue solution. The sample



was transferred to a NMR tube, which was capped and sealed with parafilm, then analyzed on a Bruker
400 mHz NMR spectrometer. Data was processed with Bruker TopSpin software.

Further supporting figures

Plating/stripping of Mg in studied electrolytes
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Figure S2. CVs for the four different magnesium electrolytes used in this study. Top left: 0.25 M MgTFSI,
0.5 M MgCl, in DME. Top right: 1 M MgTFSI, + 2 M MgCl, in DME. Bottom left: MgHMDS, + AICl5 in THF.
Bottom right: 0.5 M MgFPB in DEG. CVs are done in two electrode configuration coin cells, using 100 pL
of un-conditioned electrolyte, magnesium counter/reference and stainless steel working electrodes at a
rate of 10 mV/s.

Figure S2 shows CVs on the studied electrolytes. The overall efficiency and the deposition/stripping
overpotential differ for each electrolyte, with each electrolyte showing changes in these parameters
from cycle 1 to cycle 2. Of note is that the current density of the MgFPB electrolyte is about an order of
magnitude higher than that of the other three electrolytes, the reason for which is unknown at this
time. The figures above show each electrolyte, while perhaps not the most efficient, is at least capable
of magnesium electrochemistry.



Additional SEM-EDX images

Figures S3 — S7 contain additional SEM-EDX images of deposits found on the separator and cathode of a
Mg-S cell with a 0.25 M MgTFSI; + 0.5 M MgCl, DME electrolyte, discharged to 200 mAh/g, then aged
168 h. Figures S6 and S7 show how the morphology and elemental composition of the electrolyte salts
differ from those of the deposits observed in Figure 2A and Figures S3, S4, and S5. The lack of Cl, F, and
N and difference of structure in Figure 2 and Figures S3, S4, and S5 compared to S6 indicate the deposits
in Figure 2A and Figures S3, S4, and S5 are not simply deposits of electrolyte salts.

Figures S8A—D show multiple sulfur-rich deposits and deposits attributed to electrolyte salts for 1 M
MgTFSl; + 2 M MgCl; in DME cells aged 168 h.

Figures SQ9A—C show multiple sulfur-rich deposits and deposits attributed to electrolyte salts for Mg-FPB
cells aged 168 h.

Figures S10A-C and S11A-B show various components of a 168 h aged cell using the MgHMDS; + AICl5 in
THF electrolyte. These SEM images show no sulfur-rich deposits on the anode, but sulfur-rich deposits

on the cell separator.

Figure S3. Reproduction of Figure 2 from the main text, but with additional elements as detected by EDX
(Cl, F, N). Scale bar is 300 um.

Table S1. Normalized atom percentages of Mg, O, and S for deposit shown in Figure S3.

Element [norm. at.%]
Oxygen 35.91876
Magnesium 22.90417

Sulfur 41.17707
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Figure S5. A deposit on the ACC-S cathode that is primarily Mg, S, O, with some C, Cl, F, and a small
amount of N. Scale bar is 8 um.
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Figure S6. Deposit on separator that is attributed to a combination of the electrolyte salts MgTFSI; and
MgCl, according to the elemental mapping. Scale bar is 40 pm.



Figure S7 A. SEM/EDX of Mg anode recovered from 0.25 M MgTFSI; + 0.5 M MgCl; in DME cell showing
deposits attributed to the electrolyte salts. Scale bar is 100 pm.

Figure S7 B. SEM/EDX of Mg anode recovered from 0.25 M MgTFSl, + 0.5 M MgCl, in DME cell showing
deposits attributed to the electrolyte salts. Scale bar is 100 pm.

Figure S8 A. SEM/EDX of Mg anode recovered from 1 M MgTFSI, + 2 M MgCl, in DME cell showing a
sulfur-rich deposit. Scale bar is 60 pum.
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Figure S8 B. SEM/EDX of Mg anode recovered from 1 M MgTFSI, + 2 M MgCl, in DME cell showing a
sulfur-rich deposit. Scale bar is 20 um.

100pm | Crmapone o 100pm | Cmap B
e mag: trsv oy o 7o e " 2 et e s ooz

1]

100 pm | Cmap one
Gk MAG 13x v 10k WO 7o

Figure S8 C. SEM/EDX of Mg anode recovered from 1 M MgTFSl, + 2 M MgCl, in DME cell showing sulfur-
rich deposits. Scale bar is 100 um.
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Figure S8 D. SEM/EDX of Mg anode recovered from 1 M MgTFSI, + 2 M MgCl, in DME cell showing
deposits attributed to the electrolyte salts. Scale bar is 200 pum.



Figure S9 A. SEM/EDX of Mg anode recovered from MgFPB in DEG cell showing a sulfur-rich deposit.
Scale bar is 30 um.

Figure S9 B. SEM/EDX of Mg anode recovered from MgFPB in DEG cell showing a sulfur-rich deposit.
Scale bar is 40 um.

Figure S9 C. SEM/EDX of Mg anode recovered from MgFPB in DEG cell showing deposits attributed to
the electrolyte salts. Scale bar is 200 um.



Figure S10 A. SEM/EDX of Mg anode recovered from MgHMDS; + AICl; in THF cell showing pockmarked
Mg anode surface. Scale bar is 60 um.

Figure S10 B. SEM/EDX of Mg anode recovered from MgHMDS:; + AICl; in THF cell showing MgHMDS;
salt deposit. Scale bar is 20 um.

Figure $10 C. SEM/EDX of Mg anode recovered from MgHMDS, + AICl5 in THF cell showing Mg and Cl
deposit. Scale bar is 30 um.



Figure S11 A. SEM/EDX of Celgard separator recovered from MgHMDS, + AICl; in THF cell showing
sulfur- and salt-rich deposit. Scale bar is 60 um.

Figure S11 B. SEM/EDX of Celgard separator recovered from MgHMDS; + AICl3 in THF cell showing Mg
metal chunk (left) and Mg-, O-, S-rich deposit (right). Scale baris 3 um.

General comment on SEM/EDX - The figures shown above are representative of the surfaces of the
anodes and separators studied; numerous deposits matching those shown above were found on each
respective anode. In the cases where no sulfur-rich deposits were found on the anode (0.25 M MgTFSI,
+ 0.5 M MgCl, and MgHMDS; + AICl; cells), the surface of the anode was scanned for nearly an hour
each in search of any S-containing deposits that would represent Mg,S,, to no avail. In the cases where
anode sulfur-rich deposits were found (1 M MgTFSI, + 2 M MgCl,, MgFPB, and separator of
MgHMDS,/AICl; cells) the sulfur rich deposits were found within about 5 min of studying the surface.
Numerous deposits were then subsequently found, indicating the widespread deposition of such
compounds.



Further Mg,S, solid analysis

Extended X-ray absorption fine structure (EXAFS)

Radial distance (A)

Figure S12. EXAFS data for — Mg,S, solid and — elemental sulfur.

As stated in the main text, the max peaks observed in the EXAFS plot are indicative of the geometric
environment experienced by the sulfur atoms in the sample. The Mg,S, sample analyzed is clearly
different from Ss. From the literature, MgSs displays a peak at 1.67 A and MgsSs at 1.30 A. The higher the
magnesium to sulfur ratio, the more tightly bound the sulfur atoms are within the material. At 1.62 A,
the Mg,S, compound has a magnesium content somewhere between MgSs and MgsSs, which we

estimate to be MgSe.s.

Figu;e $13. Modified coin-cell with Kapton window for XAS/EXAFS measurement.

Powder X-ray diffraction of Mg,S, solid

The M3Sg material identified by Xu and colleagues is amorphous; its detection was only accomplished
through the use of synchrotron powered X-ray absorption spectroscopy (XAS). PXRD on the material
recovered from the separators as shown in Figure 2 reveal that the deposit in our cells is a mixture of
amorphous and crystalline phases. The results can be seen in Figure S14.
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Figure S14. Powder X-ray diffraction for the Mg,S, sample obtained from aged 0.25 M MgTFSI; + 0.5 M
MgCl; in DME cells. Compared against crystalline covalent sulfur S8 and magnesium sulfide.

The collection was done in two ways. In the first, the sample was left embedded in the Celgard, which
was cut into small pieces and loaded into a capillary. In the second, 8 other separators with the Mg,S,
deposit were scraped with a razor blade to produce a small amount of the Mg,S, powder. This was
loaded into the capillary and analyzed. The background subtraction was done such that the influence of
the glass capillary and the Celgard separator (if applicable) were removed from the spectra.

An amorphous contribution in the broad hump from 15° - 30°, over which the crystalline peaks are
superimposed, is clearly visible in these diffraction patterns. The multi-component crystalline peaks
have been challenging to identify, and likely belong to some previously un-solved solvated complexes
containing Mg, Cl, TFSI, DME, and polysulfide. The diffraction peaks do not match any known Mg
relevant solvate complexes. Most importantly, the crystalline peaks do not indicate any presence of
covalent S8 or other known allotropes of covalent sulfur, nor of magnesium sulfide. The relevant mg
solvate complexes examined and the sulfur allotropes are listed in the table below:

Table S2. Crystal structure database identifier, general composition, and structure of compounds
relevant for the Mg-S system investigated. None of these have a diffraction pattern matching the
pattern in Figure S14.

Cambridge Crystallography Data | General composition Structure

Centre Database Identifier
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Magnesium, chloride, DME, TFSI
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Nuclear magnetic resonance (NMR) on Mg,S, solid

Next, the sample was investigated via *H NMR, with the explicit purpose of determining whether there
was bound solvent in the solid product, a common occurrence for magnesium polysulfides.® For this
analysis, deuterated DMSO was chosen as the solvent because it has a high-dielectric constant / donor
number and high polysulfide solubility. The thinking was that if there were polysulfides that had
precipitated with an ether-based solvent shell, the high donor number DMSO would be able to dissolve
that shell and the original solvent would be visible in *H NMR.

One of the separators that contained the Mg,S, powder sample was immersed into deuterated DMSO.
Immediately, the solution changed to a vibrant blue color, and all visible solids were dissolved out of the
separator. This vibrant blue color is a very characteristic feature of solutions that contain the polysulfide
Ss™ radical, and is commonly observed in solutions of Mg polysulfides in DMSQ.3*

This is further direct evidence that the compound is solid magnesium polysulfide. The blue sample is
shown below in Figures S15A and S15B. The radical was identified by exposing the solution to water,
which results in immediate quenching of the radical anion and a color change to light yellow.




Figure S15A (left). Solution of deuterated DMSO + separator that contained the Mg,S, solids. S15B
(right) shows the solution in an air-tight NMR tube for *H analysis. The blue color stems from the
presence of the ionic polysulfide S5™°.

The results of the 'H NMR are shown below in Figure S16A and S16B. The spectrum shows a very clean
sample with only a few peaks. The two singlets at 3.43 ppm (4 H) and 3.24 ppm (6 H) are unmistakably
DME, with the 6H signal belonging to the methoxy protons and the 4H signal belonging to the chemically
identical aliphatic protons.® The signal at 3.33 ppm is water, 2.50 ppm is residual non-deuterated DMSO,
and the tiny multiplets at 3.5 ppm and 1.7 ppm are THF.

The separator from which this sample was prepared was dried for over 9 h in the glovebox after its
initial rinsing with THF (per standard procedure to remove salts and solvent besides the Mg,S, deposit),
prior to its NMR analysis. The DME must be locked into the solid material, otherwise its signal would be
of similar magnitude to the THF due to evaporation. These results indicate that the Mg,S, precipitate
contains DME solvent molecules in its structure.
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Further electrochemical data — discharge potential curves and EIS
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Figure S17. Discharge profiles of all cells used in this study that used 0.25 M MgTFSI; + 0.5 M MgCl, in
DME, that were discharged to a cutoff potential of 0.5 V. The average capacity, 396 mAh/g, was used to
calculate SOC for all cells in the manuscript, where 50% SOC = 200 mAh/g, etc. The plateau voltage is
highly consistent, while the capacity varies slightly cell to cell.
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Figure S18. Discharge profiles of all cells used in this study that used 0.25 M MgTFSI, + 0.5 M MgCl, in
DME, that were discharged to 300 mAh/g for use in the UPLC-MS experiment. The plateau voltage is
highly consistent.
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Figure S19. Discharge profiles of all cells used in this study that used 0.25 M MgTFSI, + 0.5 M MgCl; in
DME, that were discharged to 200 mAh/g for use in the UPLC-MS experiment and UV/VIS experiment.
The plateau voltage is highly consistent.
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Figure S20. Representative discharge profiles for the different Mg electrolytes for cells discharged to 200
mAh/g at a rate of 0.1C.

Regarding the potential profiles in Figure S20, the wide variety of potentials for the sulfur reduction
reaction are a result of the unique electrolyte chemistries. Each electrolyte, with different salts and
solvents, has differing Ss redox kinetics and different overpotentials on the Mg anode associated with

Mg plating/dissolution, hence different performance. This is observed throughout the magnesium-sulfur
literature. 168
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Figure S21. Open circuit potential of Mg-S cells held for 168 h prior to discharge.
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Figure S22 A. Electrochemical impedance spectroscopy results as a function of cell age for studied
electrolytes for three cell types: sulfur-free cathode, sulfur cathode undischarged, sulfur cathode 200
mAh/g discharge. All shown on same impedance scale with XY parity.
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Regarding the EIS data in Figures S22A and S22B, our results are in qualitative agreement with those
demonstrated by Hicker et al. in that for all cells, as time progresses the overall impedance increases.’
For each electrolyte, we studied three configurations: case 1 (left column) is for cells with a sulfur-free
cathode, case 2 (middle column) is for cells with a sulfur cathode that was never discharged, case 3
(right column) is for cells with a sulfur cathode that was discharged 200 mAh/g. Speaking generally, for
each electrolyte the formation of an absorption layer is evident from the increase of impedance in the
case 1 cells. This result is consistent with previously observed phenomenon in Mg electrolytes, a

characteristic that is largely unique to magnesium chemistry and can dominate the cell impedance.®°,

In some scenarios, such as the case 2 and 3 cells for the MgFPB, 0.25 M MgTFSI; + 0.5 M MgCl,, and the
case 3 for the 1 M MgTFSI; + 2 M MgCl; cell, the formation of this absorption layer seems partially or
fully suppressed. This would suggest the presence of sulfur/polysulfides, whether on the surface of the
magnesium or in solution, prevent the formation of the high impedance absorption layer. Notably,
however, the impedance increases with time for these cells as well, which would suggest the continued
reaction of sulfur/polysulfides with the anode surface, resulting in the formation of a high-impedance
SEl layer.

Disentangling the contribution of the absorption layer, the SEI formation, and contribution of the
various cell components (both electrodes, electrolyte, etc.) to the impedance is outside the scope of this
work in terms of the conclusions put forward. Therefore, we do not attempt to provide quantitative
analysis of the EIS data nor do we over-interpret it.
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Figure S23. UV/VIS absorbance of a 0.2 M solution of Sg dissolved in sieves-dried THF (reference = pure
THF).
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Figure S24. UV-VIS absorbance for magnesium polysulfides synthesized in the MgHMDS; + AICl; in THF
electrolyte. Reference = pristine electrolyte.
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Figure $25. UV-VIS absorbance for magnesium polysulfides synthesized in the MgFPB in electrolyte.
Reference = pristine electrolyte.

The solution of synthesized Mg-PS shown in the main text Figure 4A also contains dissolved, unreacted
Ss. The presence of the polysulfides and the elevated synthesis temperature increases the solubility of Sg
(even after cooling), which is why Sg is seen in the spectrum. The background subtraction used for Figure
4A is just the electrolyte (0.25 M MgTFSI, + 0.5 M MgCl, in DME) which contains no Sg. Figure $S23 shows
the absorbance pattern of pure Sg dissolved in THF. Some of the absorbance bands (220 cm™, 250 cm?,
320 cm™) are not unique to Sg, they are also exhibited by polysulfides. The unique feature of Sg is the



“blockiness” of the spectra, for lack of a better word, i.e. how it absorbs strongly and almost uniformly
over the whole 200-320 cm™ range. This peak characteristic is visible in Figure 4A because the Sg
contribution is not subtracted from Figure 4A. This feature is not visible in Figure 4B, C, and S because
the Sg is effectively subtracted because of how those background solutions were made. The peak at 380
cm?, observed in Figure 4A, is well described as S42 by the literature, demonstrating these solutions do
indeed contain synthesized Mg-PS. *!! The synthesis of the Mg-PS is further validated using the UPLC-MS
method described in the main text, with the results shown in Figure S36.

Figures S24 and S25 are the UV/VIS spectra of chemically synthesized magnesium polysulfides in the
MgHMDS; + AlCl; and MgFPB electrolytes, respectively. This is the same experiment as the results
shown in Figure 4A, which is for the 0.25 M MgTFSI, + 0.5 M MgCl, electrolyte. The absorbance in both
of these solutions decreases with time, however there is the same degree of decrease for all absorbance
bands. This is in contrast to the result of Figure 4A, where a decrease in one partcular absorbance band
is observed. The decrease in one absorbance band is attributed to the decrease in concentration of a
certain polysulfide. The equal decrease in absorbance bands in the MgHMDS and MgFPB cases may
indicate either all the polysulfides in these solutions are decreasing in concentration, or that there is a
decrease in elemental sulfur Sg concentration. Given the “blocky” nature of absorbance of Sg seen in
Figure S23, a uniform decrease in absorbance in S24 and S25 could be explained by decreased Ss
concentration. Indeed, the MgFPB solution shows a very minor amount of visible precipitate at the end
of 72 h, however the MgHMDS does not.

It is worth noting that, in order for magnesium polysulfides to be synthesized in ethereal solvents, the
presence of magnesium salts seems necessary. Attempts to synthesize magnesium polysulfides in ethers
without the presence of a Mg salt have been unsuccessful. Again, the fact that these syntheses are
successful indicates that there is a non-faradaic conversion of Sg to ionic magnesium polysulfide taking
place in these electrolytes.

Table S3. Solubility of sulfur in various systems relevant to this work. * denotes dried below 10 ppm
water.

System S8 Solubility Reference
Tetrahydrofuran (THF)* 0.50 M This work
Dimethoxyethane (DME)* 0.068 M This work
Diglyme (DEG)* 0.12 M This work
0.25 M MgTFSI; + 0.5 M 0.071 M 1

MgCl, electrolyte (DME)

1 M MgTFSI, + 2 M MgCl, 0.0096 M 1
electrolyte (DME)

MgHMDS; + AlCl; 0.25M This work
electrolyte (THF)

MgFPB electrolyte (DEG) 0.029 M This work
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Figure S26. Total solid ionic sulfur quantified by UPLC-MS method for different cell components, either
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0.5 M MgCl, in DME electrolyte discharged to 0.5 V (396 mAh/g on average). Inset photo shows a glass
fiber separator recovered from a discharged cell.

i,

1.4 4V e,
"‘..‘
1.2
g 1.0 '.'
S 08
5 i
g :
o 0.6
o 3
0.4 —
—— Celgard separator, 0.1Crate
—— Glass fiber separator, 0.1C rate
024 ... Glass fiber separator, 0.005C rate
0.0 —
I I I I I
0 100 200 300 400

Capacity (mAh/g)

Figure $27. 1* cycle discharge profiles for various Mg-S cells using the 0.25 M MgTFSI, + 0.5 M MgCl; in
DME electrolyte.

Figures S26 and S27 demonstrate that the chemical precipitation of polysulfides, the second aspect of
self-discharge, happens on time-scales relevant to active cell discharge. Figure S26 shows that the



amount of solid ionic sulfur in the cathode measured by the UPLC-MS method differs depending on what
separator is used. In the case of cells using Celgard, roughly half of the solid (poly)sulfides precipitate on
the cathode, and half in the Celgard separator. In the case of cells that use glass fiber, the amount of
solids detected on the cathode is greatly decreased, implying large precipitation within the separator.
These deposits are in fact seen easily in the inset photo shown in the inset of Figure S26. However,
because the potential profiles of the cells using the two types of separators are nearly identical at 0.1C
(Figure S27), in both cases the same amount of sulfur is electrochemically accessed.

So why does one case result in a large amount of solid sulfur precipitates on the cathode, while the
other does not? The two separators are quite different in size and porosity (Celgard is 25 um thick and
microporous, glass fiber is 200 um thick and macroporous) meaning the proportion of electrolyte
absorbed by each separator is different. As both cells use 160 pL of electrolyte, the higher volume glass
fiber separator will absorb more of the electrolyte, meaning there is less in direct contact with the
cathode.

Combining the facts that the spatial location of the (poly)sulfide deposits can be changed by changing
the electrolyte distribution in the cell (i.e. changing the separator), and that changing this distribution
does not impact the electrochemical capacity delivered by the cell, a major amount of the solid ionic
(poly)sulfides formed as the cell discharges comes not from electrochemical reduction, but from the
chemical precipitation process. The chemical precipitation process results in a major non-faradaic loss of
active material as the cell discharges. Even when the precipitation happens in the cathode region and
not in the separator, the precipitates do not have good electronic contact and therefore are
electronically inaccessible.

The cells that are run at 0.1C take just over 2 h to fully discharge to 0.5 V, which means the kinetics of
the precipitation process must be fast. This is even more evident given that the precipitation process is
not yet highly active when the cell has been discharged to 200 mAh/g (half-way) as seen in Figure 3.
Likely, once the average chain length of polysulfides in solution is sufficiently lowered (by combination
of non-faradaic reduction at the anode and faradaic reduction at the cathode), the precipitation process
ensues rapidly. In theory, then, if the cell is discharged faster, more sulfur should be accessible
electrochemically before it precipitates. Conversely, if the cell is discharged more slowly, more sulfur is
lost due to chemical precipitation and the discharge capacity will be lowered. This is exactly the case, as
can be seen in the 0.005C rate cell shown in Figure S27. In this cell, the discharge is so slow that
essentially only the capacity associated with converting covalent Sg to Sg? is accessed; all the produced
Se? diffuses from the cathode where it can be reduced via the non-faradaic process at the anode until it
precipitates, rendering it inaccessible.

These results drive home the importance of considering the precipitation aspect of the self-discharge

pathway. Without addressing this phenomenon, after one cycle most of the cell active material will be
lost. Future work should involve looking at published Mg-S literature that demonstrates good capacity
retention with cycling, and interpreting those results within this framework and specifically asking the
guestion: what about the cell design, electrolyte, cathode, etc. prevents the loss of active material via



the precipitation route? An answer to this question will point the way towards highly reversible, and
therefore practical, Mg-S batteries.

Further discussion of the UPLC-MS — Method development

This section contains a more detailed description of the UPLC-MS technique. The chemistry of
functionalization is presented in Scheme S1. lonic polysulfides are converted to organic polysulfides,
which due to the dimethylamino aromatic components have good affinity with the UPLC column. This
allows for the separation of the organic polysulfides on the basis of molecular weight, with a logarithmic
relationship between retention time and number of sulfur atoms in the compound.?? Clear separation
of the compounds on the basis of the number of sulfur atoms they contain allows for accurate
guantification of each compound.

O O
. @)
MeS, 2N == O SO+ M,

Scheme S1. Derivatization reaction of magnesium polysulfides.

A representative chromatogram is presented below in Figure S28. The logarithmic relationship between
the number of sulfur atoms per each compound and retention time is clearly present. The total sulfur
content of the cell is found by integrating the area under the appropriate peaks (denoted with *),
multiplying by the number of sulfur atoms in that specific compound, and summing the results.
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Figure S28. Mass specific chromatograms of a derivatized Mg-S cell (200 mAh/g discharged, no rest,
sample #1). Peaks corresponding to the derivatized compounds marked with *.

The peaks are correctly identified as the proposed compound on the basis of isotope pattern, an
example of which is shown in Figure S29 for D-S1-D-H+ (329 g/mol). By the same approach, the peaks at
2.47 min in the S6 chromatogram and at 3.2 min and 6.2 min in the S7 chromatogram (and any other
peaks in a chromatogram) are shown not to be derivatized polysulfides. If the isotope pattern does not
match the expected organic polysulfide pattern, the peak is not included in the calculation of total
sulfur. The raw chromatograms for all the data shown in the main text Figure 3 and Figure S26 are

presented at the end of the supporting information in Appendix 1.
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Figure $S29. Mass spectrum for 329 g/mol, D-S-D-H+ (red), with calculated isotope pattern (black bars).

This technique has previously been used to determine the speciation of polysulfides in Li-S batteries at a
given state of discharge.'? In attempting to reproduce this experiment, we found that our mass
spectrometry results did not reflect the actual cell polysulfide chain length distribution. The
experimental procedure reported in the above reference was repeated as faithfully as possible, and
when that did not reproduce the expected results, the parameters of the technique were systematically
varied. We found that our results were sensitive to experimental parameters such as the amount of
derivatizing agent used in the work-up, selection of the mobile phase, column, and sample
dilution/preparation. Unfortunately, no combination of parameters yielded believable results for the
polysulfide speciation within the cell.

This result, that the speciation observed with the UPLC-MS does not reflect the cell speciation, is
realized in numerous ways. First, the amount of derivatizing agent used changes the observed organic
polysulfide speciation chain length. Second, the chain length speciation observed for a partially
discharged Li-S cell does not match with the known polysulfide speciation for Li-S cells at this stage of
discharge. Third, higher order (S9 +) organic polysulfides are observed in cases with high initial ionic
polysulfide concentration. Finally, the detected amount of a compound of a given chain length has a
logarithmic relationship to the number of S atoms in the compound. These points are explored in detail
in the following section.



Effect of derivatizer amount and Li-S mismatch

Two identical Li-S cells, the discharge profiles of which are presented in Figure S30, were discharged to
2.2 V. Each cell was then derivatized with a procedure similar to that of the Mg-S cells, except the first
Li-S cell was treated with 1.5 mg of derivatizing agent and the second cell with 2.0 mg of derivatizing
agent. The full chromatogram of these two samples is presented in Figure S31.
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Figure S30. Li-S cells discharged to 2.2 V for MS derivatization.
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Figure S31. Mass specific chromatogram of derivatized Li-S cells, prepared with different amounts of
derivatizing agent. Red chromatogram = cell prepared with 1.5 mg derivatizing agent. Black
chromatogram = cell prepared with 2.0 mg derivatizing agent. Peaks corresponding to the derivatized

compounds marked with *.

Immediately apparent is the impact of derivatizer amount on the mass spectrometry results, in that 1.5
mg do not appear to be enough to produce any D-Sx-D species. Perhaps, the first functionalization of an
ionic polysulfide is more favorable than the second functionalization, and if 1.5 mg are not enough to
functionalize every species at least once, then no D-Sx-D compounds would be observed in the
chromatogram. At any rate, the apparent sensitivity of the experiment to derivatizer amount led to the
standard use of 5 mg of derivatizer for each Mg-S sample. If the sensitivity of the MS results to the
derivatizer amount used was not enough to call into question the accuracy of polysulfide speciation,
then the speciation observed in the 2.0 mg Li-S cell can leave no doubt. The speciation observed in the
chromatogram indicates a high concentration of monosulfide, disulfide, and short chain polysulfides. A
Li-S cell typically exhibits two distinct discharge plateaus, one from about 2.5V to 2 V, and another from
about 1.9 Vto 1.7 V. When the cell is still in the first plateau stage, it is well known that the lithium
polysulfide speciation consists of long-chain polysulfides.’* If the results of the 2.0 mg Li-S MS cell were
representative of the true cell speciation, the observed species would be D-Sx-D forx =8, 7, 6, 5, as

opposed to the short chain species that were observed.

Higher order (S9+) organic polysulfides: In some cases, the formation of higher order organic
polysulfides S9, 510, and S11 were observed. An example is visible in Figure A8. This speciation is
impossible to form electrochemically when starting from covalent Sg, further indicating that the



derivatization process alters the polysulfide speciation. The higher order organic sulfides were only
observed in samples that had displayed high concentrations of ionic sulfur. In general, S9 is only
observed if S8 was present, S8 only if S7 was present, and so on. The derivatization procedure appears
to bias the formation of S1 first, forming higher order species as the initial ionic polysulfide
concentration increases. The reason for this is unknown, but may stem from decreased stability of the
higher order compounds. If more sulfur is initially present, the activity of sulfur atoms in solution are
increased, which may help stabilize the higher order polysulfides. This is related to the final point.

Logarithmic dependence of compound concentration on sulfur atom chain length: Figure S32 shows
the roughly logarithmic dependence of the amount of a given organic polysulfide on the number of
sulfur atoms it contains. This relationship is most strongly observed for samples with high initial
concentrations of ionic polysulfides. This relationship points to the speciation being governed by
processes that influence the derivatization reaction, such as compound solubility, sulfur activity, etc. as
opposed to the true cell speciation. Alternatively, this result could be a reflection of technique bias;
larger compounds may decompose or get stuck on the UPLC column or have decreased solubility in the
mobile phase.

Given these reasons, the polysulfide speciation observed is assumed not to be representative of the cell
speciation. However, even though the true cell speciation cannot be obtained with this mass
spectrometry method, the relative number of sulfur atoms in the form of ionic poly(sulfides) in a cell can
be conclusively determined. It is on this basis that the self-discharge process of Mg-S batteries is
investigated.
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Further verification of UPLC-MS method applied to Mg-S chemistry
Derivatization of solid Mg,S,

Figure S33 demonstrates proof that the derivatization reaction successfully reacts with the solid
poly(sulfide) species observed as precipitation on the cell separators and cathode. In the upper left
photograph, yellow solid deposits are visible on the separator even after the separator has been washed
with DME. In the upper right photograph, the separator has been placed in a solution containing DME
with derivatizing agent DBC. The previously solid precipitates can be seen reacting and dissolving,
evidenced by the spread of yellow across the separator. In the bottom photograph, the separator was

removed from the solution and dried without any further rinsing, revealing the now pristine separator
and clear yellow solution of organic polysulfides.

o o PN g

Figdré $33. Dissolution of solid magneéium (poly)sulfide species via reaction with derivatizer. Upper left,
separator with deposits circled. Top right, separator in solution of derivatizing agent + DME. Bottom,

dried separator after removing from solution and yellow derivatized polysulfides.
Identifying the first step in the Mg-S self-discharge

In one of the three literature studies that had previously observed Mg-S self-discharge, the first step of
the process, conversion of Sg to Sg?, was proposed to be a result of Sg reacting with the electrolyte.* In
the other studies, the first step was proposed to be a result of Sg directly reacting with Mg metal.>%®
With use of the UPLC-MS technique, we are able to definitively establish that Mg metal must be present
for the self-discharge process to begin.

Two samples were prepared and run on the UPLC-MS. The first sample consisted of 0.76 mg of sulfur
powder stirred into 160 pL of 0.25 M MgTFSI, + 0.5 M MgCl, in DME. This solution was stirred for an
hour, then transferred to a solution of 5 mg derivatizing agent (DBC) suspended in 100 puL of DME. The



solution was then processed per the standard UPLC-MS workup outlined in the experimental section.

The chromatogram for this sample is shown in Figure S34.

The second sample was prepared from a Mg-S cell that had not been discharged. Just as described in the
experimental for all of the Mg-S cells, this cell consisted of a cathode containing 0.76 mg sulfur, 160 uL

of 0.25 M MgTFSI; + 0.5 M MgCl, in DME, a Celgard separator, and a Mg anode. This cell was assembled,
rested at OCP for 1 h, then disassembled and processed per the standard technique. The chromatogram

for this sample is shown in Figure S35.

Considering Figures S34 and S35, both samples contain a low concentration of analyte compared to the
innate noise of the technique. When there were peaks that matched the known retention times for the
derivatized organic sulfides of various chain lengths, the peak is highlighted with red to make it easier to
see. Unfortunately, in both cases the concentration is so low that there is not a strong enough signal to
definitively identify the analyte on the basis of isotope pattern. On the basis of retention time, the peaks
are assumed to be the derivatized compounds. Comparing the relative intensities, it is clear that a much
lower, essentially negligible, amount of ionic polysulfides are formed when the sulfur powder is stirred
with the electrolyte and derivatizer. By contrast, in the sample where Mg metal is present, the
logarithmic sulfur atom : retention time relationship is observed for peaks with non-negligible peak area.
This result demonstrates that Mg metal is reacting with solubilized Sg and converting it into Sg in a non-

faradaic self-discharge process, in as little time as 1 hour.
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Figure S34. Mass specific chromatogram for sample of sulfur powder + electrolyte. Peaks corresponding
to the derivatized compounds marked with * based on retention times from other chromatograms.
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Figure S35. Mass specific chromatogram for sample harvested from full Mg-S cell held at OCP. Peaks

corresponding to the derivatized compounds marked with *.

As one final demonstration, the synthesized solution of magnesium polysulfides (sulfur powder + of 0.25
M MgTFSI; + 0.5 M MgCl; in DME + magnesium powder) is derivatized and analyzed with UPLC-MS,
which is shown in Figure S36. The presence of organic polysulfides in the chromatogram proves the
synthesis of magnesium polysulfides is successful and that, once again, Mg metal is required for the
spontaneous formation of ionic polysulfides. These peaks are definitively identified with isotope
patterns. It should be noted that the MgTFSI; and MgCl; salts are also required for this direct synthesis

to be successful.
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Figure $S36. Chromatogram of derivatized solution of synthesized magnesium polysulfides (sulfur powder
+ of 0.25 M MgTFSI, + 0.5 M MgCl, in DME + magnesium powder). Peaks corresponding to the
derivatized compounds marked with *. Inset shows isotope pattern of first two peaks.
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Appendix 1. Raw mass spectrometry chromatograms for data points shown in Figure 3 in main text
and Figure S35 in Supplementary Information. Peaks identified with both a retention time and area are
verified to be D-S«-D with isotope pattern, and used for calculation of the total ionic sulfur.
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Figure Al. 200 mAh/g discharged, no rest, sample #1.
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Figure A2. 200 mAh/g discharged, no rest, sample #2.
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Figure A3. 200 mAh/g discharged, no rest, sample #3.
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Figure A4. 200 mAh/g discharged, no rest, sample #4.



05-110-cc3 50% D Celgard cathode only rinsed, for solids, Smg der 200ul total vol

1002 1938 1368 14089145245 39 17494777

2.00 4.00 6.00 B.DD 10.00 1200 14.00 16.00 1800 2000

2.00 4.00 6.00 B.DD 10. III 12.00 14.00 16 DD 1800 2000
05-110-c=2 50% D Celgand cathode only finsed, for sobids, Smg der 200ul total wol Smi(Mn, 2x3) Sean ES+

10.00 12.00 14.00 16.00 1800 2000

200 0 400 0 600 0 BDD 1000 @ 1200 @ 1400 1600 @ 1BD0 @ 20000

200 400 f.00 gho 100 1700 400 | 1600 | 1BDD | 2000

05-110-cc3 50% D Celgand cathode only rinsed, for solids, Smg der 200ul total wol Smi (Mo, 2x3) . E.ﬂ.':'.-::arl EESS_
1 p 5.85e4
oAl 154 633787 S4B a 1171 1376 1567 e [ T
2. 4. il B! 10.00 1200 14.00 16.00 1800 2000
05-110-cc3 ‘{I"b D Celgard cathode only rinsed, for solids, Smg der 200ul total ol Smi (Mn, 2x3) Secan ES+
49
1 1529 1664 1.1825
2. 4. B! B! 1IZIII| 1200 14.00 16.00 1800 2000
05-11U—m35ﬂ%DCelgamcaﬂ'nuemlynnsed for solids, Smg der 200ul total wol Sm (Mn, 2:3) Scan ES+

DE—IIU—mEEﬂ%DCdgardcaﬁtdemrrnnsed for solids, Smg der 200ul total wol Smi (M, 2a3) Sican ES+
AE

2. 4. B B! 1200 14.00 16.00 J I
05-110-cc2 50% D Celgand cathode only ninsed, fUSDNS.«.fﬂQd-EF":C'JLdedﬂ M, 2:3) Scan ES+
oy
f 20329
- = A=
2. 4. 6. 10.00 1200 14II| 16.00 L 20,00
05-110-c£3 50% D Celgard cathode only 1n5e::| for solids, Smg der 200ul total wol Smi(Mn, 2x3) Sean ES+

I]E—Ilﬂ—m!-ﬂ]‘ifnﬂﬁelgardcaﬂtdemw“nsed fl:tsnllds. Smg der 200ul total wol Smi (Mn, 2x3) Scan ES=

05-110-ce3 50% D Celgand cathode only rinsed, for sobids, Smg der 200ul total vel Smi(Mn, 2x3) Secan ES+

; 187 g
[Te0sEg 47
F S o

Figure A5. 200 mAh/g discharged, no rest, sample #5.
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Figure A6. 200 mAh/g discharged, 24 h aged, sample #1.
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Figure A7. 200 mAh/g discharged, 24 h aged, sample #2.
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Figure A8. 200 mAh/g discharged, 1 week aged, sample #1.
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Figure A9. 200 mAh/g discharged, 1 week aged, sample #2.
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Figure A10. 300 mAh/g discharged, no rest, sample #1.
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Figure A11. 300 mAh/g discharged, no rest, sample #2.
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Figure A12. 300 mAh/g discharged, 24 h aged, sample #1.
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Figure A13. 300 mAh/g discharged, 24 h aged, sample #2.
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Figure A14. 300 mAh/g discharged, 1 week aged, sample #1.
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Figure A15. 300 mAh/g discharged, 1 week aged, sample #2.
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Figure A16. 400 mAh/g discharged, no rest, sample #1.
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Figure A17. 400 mAh/g discharged, no rest, sample #2.
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Figure A18. 400 mAh/g discharged, 24 h aged, sample #1.
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Figure A19. 400 mAh/g discharged, 24 h aged, sample #2.
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Figure A20. 400 mAh/g discharged, 1 week aged, sample #1.
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Figure A21. 400 mAh/g discharged, 1 week aged, sample #2.



