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15 1. Derivation of the Governing Equation of a Thermoelectric Process

16 The earlier works by Callen1 and Domenicali2 are reviewed, to present a complete derivation 
17 of the differential equation which governs the temperature distribution in a thermoelectric leg in 
18 steady state. The particle current density, the energy current density and the entropy current 
19 density within a TE leg are respectively denoted as ,  and . The heat current density is by 𝐽⃗ 𝑊⃗ 𝑆⃗

20 definition written as . In a steady-state process the following conditions should be met,𝑞⃗ = 𝑇𝑆⃗

21 ∇ ∙ 𝑊⃗ = 0#(𝑆1)

22 ∇ ∙ 𝐽⃗ = 0#(𝑆2)

23 ∇ ∙ 𝑆⃗ = 𝑆̇#(𝑆3)
24 where  is the entropy production rate per unit volume. The energy current density consists of 𝑆̇

25 two parts, i.e., the kinetic part and the potential part, which gives

26 𝑊⃗ = 𝑞⃗ + 𝜇𝐽⃗ = 𝑇𝑆⃗ + 𝜇𝐽⃗#(𝑆4)
27 where  is the electrochemical potential energy per particle, with  and  respectively 𝜇 = 𝜇𝑐 + 𝜇𝑒 𝜇𝑐 𝜇𝑒

28 representing the chemical portion and the electrical portion. Under this circumstance the chemical 
29 portion is minor and is thus neglected in the following derivations. The electrical part could be 

30 written as , with  being the charge on a particle and  the electrostatic potential.𝜇𝑒 = 𝑒𝜑 𝑒 𝜑
31 The entropy production rate is obtained by Eqs. (S1)-(S4) as

32
𝑆̇ = ∇

1
𝑇

∙ 𝑊⃗ ‒ ∇
𝜇
𝑇

∙ 𝐽⃗ = ∇
1
𝑇

∙ 𝑞⃗ ‒
1
𝑇

∇𝜇 ∙ 𝐽⃗#(𝑆5)

33 Taking  and  as currents, and  and  as the driving forces, the relationships between ‒ 𝐽⃗ 𝑞⃗
1
𝑇

∇𝜇 ∇
1
𝑇

34 the currents and forces could be written as 
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1
{ ‒ 𝐽⃗ = 𝐿11

1
𝑇

∇𝜇 + 𝐿12∇
1
𝑇

𝑞⃗ = 𝐿21
1
𝑇

∇𝜇 + 𝐿22∇
1
𝑇

�#(𝑆6)

2 Onsager’s theorem3 states that a reciprocal relation, in the form of  in a two-flow 𝐿12 = 𝐿21

3 system, exists when there is no magnetic field or Coriolis force. Then Eq. (S6) could be rewritten 
4 as

5
{ ‒ 𝐽⃗ = 𝐿11

1
𝑇

∇𝜇 + 𝐿12∇
1
𝑇

𝑞⃗ = 𝐿12
1
𝑇

∇𝜇 + 𝐿22∇
1
𝑇

�#(𝑆7)

6 The kinetic coefficients ( ,  and ) are involved with the physical properties ( ,  and 𝐿11 𝐿12 𝐿22 𝛼 𝜎
7 ) of the medium, and are derived as follows. First of all, the thermal conductivity is defined as the 𝜅

8 heat current density per unit temperature gradient for zero particle current. Keep in mind that the 
9 heat current is in the opposite direction of the temperature gradient,

10
𝜅 =‒

𝑞⃗
∇𝑇

#(𝑆8)

11 Based on Eq. (S7) and the zero particle current condition, i.e., , the thermal conductivity 𝐽⃗ = 0

12 could be derived as

13
𝜅 =

𝐿11𝐿22 ‒ 𝐿 2
12

𝑇2𝐿11

#(𝑆9)

14 Secondly, the electrical conductivity is defined as the electric current density ( ) per unit 𝐽𝑒 = 𝑒𝐽⃗

15 potential gradient under an isothermal condition. Also keep in mind that the electric current is in 
16 the opposite direction of the electrical potential gradient,

17
𝜎 =‒

𝑒𝐽⃗
∇𝜑

#(𝑆10)

18 Again, by Eq. (S7), , and the isothermal condition, i.e., , the electrical 𝜇𝑒 = 𝑒𝜑 ∇𝑇 = 0
19 conductivity could be derived as

20
𝜎 =

𝑒2𝐿11

𝑇
#(𝑆11)

21 Eliminating the  term in Eq. (S7), the entropy current density could be written as ∇𝜇

22
𝑆⃗ =

𝑞⃗
𝑇

=‒
𝐿12

𝑇𝐿11
𝐽⃗ +

𝐿11𝐿22 ‒ 𝐿 2
12

𝑇𝐿11
∇

1
𝑇

#(𝑆12)

23 In Eq. (S12), the first term in the right hand side represents the entropy flow caused by the 

24 particle flow, hence the term  means the entropy flow per particle ( ), which is in a 
‒

𝐿12

𝑇𝐿11 𝑆𝐽

25 relationship with the Seebeck coefficient by

26
𝑆𝐽 =‒

𝐿12

𝑇𝐿11
= 𝑒𝛼#(𝑆13)

27 The kinetic coefficients could be obtained by solving Eqs. (S9), (S11) and (S13),
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1

{ 𝐿11 =
𝑇𝜎

𝑒2

𝐿12 =‒
𝑇2

𝑒2
𝜎𝑆𝐽 =‒

𝑇2

𝑒
𝜎𝛼

𝐿22 =
𝑇3

𝑒2
𝜎𝑆2

𝐽 + 𝑇2𝜅 = 𝑇3𝜎𝛼2 + 𝑇2𝜅
�#(𝑆14)

2 Taking the kinetic coefficients back into Eq. (S7), formulas of the particle current density and 
3 heat current density are derived as

4
{𝐽⃗ =‒

𝜎

𝑒2
∇𝜇 ‒

𝜎𝛼
𝑒

∇𝑇

𝑞⃗ = 𝑇𝛼𝑒𝐽⃗ ‒ 𝜅∇𝑇�#(𝑆15)

5 The zero divergence of the energy current density (Eq.(S1)) and the particle current density 
6 (Eq. (S2)) lead to

7 ∇ ∙ 𝑞⃗ =‒ ∇𝜇 ∙ 𝐽⃗#(𝑆16)
8 Substituting Eq. (S15) into Eq. (S16) gives the governing equation as

9
∇ ∙ (𝜅∇𝑇) +

𝑒2𝐽2

𝜎
‒ 𝑒𝑇∇𝛼 ∙ 𝐽⃗ = 0#(𝑆17)

10 Taking the electrical current density ( ) into Eq. (S17),𝐽𝑒 = 𝑒𝐽⃗

11
∇ ∙ (𝜅∇𝑇) +

𝐽2
𝑒

𝜎
‒ 𝑇∇𝛼 ∙ 𝐽𝑒 = 0#(𝑆18)

12 In a homogeneous medium, Eq. (S18) could be rewritten as

13
∇ ∙ (𝜅∇𝑇) +

𝐽2
𝑒

𝜎
‒ 𝜏𝐽𝑒 ∙ ∇𝑇 = 0#(𝑆19)

14 where  is the Thomson coefficient. In case of temperature independent physical properties 
𝜏 = 𝑇

𝑑𝛼
𝑑𝑇

15 and one-dimension energy flow, Eq. (S19) degrades into a simpler form as

16
𝜅

𝑑2𝑇

𝑑𝑥2
+

𝐽2
𝑒

𝜎
= 0#(𝑆20)

17 2. Derivation of the Maximum Efficiency and Power Formula

18 The analytical solution of the governing equation and boundary conditions (Eq. (5)) leads to 
19 a temperature profile of the TEG leg as

20

{ 𝑇 =‒
0.5𝐼2𝑅𝑅𝑡,𝑙

𝐿2
𝑥2 + 𝐶1𝑥 + 𝐶2

𝐶1 =
1
𝐿

𝑐1𝑓𝑐𝐼2𝑅𝑅𝑡,𝑙 + 0.5𝑐1𝑐2𝐼2𝑅𝑅𝑡,𝑙 + 𝛼𝑅𝑡,𝑙𝐼(𝑓ℎ𝑇𝑐 + 𝑓𝑐𝑇ℎ) ‒ Δ𝑇

𝑓ℎ + 𝑓𝑐 + 𝑐1𝑐2

𝐶2 =
1
𝑐1{𝑓ℎ[𝑐1𝑓𝑐𝐼2𝑅𝑅𝑡,𝑙 + 0.5𝑐1𝑐2𝐼2𝑅𝑅𝑡,𝑙 + 𝛼𝑅𝑡,𝑙𝐼(𝑓ℎ𝑇𝑐 + 𝑓𝑐𝑇ℎ) ‒ Δ𝑇]

𝑓ℎ + 𝑓𝑐 + 𝑐1𝑐2
+ 𝑇ℎ}

𝑐1 = 1 + 𝑓ℎ𝛼𝑅𝑡,𝑙𝐼
𝑐2 = 1 ‒ 𝑓𝑐𝛼𝑅𝑡,𝑙𝐼

�#(𝑆21)

21 where  denotes the electric resistance of the TEG leg. From the above equation the leg terminal 𝑅

22 temperatures and effective temperature difference are given by
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1
{ 𝑇 '

ℎ = 𝐶2
𝑇 '

𝑐 =‒ 0.5𝐼2𝑅𝑅𝑡,𝑙 + 𝐶1𝐿 + 𝐶2

Δ𝑇' =
Δ𝑇 ‒ 𝛼𝑅𝑡,𝑙𝐼(𝑓ℎ𝑇𝑐 + 𝑓𝑐𝑇ℎ + 𝑓ℎ𝑓𝑐𝐼2𝑅𝑅𝑡,𝑙) + 0.5𝐼2𝑅𝑅𝑡,𝑙(𝑓ℎ ‒ 𝑓𝑐)

𝑓ℎ + 𝑓𝑐 + 𝑐1𝑐2
�#(𝑆22)

2 From the equation of , the contributions of the external thermal resistances, the Peltier Δ𝑇'

3 effect and the Joule effect to the effective temperature difference across the TEG leg could be 
4 clearly clarified. Among these factors, the external thermal resistances will definitely decrease 

5  as exhibited by the division of  by . Since the Peltier effect absorbs heat from the hot Δ𝑇' Δ𝑇 𝑓ℎ + 𝑓𝑐

6 side and releases heat to the cold side, it acts to lower  and raise , leading to a further 𝑇 '
ℎ 𝑇 '

𝑐

7 reduction in , reflected by the negative sign before the Peltier term (the second term in the Δ𝑇'

8 numerator). With regard to the Joule effect (the third term in the numerator), it acts primarily to 
9 raise the temperature level of the whole leg rather than only influence some specific regions, so 

10 its contribution to  is generally trivial compared to other factors.Δ𝑇'

11 According to the relationship between the electric current and the effective temperature 

12 difference , i.e.,Δ𝑇'

13
𝐼 =

𝛼Δ𝑇'

𝑅(1 + 𝑚)
#(𝑆23)

14 a cubic equation of the electric current is deduced as

15
{ 𝑏0𝐼3 + 𝑏1𝐼2 + 𝑏2𝐼 + 𝑏3 = 0

𝑏0 = 𝑓ℎ𝑓𝑐𝛼2𝑅 2
𝑡,𝑙𝑅𝑚

𝑏1 = ‒ 𝛼𝑅𝑡,𝑙𝑅(𝑓ℎ ‒ 𝑓𝑐)(𝑚 + 0.5)
𝑏2 =‒ [𝛼2𝑅𝑡,𝑙(𝑓ℎ𝑇𝑐 + 𝑓𝑐𝑇ℎ) + (1 + 𝑓ℎ + 𝑓𝑐)(1 + 𝑚)𝑅]

𝑏3 = 𝛼Δ𝑇
�#(𝑆24)

16 where  is the ratio of the load resistance to the TE leg electrical resistance. Unfortunately, even 𝑚

17 though the analytical solutions of a cubic equation do exist, the complicated formation of Eq.(S24) 
18 will eventually make the analytical derivations of maximum power output and conversion 
19 efficiency unattainable. To make a balance between precision and concision (and also feasibility), 
20 it is necessary to eliminate or simplify some terms within the temperature profile Eq.(S21) 
21 carefully. Besides, the original equations of (S21), (S22) and (S24) could be packaged into a 
22 computational program to generate exact numerical solutions, serving as reference data for the 
23 validation of the simplified analytical model.
24 First of all, as an attempt to neglect the influence of Joule effect on the effective temperature 

25 difference, the terms including  in Eq.(S1) are eliminated, resulting in a simplified temperature 𝐼2𝑅
26 profile as

27

{
𝑇 = 𝐶1𝑥 + 𝐶2

𝐶1 =
1
𝐿

𝛼𝑅𝑡,𝑙𝐼(𝑓ℎ𝑇𝑐 + 𝑓𝑐𝑇ℎ) ‒ Δ𝑇

𝑓ℎ + 𝑓𝑐 + 𝑐1𝑐2

𝐶2 =
𝑓ℎ𝑇𝑐 + 𝑓𝑐𝑇ℎ + 𝑐2𝑇ℎ

𝑓ℎ + 𝑓𝑐 + 𝑐1𝑐2
𝑐1 = 1 + 𝑓ℎ𝛼𝑅𝑡,𝑙𝐼
𝑐2 = 1 ‒ 𝑓𝑐𝛼𝑅𝑡,𝑙𝐼

�#(𝑆25)

28 Secondly, the terms  and  are checked for any chance of simplification, since their 𝑐1 𝑐2



5

1 multiplication in the denominator of  and  will continue to generate a cubic equation of , 𝐶1 𝐶2 𝐼
2 which is still difficult to solve analytically. At first sight, the Seebeck coefficient is generally on the 

3 order of 10-4 V/K, thus the terms  and  are liable to be of small values. Furthermore, 𝑓ℎ𝛼𝑅𝑡,𝑙𝐼 𝑓𝑐𝛼𝑅𝑡,𝑙𝐼

4 any rise in the thermal resistance ratios will lead to a drop of , making the second terms in  and 𝐼 𝑐1

5  self-confined to minor values compared to 1. Therefore,  and  are simplified to 1 for further 𝑐2 𝑐1 𝑐2

6 derivation, and the final temperature profile equation is written as

7
{

𝑇 = 𝐶1𝑥 + 𝐶2

𝐶1 =
1
𝐿

𝛼𝑅𝑡,𝑙𝐼(𝑓ℎ𝑇𝑐 + 𝑓𝑐𝑇ℎ) ‒ Δ𝑇

1 + 𝑓ℎ + 𝑓𝑐

𝐶2 =
𝑇ℎ + 𝑓ℎ𝑇𝑐 + 𝑓𝑐𝑇ℎ

1 + 𝑓ℎ + 𝑓𝑐

�#(𝑆26)

8 The validity of the above simplifications will be checked in the following section. The leg 
9 terminal temperatures and effective temperature drop are once again deduced as

10
{ 𝑇 '

ℎ = 𝐶2
𝑇 '

𝑐 = 𝐶1𝐿 + 𝐶2

Δ𝑇' =
Δ𝑇 ‒ 𝛼𝑅𝑡,𝑙𝐼(𝑓ℎ𝑇𝑐 + 𝑓𝑐𝑇ℎ)

1 + 𝑓ℎ + 𝑓𝑐
�#(𝑆27)

11 and the electric current is in the form of

12
{𝐼 =

1
1 + 𝑓ℎ + 𝑓𝑐

𝛼∆𝑇
𝑅

1

𝑚 + 1 + 𝑍𝑇 ∗

𝑇 ∗ =
𝑓ℎ𝑇𝑐 + 𝑓𝑐𝑇ℎ

1 + 𝑓ℎ + 𝑓𝑐
�#(𝑆28)

13 The output power of the TEG leg is then given by

14
𝑃 = 𝐼2𝑅𝑚 =

1

(1 + 𝑓ℎ + 𝑓𝑐)2

(𝛼∆𝑇)2

𝑅
𝑚

(𝑚 + 1 + 𝑍𝑇 ∗ )2
#(𝑆29)

15 From Eq.(S9) the maximum output power per leg area is achieved in the form of

16
𝑤𝑚𝑎𝑥 =

1

(1 + 𝑓ℎ + 𝑓𝑐)2

(∆𝑇)2

4𝐿
𝛼2𝜎

1 + 𝑍𝑇 ∗
#(𝑆30)

17 when

18 𝑚𝑜𝑝𝑡,𝑤 = 1 + 𝑍𝑇 ∗ #(𝑆31)
19 The heat absorption rate at the hot side of the TEG leg is given by

20
𝑄ℎ =‒ 𝜅𝐴𝐶1 + 𝛼𝐶2𝐼 =

1
1 + 𝑓ℎ + 𝑓𝑐

∆𝑇
𝑅𝑡,𝑙

(1 +
1

1 + 𝑓ℎ + 𝑓𝑐

𝑍𝑇ℎ

𝑚 + 1 + 𝑍𝑇 ∗ )#(𝑆32)

21 Thus the conversion efficiency is evaluated to be

22
𝜂 =

𝑃
𝑄ℎ

=
𝑍∆𝑇𝑚

(𝑚 + 1 + 𝑍𝑇 ∗ )[(1 + 𝑓ℎ + 𝑓𝑐)(𝑚 + 1 + 𝑍𝑇 ∗ ) + 𝑍𝑇ℎ]
#(𝑆33)

23 Letting , an equation of  is obtained as𝑑𝜂/𝑑𝑚 = 0 𝑚

24 𝑚 = (1 + 𝑍𝑇 ∗ )[1 + 𝑍(𝑇 ∗ + 𝑇 ∗
ℎ )]#(𝑆34)

25 where . This should be the optimum electric resistance ratio to achieve maximum 
𝑇 ∗

ℎ =
𝑇ℎ

1 + 𝑓ℎ + 𝑓𝑐
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1 conversion efficiency. However, as the external thermal resistances diminish, Eq. (S34) leads to an 

2 optimum  of  for maximum efficiency rather than the expected , implying some 𝑚 1 + 𝑍𝑇ℎ 1 + 𝑍𝑇̅

3 deficiency in the derivation mainly caused by the simplifications in Eqs. (S25) and (S26). 
4 Considering this, here we make a minor correction on Eq. (S34) to obtain a self-justifying 
5 expression as

6 𝑚𝑜𝑝𝑡,𝜂 = (1 + 𝑍𝑇 ∗ )[1 + 𝑍(𝑇 ∗ + 𝑇̅ ∗ )]#(𝑆35)

7 where . It is found to give a better evaluation of the optimum condition and 
𝑇̅ ∗ =

𝑇
1 + 𝑓ℎ + 𝑓𝑐

8 generate a concise formula of maximum conversion efficiency as follows,

9
{ 𝜂𝑚𝑎𝑥 =

Δ𝑇
𝑇ℎ

𝑚𝑜𝑝𝑡,𝜂 ‒ 1

𝑚𝑜𝑝𝑡,𝜂 +
𝑇𝑐

𝑇ℎ
+ 𝛽

    (𝑎)

𝛽 = 2
𝑇 ∗

𝑇̅ ∗

𝑇
𝑇ℎ

𝑚𝑜𝑝𝑡,𝜂(1 +
𝑚𝑜𝑝𝑡,𝜂

1 + 𝑍𝑇 ∗ )    (𝑏)�#(𝑆36)

10 The formulas in Eq.(S30-S31) and (S35-S36) lead to evaluations of maximum conversion 
11 efficiency and power output of a TEG system in finite external thermal resistance situations, as 
12 well as their corresponding electrical conditions.

13 3.  Validation of the TEG Model

14 To check the accuracy of the explicit formulas of maximum conversion efficiency and power 
15 output, the calculated values by Eqs.(S30) and (S36) as well as the corresponding electrical 
16 resistance ratios by Eqs.(S31) and (S35) are compared with exact results from a peak search 
17 program based on the numerical solutions of Eqs. (S21), (S22) and (S24), under a total temperature 
18 difference of 50 K and a heat sink temperature of 300 K, as shown in Fig. S1. The thermal resistance 
19 ratio range (0.01~10) adopted in the validation covers most realistic thermal conditions for TEGs 
20 as illustrated in the main part. Three different cases of external thermal resistance distribution are 
21 considered, among which the two asymmetric cases with zero external thermal resistance at one 
22 side of the TE module but finite thermal resistance at the other side represent two boundaries of 
23 the realistic asymmetric conditions, while the symmetric case with equal thermal resistances at 
24 the two sides is a special condition occasionally occurs in practical applications. It can be seen that 
25 the derived formulas can precisely evaluate the optimum operating points.
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2 Fig. S1 Optimum operating states of a TEG,  (In the upper row, solid line: numerical Δ𝑇 = 50 𝐾

3 results; discrete points: analytical evaluations. The lower row presents relative errors)
4 More specifically, the formulas can achieve a relative error band of ±0.75% for maximum 

5 conversion efficiency (±0.5% for ) and ±1.75% for maximum power output (±1% for ) 𝑚𝑜𝑝𝑡,𝜂 𝑚𝑜𝑝𝑡,𝑃

6 respectively under asymmetric thermal resistance distributions. The evaluation precisions are 
7 even better under symmetric thermal resistance distributions with all error bands within ±0.1%. 
8 Hence we can declare that the derived formulas are competent to give satisfying evaluations of a 
9 TEG’s optimum operating states in terms of both efficiency and power output, under moderate 

10 total temperature differences of tens of degrees and whatever external heat transfer conditions.
11 To check the formulas for wider applications with higher temperature ranges, a similar 
12 comparison is made under a total temperature difference of 500 K, as shown in Fig. S2. At first 
13 sight of the upper row in the figure, the analytical evaluations generally follow the evolutions of 
14 numerical solutions versus thermal resistance ratios under different distributions. Meanwhile, 
15 some deviations between the discrete points and solid lines can be clearly seen, particularly for 
16 the maximum power output states under asymmetric thermal resistance distributions. From the 
17 error curves in the lower row, under asymmetric distributions with zero thermal resistance at the 
18 hot side (Fig. S2(a)), the maximum conversion efficiency and power output of the system are 
19 underestimated with relative error bands of -5%~0% and -12%~0%, respectively. Under the 
20 opposite asymmetric distributions (Fig. S2(c)), the maximum conversion efficiency and power 
21 output of the system are overestimated with relative error bands of 0%~5% and 0%~16%, 
22 respectively. While under symmetric thermal resistance distributions (Fig. S2(b)), the explicit 
23 formulas continue to give rather accurate evaluations of all the optimum operating states with 
24 relative error bands within ±0.8%.
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2 Fig. S2 Optimum operating states of a TEGS,  (In the upper row, solid line: numerical Δ𝑇 = 500 𝐾

3 results; discrete points: analytical evaluations. The lower row presents relative errors)
4 This distinction could be explained by an inspection on Eq.(S25). Keep in mind that we have 

5 simplified  and  to 1 for further derivation. Under symmetric thermal resistance distributions, 𝑐1 𝑐2

6 the original  and  would be a little larger and smaller than 1 respectively, thus a multiplication 𝑐1 𝑐2

7 of them could offset the deviations for each other and make the simplification more confident. 
8 Besides, the most significant errors are always found to occur within a range of 0.2~2 for the 
9 thermal resistance ratios, which is a consequence of a trade-off between the thermal resistance 

10 ratio and the electrical current included in  and . In summary, for a higher available 𝑐1 𝑐2

11 temperature difference of 500 K, the derived formulas can lead to conversion efficiency 
12 evaluations within an accuracy of ±5% for all kinds of thermal resistance distributions and levels, 
13 while significant deviations over 15% arise when assessing the maximum power output for partial 
14 ranges of thermal resistance ratios under asymmetric distributions, thus some kind of modification 
15 of the power output formula is essential for a higher precision.

16 4. Modification of the TEG Model

17 To modify the power output formula, we should firstly go back to the effective temperature 
18 difference equation (S27), whose accuracy directly affects the power output evaluation. Two 
19 existing calculating formulas for the effective temperature difference from the literature (Refs. 4 
20 and 5) based on the effective thermal conductance concept are also given here for comparison, 
21 using currently adopted nomenclatures after some equivalent transformations,

22
Δ𝑇' =

Δ𝑇 ‒ 𝛼𝑅𝑡,𝑙𝐼(𝑓ℎ + 𝑓𝑐)𝑇̅

1 + 𝑓ℎ + 𝑓𝑐
#(𝑆37)

23
Δ𝑇' =

Δ𝑇 ‒ 𝛼𝑅𝑡,𝑙𝐼(𝑓ℎ + 𝑓𝑐)𝑇𝑐

1 + 𝑓ℎ + 𝑓𝑐
#(𝑆38)

24 It can be clearly seen that these two models do not make any distinction between the hot 
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1 and cold side thermal resistances, since the external thermal resistance ratios always appear in a 
2 sum, which is in consistency with the statement of Stevens6 on the indiscriminate effect of external 
3 thermal resistance at either side under limited temperature difference conditions. Consequently, 
4 both Eqs. (S37) and (S38) are expected to give accurate estimations of effective temperature 
5 differences under a moderate total temperature difference of 50 K, as shown in Fig. S3. Also 
6 presented in the figure are the evaluations by our model (Eq. (S27)) and exact numerical data.
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8 Fig. S3 Effective temperature differences for maximum power output, Δ𝑇 = 50 𝐾

9 Under asymmetric distributions with zero thermal resistance at the hot side, Freunek’s model 
10 (Eq. (S38)) leads to the highest relative error among the three models, with a peak (but still rather 

11 low) value of 4% at . While under the opposite asymmetric distributions, Apertet’s model 𝑓𝑐 = 10

12 (Eq. (S37)) leads to a peak value of -2% at . As a whole, our original model (Eq. (S27)) results 𝑓ℎ = 10

13 in the best evaluation of effective temperature differences for maximum power output under 

14 different thermal resistance distributions. In fact, if , our model and Freunek’s model turn 𝑓𝑐 = 0

15 to become the same one. In addition, if , then our model and Apertet’s model turn to be 𝑓ℎ = 𝑓𝑐

16 the same. Therefore, these formulas could be regarded as variants to each other with different 
17 aspects of simplification, and when combining two or three of the above formulas, a new one with 
18 higher accuracy throughout the whole range may be found.
19 Revisiting the error curves in Fig. S3, it is noted that Eq. (S37) exhibits outstanding 

20 performance before  or  reaches 0.2 and turns to degrade thereafter. As for Eq. (S27), it only 𝑓𝑐 𝑓ℎ

21 behaves not well within a thermal resistance ratio range of 0.2~2. Moreover, the error curves of 
22 Eqs. (S27) and (S37) present opposite varying trends within most part of the specific range (0.2~2), 
23 hence a weighted summation is carried out between these two formulas, with a weight ratio of 

24  for Eq. (S27) and 1 for Eq. (S37), resulting in a new formula written as𝑓ℎ + 𝑓𝑐
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1
Δ𝑇' =

Δ𝑇
1 + 𝑓ℎ + 𝑓𝑐

‒
𝛼𝑅𝑡,𝑙𝐼(𝑓ℎ + 𝑓𝑐)[𝑇̅ + (𝑓ℎ𝑇𝑐 + 𝑓𝑐𝑇ℎ)]

(1 + 𝑓ℎ + 𝑓𝑐)2
#(𝑆39)

2 This new formula is expected to remove the wave peak of the error curve of Eq.(S27) without 
3 affecting its good performance in other ranges by the filter effect of the weight allocation. To 
4 validate this expectation, the effective temperature differences for maximum power output are 
5 evaluated by Eq. (S39) as well as the former three formulas under a total temperature difference 
6 of 500 K, and the analytical results are compared with numerical solutions, as shown in Fig. S4.
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8 Fig. S4 Effective temperature differences for maximum power output, Δ𝑇 = 500 𝐾

9 As expected, the applications of Eqs. (S37) and (S38) under a higher temperature difference 
10 lead to significant deviations within a big portion of the commonly encountered thermal resistance 
11 ratio range, particularly for higher ratios. The peak relative errors of Eqs. (S37) and (S38) are 
12 around -20% and 30%, respectively. The error band of our original model (Eq. (S27)) covering all of 
13 the evaluated conditions is -5%~7%, which is much better than those of Eqs. (S37) and (S38) due 
14 to the abandon of the constant heat flow assumption within the whole system. In comparison, the 
15 new formula in Eq. (S39) gives excellent evaluations throughout the whole range within an error 
16 band of ±1%.
17 Based on Eq. (S39), a new formula of the power output is derived as

18

𝑃 =
1

(1 + 𝑓ℎ + 𝑓𝑐)2

(𝛼∆𝑇)2

𝑅
𝑚

[𝑚 + 1 +
𝑓ℎ + 𝑓𝑐

1 + 𝑓ℎ + 𝑓𝑐
𝑍(𝑇 ∗ + 𝑇̅ ∗ )]2

#(𝑆40)

19 and the maximum power output per leg area is achieved when
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1
𝑚𝑜𝑝𝑡,𝑤 = 1 +

𝑓ℎ + 𝑓𝑐

1 + 𝑓ℎ + 𝑓𝑐
𝑍(𝑇 ∗ + 𝑇̅ ∗ )#(𝑆41)

2 as

3
𝑤𝑚𝑎𝑥 =

1

(1 + 𝑓ℎ + 𝑓𝑐)2

∆𝑇2

4𝐿𝑚𝑜𝑝𝑡,𝑤
𝛼2𝜎#(𝑆42)

4 The evaluation capabilities of Eqs. (S41) and (S42) are checked for asymmetric thermal 
5 resistance distributions, as shown in Fig. S5. Remarkable advances in evaluations of both the 
6 optimum electrical resistance ratio and the maximum power output are achieved with an error 
7 band of ±4% for both of them. In symmetric distributions, the effective temperature difference 
8 equations (S27) and (S39) are actually equivalent to each other, so the good evaluation capability 
9 for symmetric thermal resistance distributions is also retained in the new power output formulas.
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11 Fig. S5 Maximum power points obtained by the revised formulas Eqs. (S41-42), Δ𝑇 = 500 𝐾

12 Finally, we obtain a set of explicit formulas to conveniently and accurately evaluate the 
13 optimum conversion efficiency and power output points for a TEGS working in realistic thermal 
14 environments, with relative deviations no higher than 5% over wide ranges of total temperature 
15 difference and thermal resistance distribution. The formulas are rewritten here as

16

{ 𝜂𝑚𝑎𝑥 =
Δ𝑇
𝑇ℎ

𝑚𝑜𝑝𝑡,𝜂 ‒ 1

𝑚𝑜𝑝𝑡,𝜂 +
𝑇𝑐

𝑇ℎ
+ 𝛽

    (𝑎)

𝑚𝑜𝑝𝑡,𝜂 = (1 + 𝑍𝑇 ∗ )[1 + 𝑍(𝑇 ∗ + 𝑇̅ ∗ )]    (𝑏)

𝑤𝑚𝑎𝑥 =
1

(1 + 𝑓ℎ + 𝑓𝑐)2

∆𝑇2

4𝐿𝑚𝑜𝑝𝑡,𝑤
𝛼2𝜎    (𝑐)

𝑚𝑜𝑝𝑡,𝑤 = 1 +
𝑓ℎ + 𝑓𝑐

1 + 𝑓ℎ + 𝑓𝑐
𝑍(𝑇 ∗ + 𝑇̅ ∗ )    (𝑑)

�#(𝑆43)
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1 where , and .
 𝑇 ∗ =

𝑓ℎ𝑇𝑐 + 𝑓𝑐𝑇ℎ

1 + 𝑓ℎ + 𝑓𝑐
, 𝑇̅ ∗ =

𝑇
1 + 𝑓ℎ + 𝑓𝑐

𝛽 = 2
𝑇 ∗

𝑇̅ ∗

𝑇
𝑇ℎ

𝑚𝑜𝑝𝑡,𝜂(1 +
𝑚𝑜𝑝𝑡,𝜂

1 + 𝑍𝑇 ∗ )
2 5. Effect of the thermal resistance distribution

3

0.01 0.1 1 10

0
10
20
30
40
50
60
70

m
op

t, 
 

de
vi

at
io

n 
%

f

 T=50 K
 T=250 K
 T=500 K

fh=0 VS fc=0

0.01 0.1 1 10

1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2

 fh=0, fc=f, T=50 K
 fc=0, fh=f, T=50 K
 fh=0, fc=f, T=250 K
 fc=0, fh=f, T=250 K
 fh=0, fc=f, T=500 K
 fc=0, fh=f, T=500 Km

op
t, 


f

(b)

(c) (d)

0.01 0.1 1 10

1.0

1.5

2.0

2.5

3.0

m
op

t, 
P

f

 fh=0, fc=f, T=50 K
 fc=0, fh=f, T=50 K
 fh=0, fc=f, T=250 K
 fc=0, fh=f, T=250 K
 fh=0, fc=f, T=500 K
 fc=0, fh=f, T=500 K

0.01 0.1 1 10

0

10

20

30

40

50

60

70

m
op

t,P
 d

ev
ia

tio
n 

%

f

 T=50 K
 T=250 K
 T=500 K

fh=0 VS fc=0

(a)

4 Fig. S6 (a) Evolution curves of the optimum electrical resistance matching parameter for 
5 maximum system efficiency for two critical thermal resistance distributions, one with zero 
6 thermal resistance at the hot side, and the other with zero thermal resistance at the cold side; (b) 
7 Evolution curves of the optimum electrical resistance matching parameter for maximum output 
8 power for two critical thermal resistance distributions; (c) and (d), Deviations of the optimum 
9 electrical resistance matching parameters between two critical thermal resistance distributions, 

10 for maximum system efficiency and output power respectively

11 6. On the design of TEGs with limited ∆T

12 Denoting the heat transfer coefficients at the hot and cold sides as  and , and the fill factor ℎℎ ℎ𝑐

13 as , the thermal resistance ratios can be expressed as𝐹𝐹

14
𝑓ℎ =

𝐹𝐹 ∙ 𝜅
ℎℎ𝐿

,  𝑓𝑐 =
𝐹𝐹 ∙ 𝜅

ℎ𝑐𝐿
,  𝐹 =

𝐹𝐹 ∙ 𝜅
ℎ𝐿

#(𝑆44)

15 where . Substituting Eq. (S44) into Eq. (S43(c)-(d)), the maximum power output is 

1
ℎ

=
1
ℎℎ

+
1
ℎ𝑐

16 rewritten as
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1

𝑃𝑚𝑎𝑥 =
𝑍∆𝑇2𝐴

4
1

𝐿
𝜅

+
𝜅
𝐿(𝐹𝐹

ℎ )2[1 + ℎ𝑍(𝑇𝑐

ℎℎ
+

𝑇ℎ

ℎ𝑐
)] +

𝐹𝐹
ℎ

(2 + 𝑍𝑇)

#(𝑆45)

2 The power density based on the substrate area is then derived as

3

𝑃𝑑𝑒𝑛𝑠 =
1
4

𝑍∆𝑇2 1

𝐿 ∗

𝜅
+

𝜅

𝐿 ∗ (1
ℎ)2[1 + ℎ𝑍(𝑇𝑐

ℎℎ
+

𝑇ℎ

ℎ𝑐
)] +

1
ℎ

(2 + 𝑍𝑇)

#(𝑆46)

4 where , and it could be used as a lumped dimension parameter for the geometry of the 
𝐿 ∗ =

𝐿
𝐹𝐹

5 TE legs. The maximum power density is achieved by equating the former two terms in the 
6 denominator, which leads to

7
𝐿 ∗ =

𝜅
ℎ

1 + ℎ𝑍(𝑇𝑐

ℎℎ
+

𝑇ℎ

ℎ𝑐
)#(𝑆47)

8 When the effective temperature difference is small,  is close to 1. An approximation could 

𝑇 '
ℎ

𝑇 '
𝑐

9 be made based on the Taylor expansion and by neglecting higher order terms as

10
(𝑇 '

ℎ

𝑇 '
𝑐
)𝑘𝑔≅1 + 𝑘𝑔(𝑇 '

ℎ

𝑇 '
𝑐

‒ 1)#(𝑆48)

11 Then the square bracket term in the effective thermal conductivity7 is converted into

12
1 ‒ (𝑇 '

ℎ

𝑇 '
𝑐
)𝑘𝑔≅𝑘𝑔(1 ‒

𝑇 '
ℎ

𝑇 '
𝑐
) =

2( 1 + 𝑧𝑇 ‒ 1)
𝑧𝑇

𝑇 '
ℎ ‒ 𝑇 '

𝑐

𝑇 '
𝑐

#(𝑆49)

13 The effective thermal conductivity is rewritten as

14

𝜅𝑒𝑓𝑓 = 𝜅 1 + 𝑧𝑇
𝑇 '

ℎ

𝑇 '
ℎ ‒ 𝑇 '

𝑐

1 + 𝑧𝑇 + 1
2

∙ [1 ‒ (𝑇 '
ℎ

𝑇 '
𝑐
)𝑘𝑔]

≅𝜅 1 + 𝑧𝑇
𝑇 '

ℎ

𝑇 '
𝑐

≅𝜅 1 + 𝑧𝑇

#(𝑆50)

15 To validate the analytical model for ignoring relevant side effects including the thermal 
16 spreading resistance within the substrate and the thermal shunt effect of air surrounding the TE 
17 legs, a comparison on the effective temperature difference under open-circuit condition is carried 
18 out between the analytical results and the reported data8 following a comprehensive 
19 consideration of the involved side effects, as shown in Fig. S6. Good agreements can be seen for 
20 fill factors higher than 5%, implying a solid validity of the model for practical applications. Also 
21 presented here is the effective temperature difference curve for maximum power output, which 
22 is obviously lower than that under the open-circuit condition, once again highlighting the 
23 importance of thermal-electrical coupled analysis on the accurate evaluation of the system 
24 performance, even in situations with severely limited temperature differences.
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2 Fig. S7 Effective temperature difference evolutions under open circuit condition and for 
3 maximum power versus fill factor of the TEG, a comparison between analytical results obtained 
4 in this work and reference data8
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