Supporting Information

Templated Growth of FASnI₃ Crystals for Efficient Tin Perovskite Solar Cell

Xiao Liu^{a,b,d}, Tianhao Wu^a, Jung-Yao Chen^c, Xiangyue Meng^d, Xin He^d, Takeshi Noda^d, Han Chen^a, Xudong Yang^a, Hiroshi Segawa^e, Yanbo Wang^{a*}, Liyuan Han^{a,b,d,f*}

^aState Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, China.

^bSpecial Division of Environmental and Energy Science, Komaba Organization for Educational Excellence (KOMEX), College of Arts and Sciences, University of Tokyo, Tokyo 153-8902, Japan ^cDepartment of Chemical Engineering, National Chung Cheng University, Chiayi, 62102, Taiwan ^dPhotovoltaic Materials Group, Center for Green Research on Energy and Environmental Materials, National Institute for Materials Science, Tsukuba, Ibaraki 305-0047, Japan. ^eResearch Center for Advanced Science and Technology, University of Tokyo, Tokyo 153-8904, Japan

^fFaculty of Pure and Applied Science, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan

*Corresponding author. E-mail address: sjtu-wyb@sjtu.edu.cn; han.liyuan@sjtu.edu.cn

Materials

The following chemicals were used as received form commercial sources, including SnI₂ (99.99%, Sigma-Aldrich), CH(NH₂)₂I (FAI) (>98%, Tokyo Chemical Industry Co., Japan), CH₃(CH₂)₂NH₃I (PAI) (>99%, Sigma-Aldrich), SnF₂(>99%, Sigma-Aldrich), C₆₀ (99.5%, Sigma-Aldrich), bathocuproine (>99%, Wako), All solutions were filtered with a 0.2 μ m PTFE filter before using.

Solar cell fabrication

Patterned ITO glass substrates were cleaned in the order of detergent, deionized water, acetone, and isopropanol for 15 min by ultra-sonicated. Then, the cleaned ITO substrates were treated by ultraviolet-ozone for 30 min before the deposition of PEDOT:PSS layer. The perovskite precursor solution composed of 1 M SnI_2 , 1 M FAI and 0.1M SnF_2 in DMSO was stirred for 2 hours at room temperature.

The perovskite solar cells were fabricated according to our previous work.¹ In short, perovskite films were spin-coated on the PEDOT:PSS layer at 1000 rpm for 12 s and 5000 rpm for 48 s in the glove box. 80 μ L Chlorobenzene was in-situ dripped onto the perovskite film during the second step at 30 s. In order to construct the templated growth structure, the PAI (1-5 mg/mL) dissolved in a mixed solvent of CF and DMSO (100:0.5-2 v/v) were spin-coated on perovskite films at the speed of 2000-6000 rpm. Then the perovskite films were annealed at 60 °C for 10 s and 100 °C for 12 min. Finally, 50 nm C₆₀ and 8 nm BCP and 70 nm Ag electrode were evaporated under high vacuum (< 2 × 10⁻⁷ Torr). The device areas were defined by a mask with

an aperture area of 0.10 cm². For the control of oxygen concentration, an accurate oxygen volume was injected into the glovebox.²

Characterization:

The XRD and rocking curves were measured by Rigaku Smart lab thin-film x-ray diffractometer using Cu K_a radiation. The SEM image were measure by HITACHI-SU8000 field-emission scanning electron microscope. The UV-vis spectra were obtained by a Shimadzu UV/vis 3600 spectrophotometer. The XPS spectra were measured by PHI Quantera SXM (ULVAC-PHI) with X-ray source of Al K^a (mono), the incident angle and take-off angle are 90 ° and 45 °, respectively. The steady state PL and TRPL were measured with a Hamamatsu C12132 fluorescence lifetime spectrometer using a laser at an excitation wavelength of λ =402 nm. The *C-V* measurements and the TPV were measured by a platform for all-in-one characterization of solar cells and OLED (PAIOS) of FLUXim Company. *C-V* measurements were taken at 1 kHz with voltage amplitude of 10 mV under dark at room temperature. TPV were measured at open-circuit condition, the pulse length of a white light is 1 ms, background light of 0.09 Sun (9 mW cm⁻²) was applied.

The *I-V* curves were measured under forward scan (-0.1 V to 0.8 V) or reverse scan (0.8 V to -0.1 V) by a fixed step voltage of 10 mV and delay time of 50 ms by a solar simulator with standard AM 1.5G sunlight (100 mW cm⁻², WXS-155S-10, Wacom Denso) according to our previous report.^{3,4} The aperture area was defined by a mask of 0.09 cm², Monochromatic IPCE spectra were measured by a monochromatic incident light of 1×10^{16} photons cm⁻² in director current mode (CEP-2000BX, Bunko-Keiki). The light intensity of the solar simulator was calibrated by a standard silicon solar cell. The solar cells were firstly encapsulated in nitrogen filled glovebox by cavity glass and UV-curable glue. All the cells were encapsulated according to our previous reports for operation stability test⁵.

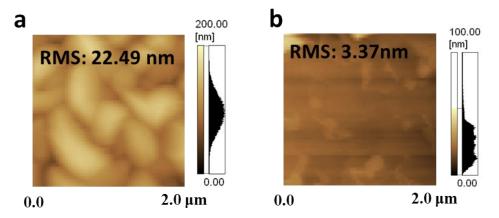
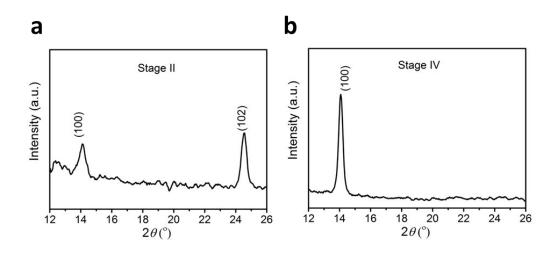



Figure S1. AFM images of (a) $FASnI_3$ and (b) $TG-FASnI_3$ films.

Figure S2. The GIXRD patterns for the tin perovskites in Fig. 1a stage II the treatment of PAI) and stage IV (after the treatment of PAI) with the incident angle of 0.2° .

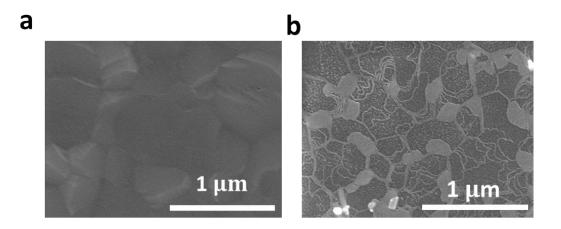
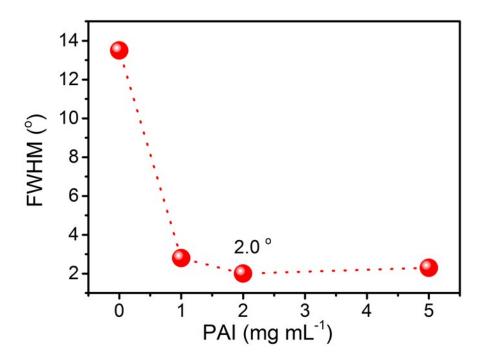



Figure S3. SEM images of (a) 1 mg mL⁻¹ PAI and (b) 5mg mL⁻¹ PAI treated TG-FASnI₃ films.

Figure S4. FWHM of the rocking curve XRD for $FASnI_3$ film and 1 mg mL⁻¹, 2 mg mL⁻¹ and 5 mg mL⁻¹ PAI treated TG-FASnI₃ films.

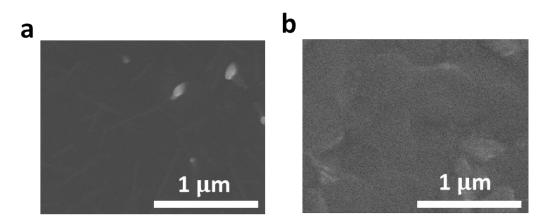
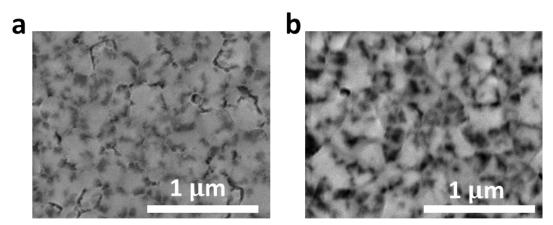



Figure S5. SEM images of 2 mg mL⁻¹ PAI treated TG-FASnI₃ with (a) 2000 rpm/s and (b) 6000 rpm/s.

Figure S6. SEM images of 2 mg mL⁻¹ PAI treated TG-FASnI₃ with the PAI dissolved in (a) CF/DMSO (100:0.5 v/v), (b) CF/DMSO (100:2 v/v).

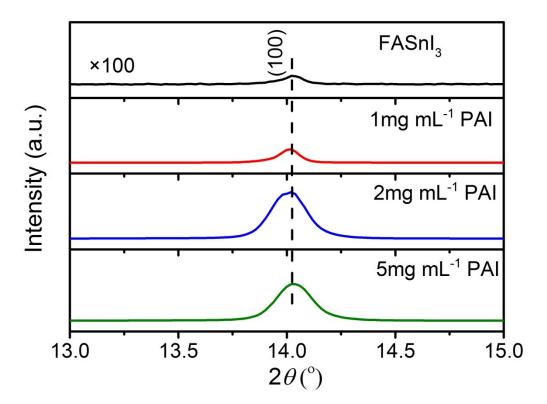


Figure S7. Amplified the signals of XRD (100) peak of $FASnI_3$, 1 mg mL⁻¹, 2 mg mL⁻¹ and 5 mg mL⁻¹ PAI treated TG-FASnI₃.

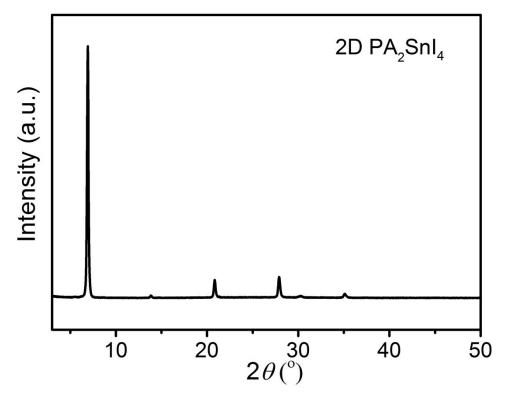
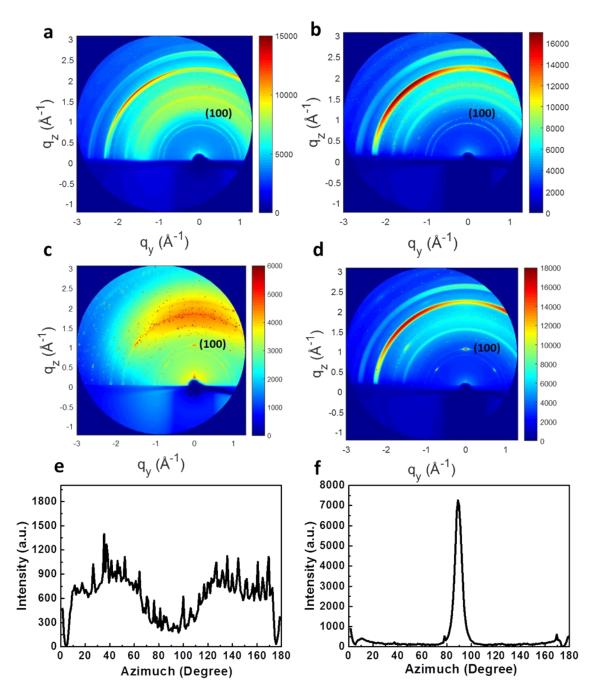



Figure S8. XRD pattern of pure 2D PA₂SnI₄.

Figure S9. (a) GIWAXS images of FASnI₃ and (b) TG-FASnI₃ with incident angle of 0.1 ° and (c) GIWAXS image of FASnI₃ and (d) TG-FASnI₃ with incident angle of 1 °, (e) Azimuthal degree pattern of $q \approx 1 \text{ Å}^{-1}$ in (b) and (f) Azimuthal degree pattern of $q \approx 1 \text{ Å}^{-1}$ in (d).

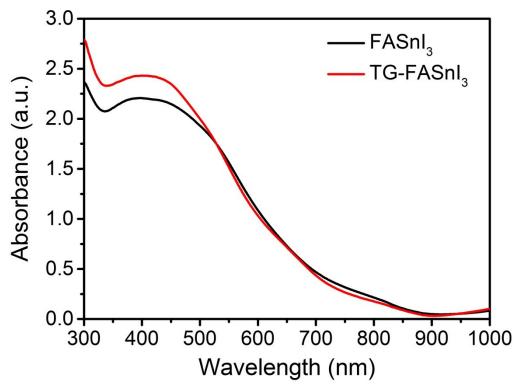
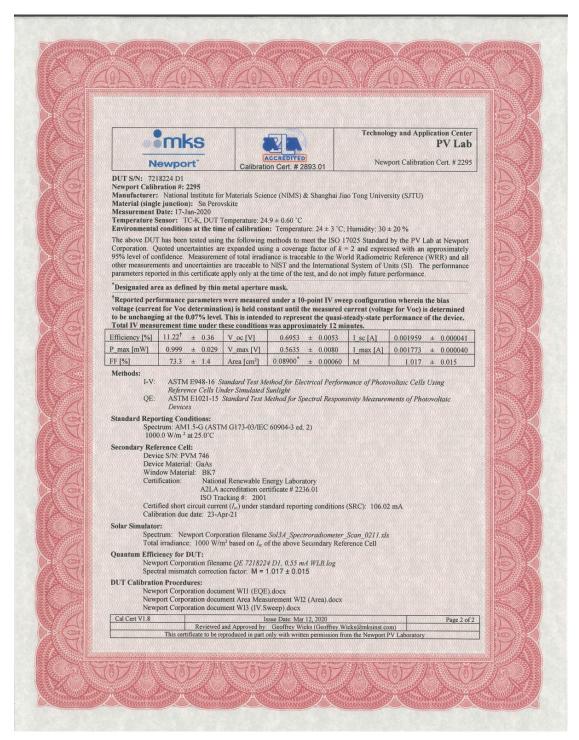



Figure S10. UV-vis spectrum of FASnI₃ and TG-FASnI₃.

Figure S11. The certified results of a typical TG-FASnI₃ TPSC obtained from an accredited test center (Newport, USA). A quasi-steady-state PCE of 11.22% was obtained on an aperture area of 0.08900 cm².

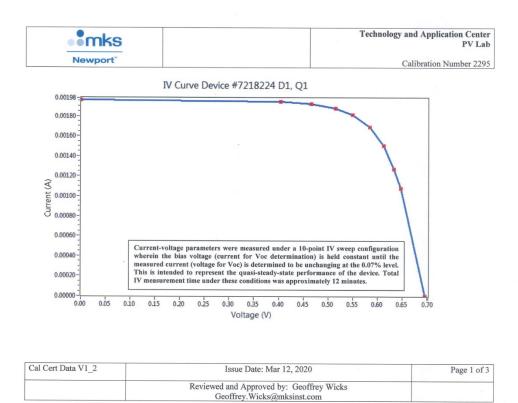


Figure S12. Certified results of *I-V* curve.

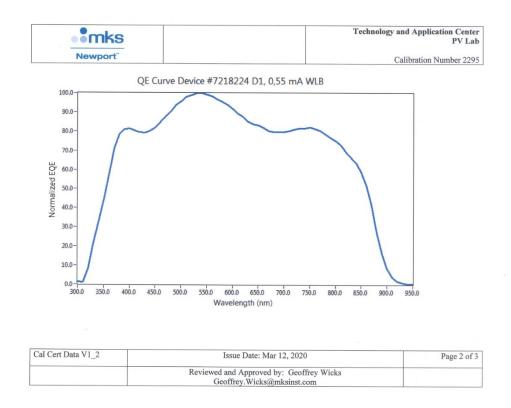


Figure S13. Certified results of normalized external quantum efficiency.

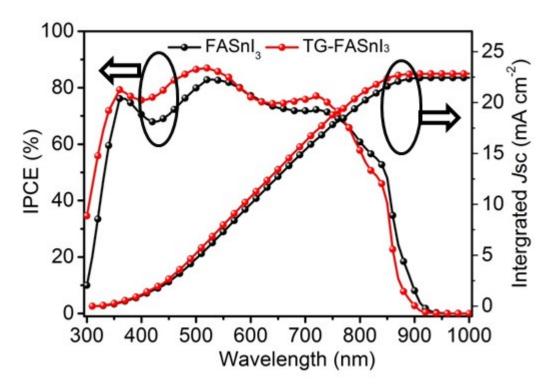
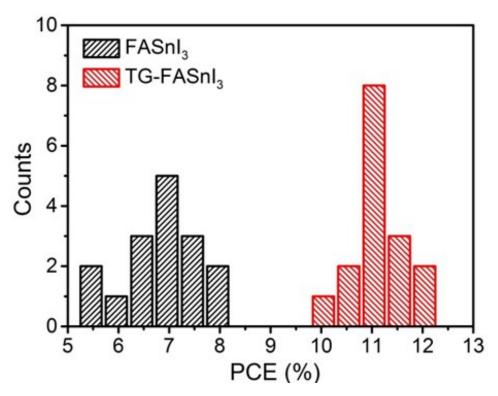



Figure S14. IPCE of the of FASnI₃ and TG-FASnI₃ devices.

Figure S15. Histogram of efficiency statistics of sixteen devices of $FASnI_3$ and TG-FASnI₃ devices.

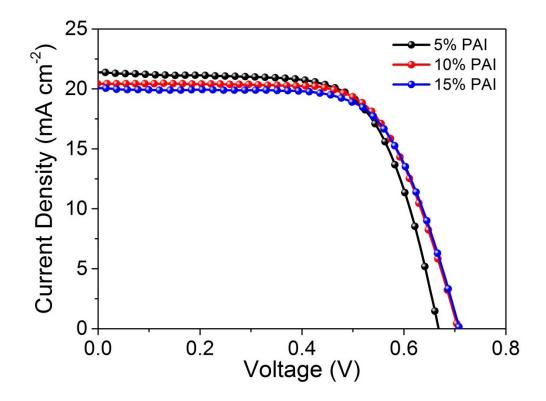


Figure S16. *I-V* curve of FASnI₃ with PAI as additives in precursor solution

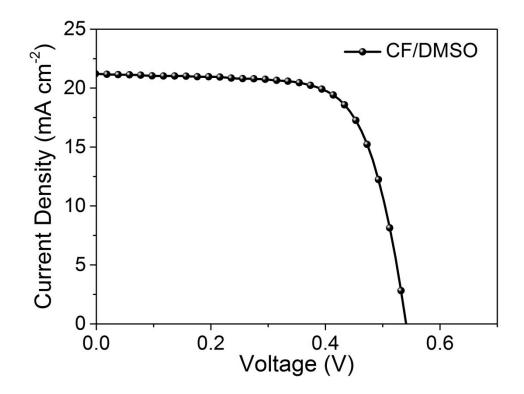


Figure S17. I-V curve of FASnI₃ with CF/DMSO pretreatment

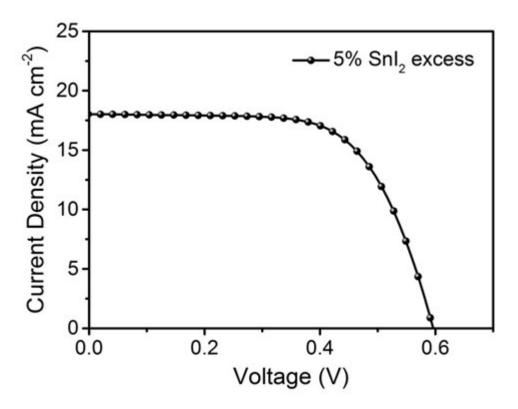


Figure S18 I-V curve of 5% SnI₂ excess FASnI₃ with PAI pretreatment

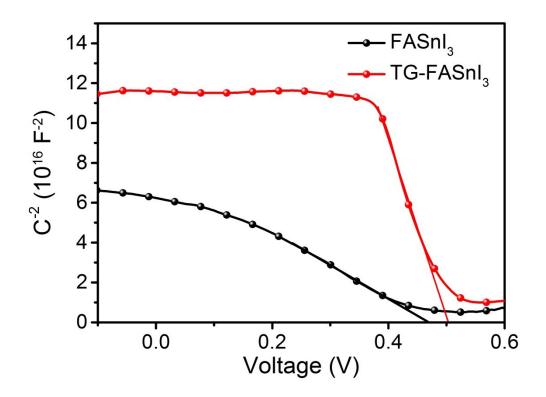


Figure S19. *C-V* curves of FASnI₃ and TG-FASnI₃ devices.

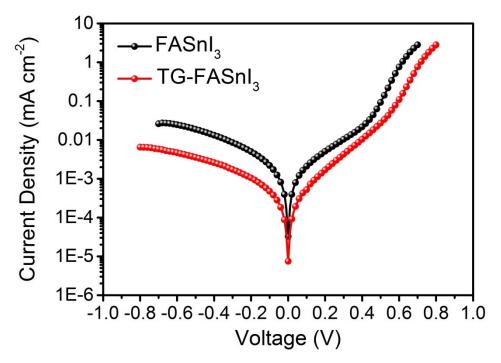
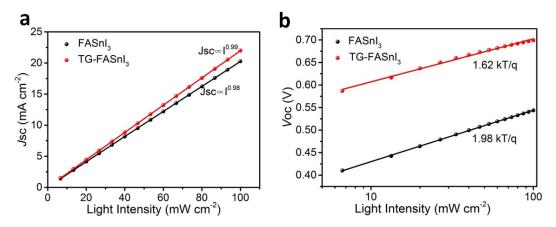



Figure S20. Dark current densities of FASnI₃ and TG-FASnI₃ devices.

Figure S21. J_{SC} and V_{OC} versus illumination intensity of FASnI₃ and TG-FASnI₃ devices.

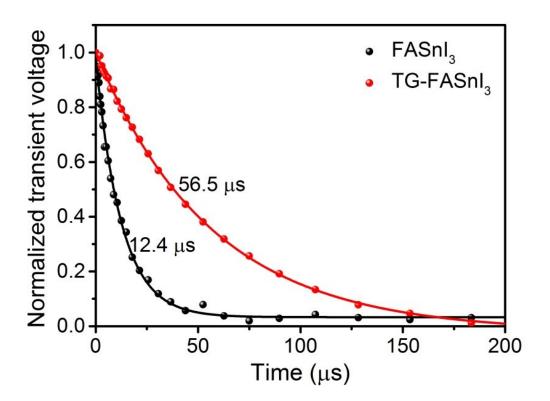


Figure S22. TPV of FASnI₃ and TG-FASnI₃ devices.

Perovskite	Scan direction	$J_{\rm SC}$ (mA cm ⁻²)	$V_{\rm OC}$ (V)	FF (%)	PCE (%)
FASnI ₃	Forward	21.97	0.52	67.2	7.68
	Reverse	22.11	0.53	67.6	7.93
TG-FASnI ₃	Forward	22.10	0.72	73.0	11.62
	Reverse	22.37	0.73	72.0	11.78

Table S1: Device parameter for typical FASnI₃ and TG-FASnI₃ based TPSCs.

References

- 1. X. Liu, Y. Wang, F. Xie, X. Yang and L. Han, *ACS Energy Lett.*, 2018, **3**, 1116-1121.
- X. He, T. Wu, X. Liu, Y. Wang, X. Meng, J. Wu, T. Noda, X. Yang, Y. Moritomo, H. Segawa and L. Han, *J. Mater. Chem. A*, 2020, 8, 2760-2768.
- 3. Y. Wang, X. Liu, Z. Zhou, P. Ru, H. Chen, X. Yang and L. Han, *Adv. Mater.*, 2019, **31**, e1803231.
- 4. M.Yin, F. Xie, X. Li, Y. Wu, X. Yang, F. Ye, Y. Wang, J. He, W. Tang, E. Bi, H. Chen and L. Han, *Appl. Phys. Express*, 2017, **10**, 076601.
- 5. W. Chen, Y, Wu, Y. Yue, J. Liu, W. Zhang, X. Yang, H. Chen, E. Bi, I. Ashraful, M. Grätzel and L. Han, *Science*, 2015, **350**, 944-948.