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Estimation of the penetration current density

Figure S1. Example images of penetrated separators and solid electrolytes, which were analyzed 

to derive the penetration area and penetration current density. (a) Ceramic-coated polymer 

separator with liquid electrolyte. (1.0M LiPF6 in EC/DMC) (b) Glass fiber separator with liquid 

electrolyte.1 (c) LLZTO ceramic electrolyte.2 (d) Polymer electrolyte.3

Several images of the penetrated separators or solid electrolytes were analyzed. The images were 

either from our experimental results (Fig. S1a) or from literature (Fig. S1b-d). These include 

systems containing liquid electrolyte and porous separator,1 ceramic separator,2,4,5 and polymer 
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separators.3,6,7 The images were processed with ImageJ software to derive the ratio of the 

penetrated area (which appears as the black dots in the images) and the area of the electrode. For 

the cases that this method was not applicable, as the case of cross-sectional images from the 

polymer electrolytes (Fig. S1d), the length of the dendrite tip was measured and was used to 

calculate the penetration area. The exact area of the electrodes was often not given for the cross-

sectional images, and rough estimations of the thickness (~ 1mm) and length of the electrode (4-

10 mm) were done for the calculation.



4

Equations used in the COMSOL model

This section explains the equations and the boundary condition used in the COMSOL model. The 

Nernst-Plank equation describes the concentrations of ions within an electrolyte system under the 

effects of diffusion, convection, and migration:8

∂𝑐𝑖

∂𝑡
= 𝐹𝑢𝑖𝑍𝑖∇ ∙ (𝑐𝑖∇∅) + 𝐷𝑖∇ ∙ (∇𝑐𝑖) ‒ ∇ ∙ (𝑐𝑖𝑣) (S1)

where  is the concentration of the species i,  is its diffusivity,  is its charge number, is its 𝑐𝑖 𝐷𝑖 𝑍𝑖 𝑢𝑖 

mobility,  is the electric potential,  is the Faraday constant, and  is the velocity of the fluid.  ∅ 𝐹 𝑣

For a binary electrolyte, the expression can be converted into a simpler form by using the 

ambipolar diffusivity (apparent diffusivity), which includes the effect of migration.9 The ambipolar 

diffusivity, , can be defined as𝐷𝑎𝑚𝑏

𝐷𝑎𝑚𝑏 =
𝐷 + 𝐷 ‒ 𝑍 + ‒ 𝐷 + 𝐷 ‒ 𝑍 ‒

𝐷 + 𝑍 + ‒ 𝐷 ‒ 𝑍 ‒
(S2)

where  and  are the diffusivity and charge number of the corresponding ions.𝐷 𝑍

Using , the Nernst-Plank equation now takes the following form:𝐷𝑎𝑚𝑏

∂𝑐
∂𝑡

+ ∇ ∙ (𝑐𝑣) = 𝐷𝑎𝑚𝑏∇ ∙ (∇𝑐) (S3)
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which has the form of the convection-diffusion equation. If the velocity of the fluid is assumed to 

be zero, the equation now becomes the classical diffusion equation with the following form: 

∂𝑐
∂𝑡

= 𝐷𝑎𝑚𝑏∇ ∙ (∇𝑐) (S4)

In our COMSOL model, this diffusion equation form was used. “Transport of the Diluted Species 

Study” module of the software was used with a diffusion equation,

∂𝑐𝐿𝑖

∂𝑡
+ ∇ ∙ 𝐽𝐿𝑖 = 0 (S5)

and

𝐽𝐿𝑖 =‒ 𝐷𝑎𝑚𝑏∇𝑐𝐿𝑖 (S6)

where  is the flux of Li ions. As mentioned earlier, migration is already included in the 𝐽𝐿𝑖

ambipolar diffusivity term, and no convection condition was assumed. For the boundary condition 

for both electrodes, Li ion dissolution/deposition can be represented by the electrode surface 

coupling boundary condition, described by
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𝑅𝐿𝑖 =
𝜈𝐿𝑖𝑗

𝑛𝐹
(S7)

where  is the stoichiometric coefficient (1 for Li), n is the number of a participating electron in 𝜈𝑖

the reaction,  is the current density, and  is the number of reacted Li ions per unit area per unit 𝑗 𝑅𝐿𝑖

time. At the electrode surface, 

‒ 𝑛 ∙ 𝐽𝐿𝑖 = 𝑛 ∙ 𝐷𝐿𝑖∇𝑐𝐿𝑖 = 𝑅𝐿𝑖 =
𝑗
𝐹 (S8)

where  is the normal vector. Since generally , the relation between the two diffusivities, 𝑛 𝐷𝐿𝑖 ≠ 𝐷𝑎𝑚𝑏

𝐷𝐿𝑖 =
𝐷𝑎𝑚𝑏

𝑡𝑎
(S9)

can be used with the transference number  (0.62 for LiPF6 in EC/DMC). 𝑡𝑎

Table S1. Parameters and constants used in the COMSOL simulations

Faraday constant Li metal Density Molar mass of Li Li ion diffusivity
96485.33 [C/mol] 0.534 [g cm-3] 6.941 [g mol-1] 3.0E-6 [cm2 s-1]

Table 1 summarizes the parameters and constants used in the COMSOL simulation.  Porosity, 

calculated from the operando optical microscope images and the amount of total charge passed, 
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was in the range of 0.95 ~ 0.99, and we used the porosity value in this range that best fitted our 

experimental results in the COMSOL model. Unless otherwise noted, Li ion diffusivity of 3E-6 

cm2 s-1 was used in simulations. For certain simulated cases, an advancing electrode front due to 

Li deposition was considered, using the deformed geometry function that COMSOL software 

provides. A prescribed normal mesh velocity was set, and the velocity was controlled by the 

amount of Li metal being deposited per unit time. The expression used for the volume increase 

due to Li deposition was calculated as follows:

∆𝑉 =
𝐼𝑀

𝐹𝜌𝜀𝑀
(S10)

where  is the increase of volume each second,  is the total current,  is molar mass,  is the ∆𝑉 𝐼 𝑀 𝐹

Faraday constant,  is the density of the lithium, and  is the porosity of the Li metal deposition. 𝜌  𝜀𝑀

The normal mesh velocity for the advancing electrode front boundary, , was expressed as 𝑣

𝑣 =  
∆𝑉
𝐴 (S11)

where  is the transient cross-sectional area calculated from the location of the advancing electrode 𝐴

surface within the defined geometry. 
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Limiting current density and the steady-state concentration profile in converging channels

Figure S2. (a) COMSOL model calculated limiting current densities for varied Li ion diffusivities. 

(b-c) Lengthwise distribution Li ion concentration values in a straight channel (b) and converging 

channel (c) at a different time. In both cases, limiting current density was applied. The steady-state 
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concentration profile was derived both analytically and numerically, while the transient profiles 

were derived only numerically. L=5 mm for (a-c).

As much as the accurate prediction of Sand’s time has been emphasized, the accurate derivation 

of the limiting current density is also important since it is directly related to the maximum current 

density that can be used in the system.10 The limiting current density for the converging or the 

straight channels with a fixed electrode front can be solved analytically with the steady-state 

assumption as explained in more detail in the later section (S12-22). However, the advancing 

electrode front makes it infeasible to analytically derive the limiting current density, so a numerical 

method was used for the advancing front case. 

Analytically and numerically derived values of the limiting current density were compared in 

Figure S2a. The limiting current density for the converging channels with the fixed electrode front, 

which was calculated both numerically and analytically, showed a linear relation with the 

diffusivity, but with a gentler slope than the straight channel case. This relationship is clearer when 

comparing the two analytical solutions for each case (S16 and 18). This difference is due to the 

delayed diffusion and thus a faster depletion caused by the converging channel. Even for the cases 

with both a converging channel and an advancing electrode front, the relationship between 

diffusivity and the limiting current density remains linear, as shown in Fig. S2a. This result has 

practical significance since even for a converging channel where the Sand equation is no longer 

valid, the diffusivity can still be determined by measuring the limiting current density, provided 

that an electrolyte with the known diffusivity is used as a reference. Meanwhile, an increase in 

porosity, and thus a faster electrode movement, led to a steeper slope (Fig. S2a). Again, the 
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advancing electrode front delayed the ion depletion, so more current density was needed before 

transport-limitation can be reached. One additional point to note is that for the converging channel, 

the steady-state concentration profile was not linear (Fig. S2b), unlike the diffusion process inside 

a straight channel (Fig. S2c).
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Analytical solution for a steady-state concentration profile and limiting current density

This section describes the derivation of the analytical solution for a steady-state concentration 

profile and limiting current density. For straight channels without considering the growth-induce 

movement of the electrode, the following linear diffusion equation needs to be solved for the 

analytical solution:

∂𝑐𝑖

∂𝑡
= 𝐷𝑎𝑚𝑏

∂2𝑐𝑖

∂𝑥2
(S12)

At steady-state, the left term becomes zero and the following boundary conditions can be used:8

At  (at the center), 𝑥 = 0 𝑐𝑖(0) = 𝑐0 (S13)

At  (at the electrode surface), 𝑥 = 𝐿 𝑐𝑖(𝐿) = 0 (S14)

At  (at the electrode surface), 𝑥 = 𝐿

𝐷𝑎𝑚𝑏

𝑡𝑎
[∂𝑐𝑖

∂𝑥]𝑥 = 𝐿 =‒
𝑗

𝑛𝐹 (S15)

Note that the transference number is used in the boundary condition S15 because only the cation 

is being consumed at the electrode surface. Solving the equation with the boundary conditions 

gives the concentration profile at steady-state, which is a straight line (Fig. S2b), as well as the 

limiting current density, described by the following expression:

𝑗𝑙𝑖𝑚 =‒
𝐷𝑎𝑚𝑏𝐹

𝑡𝑎

2𝑐0

𝐿 (S16)
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For the diffusion process within a curved geometry where the cross-sectional area of the electrode 

changes with , the Fick-Jacobs equation can be used as a governing equation:11–13𝑥

∂𝑝𝑖(𝑥,𝑡)

∂𝑡
=

∂
∂𝑥

𝐷𝐴(𝑥)
∂

∂𝑥(𝑝𝑖(𝑥,𝑡)

𝐴(𝑥) ) (S17)

Where  is the diffusivity of the ion inside electrolyte,  is the cross-sectional area at point  𝐷 𝐴(𝑥) 𝑥,

and  is the cross-sectional integration of concentration so that . Note that 𝑝𝑖(𝑥,𝑡) 𝑝𝑖(𝑥,𝑡)/𝐴(𝑥) = 𝑐𝑖(𝑥,𝑡)

the concentration is assumed to vary only along the x-axis.

The same boundary conditions as above can be applied, and the limiting current density now has 

the following expression:

𝑗𝑙𝑖𝑚 =‒
𝐷𝑎𝑚𝑏𝐹

𝑡𝑎
[∂𝑐𝑖

∂𝑥]𝑥 = 𝐿 (S18)

The analytical solution for a curved wall with a catenary profile ( ,  𝑟 = 𝑎 ∗ 𝑐𝑜𝑠ℎ(𝑥/𝑎) ‒ 𝑏 𝑎 = 70.640

mm and  mm) can be solved as follows.𝑏 = 70.595

From the equation S17, at steady-state, the following equation obtains:

0 =
∂

∂𝑥(𝐴(𝑥)
∂𝑐𝑖

∂𝑥) (S19)

Due to the catenary wall profile, the area can be expressed as 

𝐴(𝑥) = 𝜋(𝑎 ∗ 𝑐𝑜𝑠ℎ(𝑥/𝑎) ‒ 𝑏)2 (S20)
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Using equation S19 and 20 and by integrating twice with the boundary condition S13-15, the 

following expression can be derived:

𝑐𝑖(𝑥) =

𝑎𝛼(2𝑏tan ‒ 1 ((𝑎 + 𝑏)𝑡𝑎𝑛ℎ( 𝑥
2𝑎)

𝑎2 ‒ 𝑏2 )
(𝑎2 ‒ 𝑏2)

3
2

+
𝑎 𝑠𝑖𝑛ℎ(𝑥

𝑎)
(𝑎 ‒ 𝑏)(𝑎 + 𝑏)(𝑎 𝑐𝑜𝑠ℎ(𝑥

𝑎) ‒ 𝑏))
𝜋

+ 𝛽

(S21)

where  and  are the constants of integration.𝛼 =‒ 0.0039 𝛽 = 1000

The limiting current density, from equation S18, can be expressed as 

𝑗𝑙𝑖𝑚 =‒
𝐷𝑎𝑚𝑏𝐹

𝑡𝑎

𝛼
𝐴(𝐿) (S22)
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Analytical derivation of the Sand’s time in curved channels

 This section describes the derivation of the analytical solution for the Sand’s time in curved 

channels. For the case of curved geometry, the Fick-Jacobs equation (S17) should be solved. 

Equation S17 can be rearranged to the following form:

∂𝑐(𝑥,𝑡)
∂𝑡

= 𝐷
∂2𝑐

∂𝑥2
+ 𝐷

𝑑𝐴(𝑥)
𝐴(𝑥)𝑑𝑥

∂𝑐
∂𝑥 (S23)

For the special case of , where  and  are constants, the equation S23 can be 𝐴(𝑥) = 𝐴0𝑒𝑥𝑝⁡(𝑏𝑥) 𝐴0 𝑏

simplified as the following form, which has a similar form to convection-diffusion equation:

∂𝑐(𝑥,𝑡)
∂𝑡

= 𝐷
∂2𝑐

∂𝑥2
+ 𝑏𝐷

∂𝑐
∂𝑥 (S24)

 With the change of variable, , the equation can be further simplified to diffusion 𝜉 = 𝑥 + 𝑏𝐷𝑡

equation form,

∂𝑐(𝜉,𝑡)
∂𝑡

= 𝐷
∂2𝑐

∂𝑥𝜉2 (S25)

The initial and boundary conditions are as the following:

𝑐(𝜉,𝑡 = 0) = 𝑐0 (S26)
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𝑐(𝜉→∞,𝑡) = 𝑐0 (S27)

𝑐(𝜉 = 0,𝑡 > 0) = 0 (S28)

 Note that  is the location of the electrode surface. 𝜉 = 0

For the surface reaction, the following flux balance relation can be established:

𝐷
∂𝑐(𝜉 = 0,𝑡 > 0)

∂𝜉
=

𝐼(𝑡)
𝑛𝐹𝐴 (S29)

where  is current,  is the number of a participating electron in the reaction,  is the faraday 𝐼(𝑡) 𝑛 𝐹

constant, and  is the surface area of the electrode. Using the Laplace transform with initial and 𝐴

boundary conditions, along with the flux balance relationship, the analytical solution can be found 

as the following:

𝑐(𝜉,𝑡) = 𝑐0 ‒
(1 ‒ 𝑡 + )𝐼

𝑛𝐹𝐴𝐷 [2
𝐷𝑡
𝜋

𝑒𝑥𝑝( ‒
𝜉2

4𝐷𝑡) ‒ 𝜉 𝑒𝑟𝑓𝑐( 𝜉
2 𝐷𝑡)] (S30)

Substituting back to  and putting  and  gives the following relation between the 𝑥 𝑥 = 0 𝑐(0,𝑡) = 0

Sands time ( ) and current density ( ):𝑡𝑠 𝐽

 �2 𝑡𝑆

𝐷𝜋
exp ( ‒

𝑏2𝐷𝑡𝑆

4 ) ‒ 𝑏𝑡𝑆erfc (𝑏 𝐷𝑡𝑆

2 ) � = 𝑐0𝑛𝐹

𝐽(1 ‒ 𝑡 + ) (S31)

The relationship between curvature and the scaling exponents 
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Figure S3. (a) Adjusted values of fitted  plotted against the distance from the electrode surface. 𝐴(𝑥)

The adjustment was done by dividing  values with , for the fitted equations of 𝐴(𝑥) 𝐴0

 The values of the exponents remain the same as the scalar b of the fitted 𝐴(𝑥) = 𝐴0exp (𝑏𝑥). 

equations, showing that b-values are directly related to the changing rate of , which also 𝐴(𝑥)

represents the extent of the channel wall curvature. (b) The values of the area changing rate b 
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plotted against the varied interelectrode distance. (c) Scaling exponent values plotted against the 

area changing rate b. The changing rate b and the Scaling exponent showed a monotonic 

relationship, suggesting a monotonic relationship between the channel wall curvature and the 

scaling exponent values. 
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Limiting current density and the steady-state concentration profile in expanding channels

Figure S4. (a) Configuration of the geometry used in the simulations for expanding channels. (b) 

Limiting current density values with varied Li ion diffusivities, compared between different 

channel configurations. Expanding channel and the advancing electrode front increased the 

limiting current density significantly. (c) Lengthwise distribution Li ion concentration values in 

expanding channel at a different time. L=3.5 mm for (b-c).
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Sand’s time in expanding channels with varying metal porosity

Figure S5. (a) Mathematically simulated ion concentration at the advancing electrode front with 

varying metal porosity, inside expanding channels. The equation used for the varying metal 

porosity ( ) was , where J is the current density. The resulting 𝜀𝑀 𝜀𝑀 =‒ 79.08 ∗ 𝑒𝑥𝑝( ‒ 𝐽/4.72) + 0.9783

porosity was nearly constant initially for the higher current densities, then decreased rapidly at the 

current densities below 50 mA cm-2, which was close to the experimentally observed trend. For 

the case of 80 mA cm-2, the depletion did not occur if the porosity was fixed at the initial value, 

but the rapid decrease of porosity resulted in depletion. (b) Logarithmic plot of experimental and 

simulated Sand’s time versus current densities obtained within expanding channels. Calculated 

Sand’s time from the model with varying metal porosity was extended compared to the model with 

fixed porosity, especially for the lower current densities resulting in more negatively deviated 

scaling exponent closer to the experimental value. For the simulations,  was used for 𝜀𝑀 = 0.978

constant porosity case while  for the varying porosity case. 𝜀𝑀 =‒ 79.08 ∗ 𝑒𝑥𝑝( ‒ 𝐽/4.72) + 0.9783
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