Electronic Supplementary Information

Porous Crystalline Frameworks for Thermocatalytic CO₂ Reduction: An Emerging Paradigm

Sunil Mehla^a, Ahmad E. Kandjani^{*a}, Ravichandar Babarao^a, Adam F. Lee^a, Selvakannan Periasamy^a, Karen Wilson^a, Seeram Ramakrishna^b, Suresh K. Bhargava^{*a}

Methodology used for development of Fig. 1.

The structural information for 14 atom and 62 atom Cu clusters was obtained from the Materials Project database.[1] The structural information for PCN-426(Ni) was obtained from the CIF file published by Chen et al..[2] The CIF file was used to generate the structure for a packed unit cell of PCN-426(Ni) (40.98 X 40.98 X 40.98 nm) belonging to the Fm-3m space group using Mercury software which was further exported to pdb format for compatible visualisation in Ovito software. Ovito is an open source simulation tool that enables easy visualisation and animations based on structural information and molecular dynamics simulations.[3] 8, 14 atom clusters were placed in the 8 tetrahedral cavities of PCN-426(Ni) MOF using the Ovito software and image exported for the front view as Fig. 1a and perspective view as Fig. 1b. Similarly, 6, 62 atom clusters were placed in the 6 octahedral cavities of PCN-426(Ni) MOF using the front view as Fig. 1c and perspective view as Fig. 1d. The following particle sizes (as per default Ovito settings) were used in the structure for the illustration shown in Fig. 1.:

 Table S1. Particle size information used for structure simulations in Fig.1.

Entry	Structure	Element	Particle Size (pm)
1	PCN-426(Ni)	Ni	1.25
2	PCN-426(Ni)	С	0.74
3	PCN-426(Ni)	0	0.77
4	PCN-426(Ni)	Н	0.46
5	14 atom Cu cluster	Cu	1.28
6	62 atom Cu cluster	Cu	1.28

Table S2. Literature reports for porous crystalline framework-derived methanol, ethanol and formic acid selective CO₂ reduction catalysts and selected reference catalysts.

Entry	Catalyst Composition	Metal (wt%)	Temperatu (°C)	ire	Pressure (MPa)	H ₂ /CO ₂	GHSV (mL.h ⁻ ¹.g ⁻¹)	CO ₂ Conversion (%)	MeOH Selectivity (%)	MeOH STY (mg.g _{cat} ⁻¹ .h ⁻¹)	Ref No.
Reference	ce Catalysts										
1 Commer	rcial HiFuel		41.8	260) 4.5		21600	22.3	49.7	855.4	[4]
2 CZG-0.50	Ga		41.3	240) 4.5		18000	27	50	869	[5]
3 LDH-30G	ba		33.5	270) 4.5		18000	20	48	590	[6]
4 M-CZZ(1	6)		37.4	220) 3		6000	18.2	80.2	297	[7]
Crystalli	ne Framework Encapsulated Nanoparticles										
5 Cu@MO	F-5		13.8	220	0.1	18	30000			2.2	[8]
6 Cu/ZnO@	@MOF-5		1.4	220	0.1	18	30000			6.8	[8]
7 Cu/UiO-6	66-COOH		19	220	0.2	4	28000		98	2.3	[9]
8 Cu/Hf-Ui	iO-66		12	220	0.2	4	28000		95	2.26	[9]
9 CuZn@U	JiO-bpy		6.9	250) 4	3	18000	3.3	100	179	[10]
10 Cu/UiO-6	66			200) 1	3	4200	5.1	100		[11]
11 Pd-Z@Z8	8-1 (Pd-ZnO@ZIF-8)		2.97 (Pd)	250) 4.5	3	19200	6.6	79	360	[12]
12 Pd-Z@Z8	8-1 (Pd-ZnO@ZIF-8)		2.97 (Pd)	290) 4.5	3	19200	13	67	589	[12]

	Crystalline Framework Derived									
13	UiO-66-NH ₂ -SB-Cu ²⁺ derived CuO-ZrO ₂		320	3	3	18000	22.5	15		[13]
14	UiO-66-NH ₂ -SB-Zn ²⁺ derived ZnO-ZrO ₂		320	3	3	18000	5.8	70		[13]
15	15 In/ZIF-67 derived In ₂ O ₃ /CO ₃ O ₄			5	4	17200	8.3	87	320	[14]
16	16 In/ZIF-67 <i>derived</i> (In ₂ O ₃ /Co ₃ O ₄) 3In@4Co(20)			5	4	17200	19.9	70	550	[14]
17	17 Pd@ZIF-8 <i>derived</i> (PdZn) PZ8-400			4.5	3	21600	10.5	63	520	[15]
18	18 Pd@ZIF-8 derived (PdZn) PZ8-400		270	4.5	3	21600	15	59	650	[15]
19	CuZn-BTC derived CCZB-3		250	4	3	1500	20.9	58.2	62	[16]
20	CuZn-BTC derived CuZn@C-submm	67.2	260	4	3	18000	12.8	41.7		[17]
21	CU-0.5-300	12.4	220	4.5		21600	5.8	100	444.9	[4]
22	CU-0.5-300	12.4	240	4.5		21600	9.1	91.2	637.2	[4]
23	CU-0.5-300	12.4	260	4.5		21600	13.1	78.8	796.4	[4]
	Crystalline Framework Composite Catalysts									
24	CuAl-LDH/Zn-BTC composite derived CZA-ALDO(Cu-ZnO-LDO)		225	3	3	32000	4	75		[18]
25	CuAI-LDH/Zn-BTC composite derived CZA-ALDO(Cu-ZnO-LDO)		250	3	3	32000	7.5	52		[18]
	Ethanol								TON EtOH ^a	
26	Zr ₁₂ -bpdc-CuCs	11.4	100	4	3		52	99	539	[19]
27	Zr ₁₂ -bpdc-CuCs	11.4	85	35	3		2.7	99	4080	[19]
	Formic Acid								TON FA ^b	
28	PdAg/TiO ₂ @ZIF-8		100	2	1			99	913	[20]
29	PdAg/TiO ₂		100	2	1			99	488	[20]
30	ZIF-8@Pd ₁ Ag ₂ @ZIF-8		100	2	1				16.7 mmol/gcat	[21]
31	Pd ₁ Ag ₂ @ZIF-8		100	2	1				12.5 mmol/gat	[21]

^aIn place of MeOH STY, values of reported TON frequency for ethanol formation have been indicated

^bIn place of MeOH STY, values of reported TON frequency for formic acid formation have been indicated

Table S3. Literature reports for porous crystalline frameworks-based methane selective CO₂ reduction catalysts. A reference catalyst has been included for comparison.

Entry	Catalyst Composition	Metal (wt%)	Temperature (°C)	Pressure (MPa)	H ₂ /CO ₂	GHSV (mL.h ⁻¹ .g ⁻¹)	CO ₂ Conversion (%	CH4 5) Selectivity (%)	CH₄ STY (mg.g _{cat} -¹.h ⁻¹)	Ref No.
	Reference Catalyst									
1	ZrO ₂ -Ni	5.74	350	4	4	18000	19.7	99	437	[22]
	Crystalline Framework Encapsulated Nanoparticle	s								
2	10Ni@MOF-5	10	280	0.1	4	10000	47.2	100		[23]
3	10Ni@MOF-5	10	320	0.1	4	10000	75.09	100		[23]
4	Ni@UiO-66 (DSM)	10	320	0.1	8	4500	47.5	83.7		[24]
5	Ni@MIL-101 (IMP)	10	320	0.1	8	46500	56.4	91.6		[24]
6	20% Ni/UiO-66	20	300	1	3		57.6	100		[25]
7	20% Ni/UiO-66	20	320	1	3		68.2	100		[25]
8	20Ni@MIL-101 (IMP)	20	280	0.1	4	3000	39.3	100		[26]
9	20Ni@MIL-101 (DSM)	20	280	0.1	4	3000	74.3	100		[26]
10	20Ni@MIL-101 (DSM)	20	300	0.1	4	3000	100	100		[26]
11	Pd@UiO-66-6%	6	340	4	4	15000	56	97.3	856	[27]
	Crystalline Framework Derived									
12	Ni-MOF derived Ni@C	78	325	0.1	4	33000	100	100	3600	[28]
13	1% Ru/UiO-66		350	0.5	4	25000	96	100		[29]
14	1%Ru/UiO-66 derived Ru ⁰ /ZrO ₂	12.3	350	0.4	3.8		95			[30]
15	UiO-66 <i>derived</i> ZrO _x (OH) _y -Li-Ni	2.2	350	4	4	18000	58.9	99	1405	[22]
16	UiO-66 <i>derived</i> ZrO _x (OH) _y -Na-Ni	2.7	350	4	4	18000	66.6	99	1449	[22]
17	UiO-66 <i>derived</i> ZrO _x (OH) _y -K-Ni	2.7	350	4	4	18000	56.9	85	1032	[22]

18	UiO-66 <i>derived</i> ZrO _x (OH) _v -Cs-Ni	0.8	350	4	4	18000	57.4	99	749	[22]

Table S4. Literature reports for porous crystalline frameworks-based CO selective CO_2 reduction catalysts. Few reference catalysts have been included for comparison.

Entry	Catalyst Composition	Metal (wt%)	Temperature (°C)	Pressure (MPa)	H ₂ /CO ₂	GHSV (mL.h ⁻ ¹ .g ⁻¹)	CO ₂ Conversion (%)	CO Selectivity (%)	Ref No.
	Reference Catalysts								
1	NiO/CeO ₂		700	0.1	1	14400	40	100	[31]
2	Au/CeO ₂		400		3	12000	27.6	100	[32]
3	Pt/CeO ₂		425		4	21000	13.7	99.46	[33]
	Crystalline Framework Encapsulated Nanopar	ticles							
4	UiO-67-Pt-PSF(N)		240	0.1	6	6000	5.5	97.2	[34]
5	MOF-74	0	400	2	3	24000	11.2	99.1	[35]
6	Pt/MOF-74-24	9.9	400	2	3	24000	33.8	99.7	[35]
7	Au@Pd@MOF-74-5	0.095 Au, 0.035 Pd	400	2	3	24000	7.8	99.8	[35]
8	Pt/Au@Pd@MOF-74	5.6 Pt, 0.066 Au, 0.025 P	d 400	2	3	24000	27.4	99.6	[35]
9	Au@Pd@UiO-67/Pt@UiO-67		400	2	3	24000	35.9	80.5	[36]
10	Au@Pd@UiO-67/Pt@UiO-66		400	2	3	24000	20.7	82	[36]
11	Au@Pd@UiO-67/Pt@UiO-69		400	2	3	24000	3.5	98	[36]
12	Pt-PdNC@UIO-67	1.93 Pt, 0.055 Pd	400	2	3	24000	17.91	81.02	[37]
13	Pt-PdNP@UIO-67	2.5 Pt, 0.78 Pd	400	2	3	24000	12.41	75.13	[37]
14	4-Pt/1Co		400	2	3	12000	12.6	37.9	[38]
15	Au@Pd@1Co		400	2	3	12000	2.4	99.9	[38]
16	8-Pt@Au@Pd@1Co		400	2	3	12000	18.3	96.1	[38]
17	Pt/Au@Pd@UiO-66		400	2	3		27.3	73	[39]
	Crystalline Framework Derived								
18	ZIF-67 derived Co-C-N-700	43	300	0.1	2	300000		83.6	[40]
19	ZIF-67 derived Co-C-N-700	43	400	0.1	2	300000		88.7	[40]
	Crystalline Framework Composites								
20	UiO-66-NH ₂ -Pd	6.6	320	2	3	24000	25.4	30.9	[41]
21	HZSM-5-Pd	0.42	320	2	3	24000	3.9	91.4	[41]
22	HZSM-5@UiO-66-NH ₂ -Pd _{5.0}	7.3	320	2	3	24000	17.1	92.2	[41]

Table S5. Literature reports for porous crystalline frameworks-based CO_2 reduction catalysts converting CO_2 by CO_2 -Fischer Tropsch route. Few reference catalysts have been included for comparison.

Entry	Catalyst Composition	Metal (wt%)	Temperature (°C)	Pressure (MPa)	H ₂ /CO ₂	GHSV (mL.h-	CO ₂ Conversion (%)	CO Sel	CH₄ Sel	C ₂₊ Sel	Ref No.
		(,	(-)	(1.g-1)		(%)	(%)	(%)	
	Reference Catalysts										
1	Fe ₃ O ₄		320	3	3	4000	21.4	10.6	53.3	36.1	[42]
2	Na-Fe ₃ O ₄		320	3	3	4000	22	20.1	4	75.9	[42]
3	Na-Fe ₃ O ₄ /HZSM-5		320	3	3	4000	34	14.3	11.7	74	[42]
	Crystalline Framework										
	Encapsulated										
	Nanoparticle										(10)
4	MIL-53(AI)/Fe ₂ O ₃	21% Fe ₂ O ₃	300	3	3	3600	22.5	20	41	39	[43]
5	(MeOH) ZIF-8(b)/Fe ₂ O ₃	21% Fe ₂ O ₃	300	3	3	3600	25	22	20	58	[43]
6	(DMF) ZIF-8(c)/Fe ₂ O ₃	21% Fe ₂ O ₃	300	3	3	3600	30	18	28	54	[43]
7	Fe ₂ O ₃ /y-Al ₂ O ₃	21% Fe ₂ O ₃	300	3	3	3600	16	34	28	38	[43]
8	Fe ₂ O ₃		300	3	3	3600	18	34	14	52	[43]
	Crystalline Framework Derived										

9	ZIF-8 derived FeZn-NC	18.67 Zn, 5.32 Fe	320	3	3	7200	29.3	19.9	16.6	63.5	[44]
10	ZIF-8 derived FeZnK-NC	17.51 Zn, 5.53 Fe, 3.56 K	320	3	3	7200	34.6	21.2	19.1	59.7	[44]
11	5Fe10Zn-CS	10 Zn, 5 Fe	320	3	3	7200	26.8	19	47.6	33.4	[44]
12	5Fe10Zn-AC	10 Zn, 5 Fe	320	3	3	7200	27.6	79.7	9.9	10.4	[44]
13	Fe-MIL-88B derived N-600-0	40.68 Fe	400	3	3	3600	46	17.5	26.6	55.9	[45]
14	Fe-MIL-88B derived N-K-600-0	10 Fe, 1.35 K	400	3	3	3600	43.1	26.1	26.2	47.7	[45]
15	Basolite F300 derived Fe/C	92.98 Fe	320	3	3	24000	25	39	39	22	[46]
16	Basolite F300 derived Fe/C	93.74 Fe	320	3	3	24000	26	40	38	22	[46]
17	+ Fe Basolite F300 <i>derived</i> Fe/C + Cu	90.59 Fe, 2.58 Cu	320	3	3	24000	29	24	52	24	[46]
18	Basolite F300 <i>derived</i> Fe/C	89.76 Fe, 2.37 Mo	320	3	3	24000	22	51	29	20	[46]
19	Basolite F300 <i>derived</i> Fe/C + Li	92.45 Fe	320	3	3	24000	26	37	41	22	[46]
20	Basolite F300 <i>derived</i> Fe/C	88.11 Fe, 2.21 Na	320	3	3	24000	27	38	32	30	[46]
21	Basolite F300 <i>derived</i> Fe/C + K	89.14 Fe, 2.14 K	320	3	3	24000	33	14	22	64	[46]
22	Basolite F300 <i>derived</i> Fe/C	89.34 Fe, 2.7 Mg	320	3	3	24000	22	46	40	14	[46]
23	Basolite F300 <i>derived</i> Fe/C + Ca	91.22 Fe, 1.95 Ca	320	3	3	24000	24	40	42	18	[46]
24	Basolite F300 <i>derived</i> Fe/C	89.16 Fe, 2.22 Zn	320	3	3	24000	23	41	45	14	[46]
25	Basolite F300 <i>derived</i> Fe/C + Ni	89.36 Fe, 2.32 Ni	320	3	3	24000	26	36	50	14	[46]
26	Basolite F300 <i>derived</i> Fe/C	92.03 Fe, 2.02 Co	320	3	3	24000	25	32	50	18	[46]
27	Basolite F300 <i>derived</i> Fe/C + Mn	88.01 Fe, 1.76 Mn	320	3	3	24000	23	44	40	16	[46]
28	Basolite F300 <i>derived</i> Fe/C	90.25 Fe, 2.5 Pt	320	3	3	24000	30	20	50	30	[46]
29	Basolite F300 <i>derived</i> Fe/C + Rh	90.51 Fe, 2.34 Rh	320	3	3	24000	25	16	64	20	[46]

References

- 1. Jain, A., et al., *Commentary: The Materials Project: A materials genome approach to accelerating materials innovation.* APL Materials, 2013. **1**(1): p. 011002.
- 2. Chen, Y.-P., et al., *Crystal engineering on superpolyhedral building blocks in metal-organic frameworks applied in gas adsorption.* Acta Crystallographica Section B, 2015. **71**(6): p. 613-618.
- 3. Stukowski, A., *Visualization and analysis of atomistic simulation data with OVITO-the Open Visualization Tool.* Modelling and Simulation in Materials Science and Engineering, 2009. **18**(1): p. 015012.
- 4. Liu, T., X. Hong, and G. Liu, *In Situ Generation of the Cu@3D-ZrOx Framework Catalyst for Selective Methanol Synthesis from CO2/H2.* ACS Catalysis, 2020. **10**(1): p. 93-102.
- 5. Li, M.M.-J., et al., *Enhanced CO2 hydrogenation to methanol over CuZn nanoalloy in Ga modified Cu/ZnO catalysts*. Journal of Catalysis, 2016. **343**: p. 157-167.
- 6. Li, M.M.J., et al., CO2 Hydrogenation to Methanol over Catalysts Derived from Single Cationic Layer CuZnGa LDH Precursors. ACS Catalysis, 2018. **8**(5): p. 4390-4401.
- 7. Wang, Y., et al., *Exploring the ternary interactions in Cu–ZnO–ZrO2 catalysts for efficient CO2 hydrogenation to methanol.* Nature Communications, 2019. **10**(1): p. 1166.
- 8. Mueller, M., et al., *Loading of MOF-5 with Cu and ZnO Nanoparticles by Gas-Phase Infiltration with Organometallic Precursors: Properties of Cu/ZnO@MOF-5 as Catalyst for Methanol Synthesis.* Chem. Mater., 2008. **20**(14): p. 4576-4587.
- 9. Kobayashi, H., et al., *Charge transfer dependence on CO2 hydrogenation activity to methanol in Cu nanoparticles covered with metal–organic framework systems.* Chemical Science, 2019. **10**: p. 3289-3294.
- An, B., et al., Confinement of Ultrasmall Cu/ZnOx Nanoparticles in Metal-Organic Frameworks for Selective Methanol Synthesis from Catalytic Hydrogenation of CO2. Journal of the American Chemical Society, 2017.
 139(10): p. 3834-3840.
- 11. Rungtaweevoranit, B., et al., *Copper Nanocrystals Encapsulated in Zr-based Metal-Organic Frameworks for Highly Selective CO2 Hydrogenation to Methanol.* Nano Letters, 2016. **16**(12): p. 7645-7649.

- 12. Li, X., et al., *Confinement of subnanometric PdZn at a defect enriched ZnO/ZIF-8 interface for efficient and selective CO2 hydrogenation to methanol.* Journal of Materials Chemistry A, 2019. **7**(41): p. 23878-23885.
- 13. Li, W., et al., *MxOy–ZrO2 (M = Zn, Co, Cu) Solid Solutions Derived from Schiff Base-Bridged UiO-66 Composites as High-Performance Catalysts for CO2 Hydrogenation.* ACS Applied Materials & Interfaces, 2019. **11**(36): p. 33263-33272.
- 14. Pustovarenko, A., et al., *Metal–Organic Framework-Derived Synthesis of Cobalt Indium Catalysts for the Hydrogenation of CO2 to Methanol.* ACS Catalysis, 2020. **10**(9): p. 5064-5076.
- 15. Yin, Y., et al., *Pd@zeolitic imidazolate framework-8 derived PdZn alloy catalysts for efficient hydrogenation of CO2 to methanol.* Applied Catalysis B: Environmental, 2018. **234**: p. 143-152.
- 16. Zhang, C., et al., *Preparation of novel bimetallic CuZn-BTC coordination polymer nanorod for methanol synthesis from CO2 hydrogenation*. Materials Chemistry and Physics, 2018. **215**: p. 211-220.
- 17. Zhang, J., et al., *Pyrolysis of metal-organic frameworks to hierarchical porous Cu/Zn-nanoparticle@carbon materials for efficient CO2 hydrogenation*. Materials Chemistry Frontiers, 2017. **1**(11): p. 2405-2409.
- 18. Zhao, F., et al., *Hierarchical sheet-like Cu/Zn/Al nanocatalysts derived from LDH/MOF composites for CO2 hydrogenation to methanol.* Journal of CO2 Utilization, 2019. **33**: p. 222-232.
- 19. An, B., et al., *Cooperative copper centres in a metal–organic framework for selective conversion of CO2 to ethanol.* Nature Catalysis, 2019. **2**(8): p. 709-717.
- 20. Mori, K., A. Konishi, and H. Yamashita, *Interfacial Engineering of PdAg/TiO2 with a Metal-Organic Framework* to Promote the Hydrogenation of CO2 to Formic Acid. The Journal of Physical Chemistry C, 2020.
- 21. Wen, M., et al., *PdAg Nanoparticles within Core-Shell Structured Zeolitic Imidazolate Framework as a Dual Catalyst for Formic Acid-based Hydrogen Storage/Production.* Scientific Reports, 2019. **9**(1): p. 15675.
- 22. Zeng, L., et al., *Highly Dispersed Ni Catalyst on Metal–Organic Framework-Derived Porous Hydrous Zirconia* for CO2 Methanation. ACS Applied Materials & Interfaces, 2020. **12**(15): p. 17436-17442.
- 23. Zhen, W.L., et al., *Enhancing catalytic activity and stability for CO2 methanation on Ni@MOF-5 via control of active species dispersion*. Chemical Communications, 2015. **51**(9): p. 1728-1731.
- 24. Mihet, M., et al., *Effective encapsulation of Ni nanoparticles in metal-organic frameworks and their application for CO2 methanation*. International Journal of Hydrogen Energy, 2019. **44**(26): p. 13383-13396.
- 25. Zhao, Z.-W., et al., Ultrasmall Ni nanoparticles embedded in Zr-based MOFs provide high selectivity for CO2 hydrogenation to methane at low temperatures. Catalysis Science & Technology, 2018. **8**(12): p. 3160-3165.
- 26. Zhen, W., et al., *Enhancing activity for carbon dioxide methanation by encapsulating (1 1 1) facet Ni particle in metal–organic frameworks at low temperature.* Journal of Catalysis, 2017. **348**: p. 200-211.
- 27. Jiang, H., et al., *The synergistic effect of Pd NPs and UiO-66 for enhanced activity of carbon dioxide methanation*. Journal of CO2 Utilization, 2019. **31**: p. 167-172.
- 28. Lin, X., et al., *MOF-derived hierarchical hollow spheres composed of carbon-confined Ni nanoparticles for efficient CO2 methanation.* Catalysis Science & Technology, 2019. **9**(3): p. 731-738.
- 29. Lippi, R., et al., *Highly active catalyst for CO2 methanation derived from a metal organic framework template.* Journal of Materials Chemistry A, 2017. **5**(25): p. 12990-12997.
- 30. Lippi, R., et al., *Unveiling the structural transitions during activation of a CO2 methanation catalyst Ru0/ZrO2 synthesised from a MOF precursor.* Catalysis Today, 2020.
- 31. Lu, B. and K. Kawamoto, *Preparation of mesoporous CeO*₂ and monodispersed NiO particles in CeO₂ and enhanced selectivity of NiO/CeO₂ for reverse water shift gas reaction. Materials Research Bulletin, 2014. **53**: p. 70.
- 32. Zhu, X., et al., *Selective reduction of carbon dioxide to carbon monoxide over Au/CeO2 catalyst and identification of reaction intermediate.* Chinese Journal of Catalysis, 2016. **37**(12): p. 2053-2058.
- 33. Goguet, A., et al., *Spectrokinetic investigation of reverse water-gas-shift reaction intermediates over a Pt/CeO₂ catalyst.* J. Phys. Chem. B 2004. **108**: p. 20240-20246.
- 34. Gutterod, E.S., et al., *CO2 Hydrogenation over Pt-Containing UiO-67 Zr-MOFs-The Base Case.* Industrial & Engineering Chemistry Research, 2017. **56**(45): p. 13207-13219.
- 35. Han, Y., et al., *Noble metal (Pt, Au@Pd) nanoparticles supported on metal organic framework (MOF-74) nanoshuttles as high-selectivity CO2 conversion catalysts.* Journal of Catalysis, 2019. **370**: p. 70-78.
- 36. Xu, H., et al., Spherical Sandwich Au@Pd@UIO-67/Pt@UIO-n (n = 66, 67, 69) Core–Shell Catalysts: Zr-Based Metal–Organic Frameworks for Effectively Regulating the Reverse Water–Gas Shift Reaction. ACS Applied Materials & Interfaces, 2019. **11**(22): p. 20291-20297.
- 37. Zhang, H., et al., Octahedral core–shell bimetallic catalysts M@UIO-67 (M = Pt–Pd nanoparticles, Pt–Pd nanocages): Metallic nanocages that enhanced CO2 conversion. Applied Materials Today, 2020. **19**.

- Zhao, X., et al., Monodisperse Metal-Organic Framework Nanospheres with Encapsulated Core-Shell Nanoparticles Pt/Au@Pd@{Co2(oba)4(3-bpdh)2}4H2O for the Highly Selective Conversion of CO2 to CO. ACS Applied Materials & Interfaces, 2018. 10(17): p. 15096-15103.
- 39. Zheng, Z., et al., A Monodispersed Spherical Zr-Based Metal-Organic Framework Catalyst, Pt/Au@Pd@UIO-66, Comprising an Au@Pd Core-Shell Encapsulated in a UIO-66 Center and Its Highly Selective CO2 Hydrogenation to Produce CO. Small, 2018. **14**(5): p. 1702812.
- 40. Lu, X., et al., *Cobalt-Based Nonprecious Metal Catalysts Derived from Metal–Organic Frameworks for High-Rate Hydrogenation of Carbon Dioxide.* ACS Applied Materials & Interfaces, 2019. **11**(31): p. 27717-27726.
- 41. Pan, X., et al., *Metal–Organic Framework-Membranized Bicomponent Core–Shell Catalyst HZSM-5@UIO-66-NH2/Pd for CO2 Selective Conversion*. ACS Sustainable Chemistry & Engineering, 2020. **8**(2): p. 1087-1094.
- 42. Wei, J., et al., *Directly converting CO2 into a gasoline fuel*. Nature Communications, 2017. **8**: p. 15174.
- 43. Hu, S., et al., *Hydrothermally stable MOFs for CO2 hydrogenation over iron-based catalyst to light olefins*. Journal of CO₂ Utilization, 2016. **15**: p. 89-95.
- 44. Liu, J., et al., *Pyrolyzing ZIF-8 to N-doped porous carbon facilitated by iron and potassium for CO2 hydrogenation to value-added hydrocarbons.* Journal of CO2 Utilization, 2018. **25**: p. 120-127.
- 45. Liu, J.H., et al., *Fe-MOF-derived highly active catalysts for carbon dioxide hydrogenation to valuable hydrocarbons.* Journal of CO₂ Utilization, 2017. **21**: p. 100-107.
- 46. Ramirez, A., et al., *Metal Organic Framework-Derived Iron Catalysts for the Direct Hydrogenation of CO2 to Short Chain Olefins*. ACS Catalysis, 2018. **8**(10): p. 9174-9182.