Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is © The Royal Society of Chemistry 2020

Electronic Supplementary Information (ESI)

Stable and Selective Electrosynthesis of Hydrogen Peroxide and the Electro-Fenton Process on CoSe₂ Polymorph Catalysts

Hongyuan Sheng,^{‡a} Aurora N. Janes,^{‡a} R. Dominic Ross,^a Dave Kaiman,^a Jinzhen Huang,^{a,b} Bo Song,^{a,b} J. R. Schmidt,^{*a} and Song Jin^{*a}

^a Department of Chemistry, University of Wisconsin–Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
^b Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin 150001, China

‡ These authors contributed equally.

Corresponding Author

* E-mail: schmidt@chem.wisc.edu (J.R.S.); jin@chem.wisc.edu (S.J.)

Supplementary Experimental Section

Detailed Methods for Materials Synthesis. To synthesize cobalt hydroxide carbonate hydrate (CHCH) precursor, 1.275 mmol of CoCl₂·6H₂O (Sigma-Aldrich, 98.0%) and 3 mmol of urea (Riedel-de Haën, 99.5–100.5%) were dissolved in 75 mL of nanopure water and was heated at 120 °C for 5 h in a sealed 100-mL Teflon-lined stainless steel autoclave. The CHCH precursor was washed with water and ethanol and dried in vacuum at room temperature. The hydrothermal selenization of CHCH precursor was performed as follows: 4.29 g of NaOH (Sigma-Aldrich, ≥97.0%) and 571 mg of Se powder (Sigma-Aldrich, ≥99.5%) was mixed in 50 mL of nanopure water via sonication and was heated at 220 °C for 24 h in a sealed 80-mL autoclave; upon cooling to room temperature, 50 mg of CHCH precursor was suspended in 10 mL of nanopure water and added dropwise into the Se-containing solution under vigorous stirring, and then heated at 220 °C for another 24 h in the same autoclave. The as-converted CoSe₂ sample was washed with water and ethanol and dried in vacuum at room temperature. To control the polymorphism while removing the elemental Se impurity, an alumina boat containing 60 mg of as-converted CoSe2 sample was placed in the center of a fused silica tube within a tube furnace (Thermo Scientific, TF55035A-1) and was annealed under a steady flow of Ar gas (99.999%) at 790 torr and 25 sccm. The o-CoSe₂ catalyst was obtained by annealing at 300 °C for 3 h, while the c-CoSe₂ catalyst was obtained by annealing at 500 °C for 1 h, both of which are polymorphic pure and free of elemental Se impurity. The c-CoS₂ catalyst was prepared via vapor-phase sulfidation: 50 mg of CHCH precursor was placed in an alumina boat at the center of the tube furnace, 2 g of sulfur (Sigma-Aldrich, 99.5–100.5%) was placed in another alumina boat at the farthest upstream position within the tube furnace, the sulfidation took place at 500 °C for 1 h. To synthesize CHCH nanowires on CFP substrate (CHCH/CFP), Teflon-coated carbon fiber paper (Fuel Cell Earth, TGP-H-060) was first treated with oxygen plasma at 150 W power for 5 min for each side and annealed in air at 700 °C for 5 min. A 3 cm × 6 cm piece of annealed CFP substrate was placed in the solution made of 2.1 mmol of Co(NO₃)₂·6H₂O (Sigma-Aldrich, ≥98.0%), 4.2 mmol of NH₄F (Sigma-Aldrich, ≥98.0%), and 10.5 mmol of urea in 80 mL of nanopure water and was heated in a sealed 100-mL autoclave at 110 °C for 5 h. The CHCH/CFP was sonicated in nanopure water to remove looselybound CHCH particles and dried under N2 gas flow. o-CoSe2/CFP and c-CoS2/CFP were prepared via the same selenization or sulfidation method mentioned above, except for replacing CHCH precursor with 1.5 cm \times 6 cm pieces of CHCH/CFP. The as-converted *c*-CoS₂/CFP was immersed in CS₂ to remove any excess sulfur. All catalyst samples were stored in an Ar-filled glove box to minimize the exposure to air.

Detailed Sample Preparation for Materials Characterization. Scanning electron microscopy (SEM) samples were prepared by drop-casting catalysts in ethanol suspensions onto silicon wafers. Graphite substrates were used for X-ray photoelectron spectroscopy (XPS) experiments, which were made by cutting thin slices of graphite rod (Graphite Store, low wear EDM rod), abrading with 600 grit silicon carbide paper (Allied High Tech Products), and sonicating in nanopure water and ethanol until clean. The tested catalysts after rotating ring-disk electrode (RRDE) measurements were recovered from the disk electrode by sonicating in nanopure water and ultracentrifuging at 13.2K rpm for 1 min, followed by re-dispersing in minimal amount of nanopure water and drop-casting onto graphite substrates. XPS samples were used for Raman experiments without modification. X-ray absorption spectroscopy (XAS) samples were prepared by spreading a uniform layer of catalyst powders onto scotch tape, followed by folding into four layers to achieve a proper absorption length.

Supplementary Figures and Tables

Fig. S1 Calculated bulk Pourbaix diagrams of (a) *c*-CoS₂, (b) *c*-CoSe₂, and (c) *o*-CoSe₂ assuming an ionic concentration of 10^{-6} mol/kg for each element of interest (59 ppb Co, 32 ppb S, and 79 ppb Se, which are reasonably low concentrations that can fairly reflect the acidic electrolyte solution of 0.05 M H₂SO₄ used in our experiments). These diagrams are adapted from the Materials Project.^{S1} The diagram of *c*-CoS₂ is in agreement with that in a previous report.^{S2} The multicolor gradient indicates the Gibbs free energy of the compound at a given set of potential and pH conditions with respect to its Pourbaix stable phase (ΔG_{pbx}), reflecting the electrochemical stability window of the compound. It was surmised in a previous report that materials with ΔG_{pbx} up to high values as much as 0.5 eV/atom can persist in electrochemical environments because of the energy barriers for the dissociation reactions.^{S3} The electrochemical stability windows of both *c*-CoSe₂ (Fig. S1b) and *o*-CoSe₂ (Fig. S1c) are clearly much wider than that of *c*-CoS₂ (Fig. S1a) and, more importantly, cover the entire potential range of interest for 2e⁻ ORR in acidic solution (indicated by the yellow color bars).

Fig. S2 Crystal structures, space groups, and lattice parameters of (a) c-CoS₂, (b) c-CoSe₂, and (c) o-CoSe₂. The Co, S, and Se atoms are displayed in blue, yellow, and orange, respectively. Top views and Co-Co interatomic distances of (d) c-CoS₂ (100), (e) c-CoSe₂ (100), and (f) o-CoSe₂ (101) surfaces. The o-CoSe₂ (101) surface mostly resembles the (100) surface of c-CoSe₂.

Table S1 Surface energies of the most thermodynamically stable facets of (a) cubic c-CoS₂ and c-CoSe₂, and (b) orthorhombic o-CoSe₂.

(a)	East	Surface Ene	ergy (eV/Å ²)	(b)	Facat	Surface Energy (eV/Å ²)	
	Pacet	c-CoS ₂ ^[a]	c-CoSe ₂ ^[b]		Pacet	o-CoSe ₂ ^[b]	
	(100)	0.032	0.044		(101)	0.044	
	(110)	0.060	0.064		(001)	0.060	
	(111)	0.057	0.069		(111)	0.060	
					(100)	0.070	

^[a] Data of *c*-CoS₂ are taken from ref. S4 and are calculated without a dispersion correction.

^[b] Data of c-CoSe₂ and o-CoSe₂ are calculated with a dispersion correction using Grimme's D3(ABC) method.^{S5}

Fig. S3 Surface Pourbaix diagrams (Δ G vs. U_{RHE}) of (a) *c*-CoS₂ (100), (b) *c*-CoSe₂ (100), and (c) *o*-CoSe₂ (101) surfaces showing all the modeled surface coverages (from clean surface to ³/₄ ML O* + 1 ML OH*). The highlight regions in light red represent the experimental relevant potential range where the optimal H₂O₂ production performances are achieved. In comparison, Fig. 1 in the main text shows only the most stable surface coverages in the potential range of 0 to 1 V.

Fig. S4 (a) PXRD pattern of as-converted CoSe₂ sample, showing the coexistence of CoSe₂ marcasite with the orthorhombic phase (denoted as *o*-CoSe₂) and crystalline elemental Se impurity with the trigonal crystal structure (denoted as *t*-Se). (b) PXRD patterns of as-converted CoSe₂ sample annealed in Ar atmosphere (790 torr) at 300, 350, 400, and 500 °C for 1 h. Standard PXRD patterns of *o*-CoSe₂ (PDF No. 53-0449), *c*-CoSe₂ (PDF No. 88-1712), and *t*-Se (PDF No. 06-0362) are adapted from the International Centre for Diffraction Data (ICDD) database.

Fig. S5 (a) Raman spectra of as-converted $CoSe_2$ sample annealed in Ar atmosphere (790 torr) at 300, 350, 400, and 500 °C for 1 h, confirming the polymorphic transformation from *o*-CoSe₂ to *c*-CoSe₂. The weak signal at 253 cm⁻¹, only present in the *o*-CoSe₂ sample annealed at 300 °C for 1 h, corresponds to the residual amorphous elemental Se impurity (denoted as *a*-Se) due to the relatively low annealing temperature and short annealing time. (b) Raman spectra of as-converted CoSe₂ sample annealed in Ar atmosphere (790 torr) at 300 °C for 1, 2, and 3 h, showing that the residual *a*-Se impurity in the *o*-CoSe₂ sample can be completely removed by extending the annealing time without affecting the marcasite structure.

Fig. S6 (a) Co 2p and (b) Se 3d XPS spectra of as-converted CoSe₂ sample annealed in Ar atmosphere (790 torr) under different conditions (at 300 °C for 1, 2, and 3 h; at 500 °C for 1 h). The Co 2p signals (778.6 and 793.6 eV) suggest the +2 oxidation state of Co, meanwhile the weak Se 3d signals (59.6 eV) indicate the presence of small amounts of surface SeO_x. (c) Surface atomic ratio of Co : Se in as-converted CoSe₂ sample annealed under different conditions. The *o*-CoSe₂ sample annealed at 300 °C for 3 h exhibit almost the same surface atomic ratio as the *c*-CoSe₂ sample annealed at 500 °C for 1 h, showing that the amorphous elemental Se impurity in the *o*-CoSe₂ sample can be completely removed by extending the annealing time.

Fig. S7 SEM images of (a) CHCH precursor, (b) as-converted CoS₂ and CoSe₂ samples, and (c) as-converted CoSe₂ samples annealed in Ar atmosphere (790 torr) under different conditions (at 300 °C for 1, 2, and 3 h; at 500 °C for 1 h). Dashed color boxes specify the catalyst samples studied in this work: "*c*-CoS₂ catalyst" refers to as-converted CoS₂ sample; "*c*-CoSe₂ catalyst" refers to the *c*-CoSe₂ sample annealed at 500 °C for 1 h; "*o*-CoSe₂ catalyst" refers to the *o*-CoSe₂ sample annealed at 300 °C for 3 h.

Fig. S8 The first shell fittings of Co K-edge EXAFS spectra of (a) *c*-CoS₂, (b) *c*-CoS₂, and (c) *o*-CoS₂ catalysts. The Fourier transform parameters and fitting results are summarized in Table S2.

Table S2 The first shell fitting results of Co K-edge EXAFS spectra of *c*-CoS₂, *c*-CoSe₂, and *o*-CoSe₂ catalysts.

Sample	Shell	N ^[c]	R (Å) ^[c]	$\sigma^2 (10^{-3} \text{ Å}^2)^{[c]}$	$\Delta E_0 \left(eV \right)^{[c]}$	Reduced $\chi^{2 [c]}$	R-factor ^[c]
c-CoS ₂ catalyst ^[a]	Co-S	5.8 ± 1.0	2.322 ± 0.005	5.8 ± 0.6	4.1 ± 0.9	73.8604902	0.0038897
<i>c</i> -CoSe ₂ catalyst ^[b]	Co-Se	5.9 ± 0.9	2.425 ± 0.002	5.6 ± 0.3	1.3 ± 0.6	19.2082886	0.0016189
o-CoSe ₂ catalyst ^[b]	Co-Se	5.9 ± 1.1	2.404 ± 0.005	5.7 ± 0.6	0.6 ± 1.4	62.3247933	0.0082318

^[a] For *c*-CoS₂ catalyst, the Fourier transform parameters are: Hanning window, $k_{min} = 3$, $k_{max} = 12$, dk = 1, no phase correction; the fitting parameters are: $r_{min} = 1$, $r_{max} = 2.3$, dr = 0, fitting k-weight = 3.

^[b] For *c*-CoSe₂ and *o*-CoSe₂ catalysts, the Fourier transform parameters are: Hanning window, $k_{min} = 3$, $k_{max} = 12$, dk = 1, no phase correction; the fitting parameters are: $r_{min} = 1$, $r_{max} = 3$, dr = 0, fitting k-weight = 3.

^[c] N is the coordination number of the absorbing Co atom. R is the interatomic distance between the absorbing Co atom and the backscattering S/Se atom. σ^2 is the mean square relative displacement (i.e., the Debye-Waller factor). ΔE_0 is the energy shift parameter used to align the theoretical calculated spectrum to the energy grid of the measured spectrum. For all the first shell fittings, the amplitude reduction factor (S₀²) is constrained to 0.90 as a reasonable estimation, and the added uncertainty in the coordination number (N) due to the estimation of S₀² has already been considered.^{S6} Reduced χ^2 and R-factor are goodness-of-fit parameters.

Fig. S9 RRDE voltammograms recorded at various rotation rates and the corresponding H_2O_2 selectivity of commercial (a,c) Pt/C and (b,d) carbon black catalysts in O₂-saturated 0.05 M H₂SO₄ solution (pH 1.20). The ring potential is set at 1.3 V vs. RHE, assuming the local pH near the electrode is equal to the pH of the bulk solution. (e,f) Linear sweep voltammograms of the ring electrode from 1.0 to 1.6 V vs. RHE recorded at the time when the catalyst-coated disk electrode is held at various constant potentials (either ORR-active or -inactive) at 1600 rpm in O₂-saturated 0.05 M H₂SO₄ solution (pH 1.20). *See additional discussion on page S12*.

Additional Discussion of Fig. S9 We reason that oxygen evolution reaction (OER) on the Pt ring electrode can serve as a probe reaction to monitor the local pH change, as the OER catalytic onset potential should not shift on the standard hydrogen electrode (SHE) scale if the local pH stays constant. We held the catalyst-coated disk electrode at various constant potentials (either ORR-active or -inactive), and performed linear sweep voltammetry (LSV) on the ring electrode to drive the kinetic- and diffusion-limited H₂O₂ oxidation (if any) and then OER as the ring potential was increased. As a result, the OER catalytic onset potential on the ring electrode remained the same whether or not ORR took place on these benchmark catalysts (Fig. S9e,f), confirming that the local pH was unaffected during electrochemical operations.

Table S3 Preparation of drop-casted *c*-CoSe₂, *o*-CoSe₂, and *c*-CoS₂ catalysts with various catalyst loadings for RRDE measurements in O₂-saturated 0.05 M H₂SO₄ solution (pH 1.20).

Catalyst	Catalyst Mass (mg)	5 wt% Nafion	Water	Drop-casted	Catalyst loading $(uga/cm^2r_{\rm T})$	Nation Loading $(ug/cm^2 r_{\rm eff})$
	Wass (ing)	Volume (µL)	volume (µL)	Volume (µL)	(µgCo/CIII disk)	(µg/cill disk)
	2.5	125	1125	10	76	348
c-CoS ₂	2.6	65	585	10	152	348
catalyst	2.7	45	405	10	229	348
	4.0	50	450	10	305	348
	4.7	134	1202	10	76	348
<i>c</i> -CoSe ₂	4.8	68	614	10	152	348
catalyst	4.5	42	383	10	229	348
	4.5	32	288	10	305	348
	4.6	523	4704	10	19	348
o-CoSe ₂	4.1	233	2096	10	38	348
catalyst	4.1	116	1048	10	76	348
	4.3	61	549	10	152	348

Fig. S10 (a) Comparisons of RRDE voltammograms recorded at 2025 rpm and the corresponding H₂O₂ selectivity of *c*-CoSe₂ and *c*-CoS₂ catalysts with the same catalyst loading (76, 152, 229, or 305 μ gc₀/cm²disk) in O₂-saturated 0.05 M H₂SO₄ solution (pH 1.20). (b) Comparisons of RRDE voltammograms recorded at 2025 rpm and the corresponding H₂O₂ selectivity of *o*-CoSe₂ and *c*-CoS₂ catalysts (b₁) with the same catalyst loading (76 μ gc₀/cm²disk) or (b₂-b₅) with different catalyst loadings that deliver similar overall ORR current densities (19, 38, 76, or 152 μ gc₀/cm²disk for *o*-CoSe₂; 76, 152, 229, or 305 μ gc₀/cm²disk for *c*-CoS₂) in O₂-saturated 0.05 M H₂SO₄ solution (pH 1.20).

Fig. S11 C_{dl} measurements of (a–e) *c*-CoS₂, (f–j) *c*-CoSe₂, and (k–o) *o*-CoSe₂ catalysts with various catalyst loadings in the Ar-saturated 0.05 M H₂SO₄ solution (pH 1.20). *c*-CoS₂ displays redox features centered around 0.45 V vs. RHE, whereas both *c*-CoSe₂ and *o*-CoSe₂ polymorphs are free

of redox features over a wide potential window. Therefore, to minimize the interference from the redox features of c-CoS₂, we chose the fixed potential of 0.35 V vs. RHE to extract the C_{dl} values of all three catalysts from linear fittings, which are summarized in Table S4.

Table S4 Summary of the C_{dl} values (extracted from linear fittings at 0.35 V vs. RHE) of *c*-CoS₂, *c*-CoSe₂, and *o*-CoSe₂ catalysts with various catalyst loadings in the Ar-saturated 0.05 M H₂SO₄ solution (pH 1.20).

Catalyst	Catalyst loading $(\mu g_{Co}/cm^2_{disk})$	C _{dl} at 0.35 V vs. RHE (mF/cm ² _{disk})
	76	0.046
c-CoS ₂	152	0.064
catalyst	229	0.123
	305	0.226
	76	0.063
<i>c</i> -CoSe ₂	152	0.079
catalyst	229	0.131
	305	0.325
	19	0.082
o-CoSe ₂	38	0.141
catalyst	76	0.326
	152	0.661

Fig. S12 (a) RRDE voltammograms of *c*-CoSe₂ catalyst with various catalyst loadings in O₂saturated 0.05 M H₂SO₄ solution (pH 1.20) recorded at various rotation rates. (b) K-L analysis $(j_{peroxide}^{-1} \text{ vs. } \omega^{-1/2})$ based on RRDE measurements. (c) Kinetic current density for H₂O₂ production normalized to the geometric area of the disk electrode $(j_{k,peroxide})$ at 1600 rpm.

Table S5 K-L analysis ($j_{peroxide}^{-1}$ vs. $\omega^{-1/2}$) based on RRDE voltammograms of *c*-CoSe₂ catalyst with various catalyst loadings in O₂-saturated 0.05 M H₂SO₄ solution (pH 1.20) recorded at various rotation rates.

Potential for K-L Analysis	Slope of j_{peroxide}^{-1} vs. $\omega^{-1/2}$	$j_{\rm L,peroxide}$ at 1600 rpm
(V vs. RHE) ^[a]	$(mA^{-1} cm^2_{disk} rad^{1/2} s^{-1/2})^{[b]}$	$(mA/cm^2_{disk})^{[c]}$
0	3.97	3.26
0	4.46	2.90
0.32	4.19	3.09
0.49	4.57	2.83
	Potential for K-L Analysis (V vs. RHE) ^[a] 0 0 0.32 0.49	Potential for K-L Analysis Slope of $j_{peroxide}^{-1}$ vs. $\omega^{-1/2}$ (V vs. RHE) [a] (mA ⁻¹ cm ² _{disk} rad ^{1/2} s ^{-1/2}) [b] 0 3.97 0 4.46 0.32 4.19 0.49 4.57

^[a] For each catalyst loading, K-L analysis was performed at the potential where the approximate maximum of $j_{peroxide}$ was achieved.

^[b] $j_{peroxide}^{-1} = j_{k,peroxide}^{-1} + j_{L,peroxide}^{-1} = j_{k,peroxide}^{-1} + B \times \omega^{-1/2}$, where $j_{peroxide}$ is the partial current density for H₂O₂ production (mA/cm²disk), $j_{k,peroxide}$ is the kinetic current density for H₂O₂ production (mA/cm²disk), $j_{k,peroxide}$ is the diffusion-limited current density for H₂O₂ production (mA/cm²disk), $j_{k,peroxide}$ is the diffusion-limited current density for H₂O₂ production (mA/cm²disk), $j_{k,peroxide}$ is the diffusion-limited current density for H₂O₂ production (mA/cm²disk), B is the slope (mA⁻¹ cm²disk rad^{1/2} s^{-1/2}) of the linear fit of $j_{peroxide}^{-1}$ vs. $\omega^{-1/2}$ (see Fig. S12b).

^[c] $j_{\text{L,peroxide}}$ at 1600 rpm = $B^{-1} \times \omega^{1/2} = B^{-1}$ (mA cm⁻²disk rad^{-1/2} s^{1/2}) × (1600 × π / 30)^{1/2}. The calculated $j_{\text{L,peroxide}}$ at 1600 rpm were in good agreement with the theoretical limiting current density for 2e⁻ ORR (~3 mA/cm²disk at 1600 rpm under O₂ saturation). Therefore, we used $j_{\text{L,peroxide}}$

= 3 mA/cm²_{disk} in the equation $j_{k,peroxide} = \frac{j_{peroxide} \times j_{L,peroxide}}{j_{L,peroxide} - j_{peroxide}} = \frac{j_{peroxide} \times 3 \text{ mA/cm}_{disk}^2}{3 \text{ mA/cm}_{disk}^2 - j_{peroxide}}$ to correct for mass-transport loss in $j_{peroxide}$.

Classification	Catalyst	Acidic Electrolyte	Catalyst Loading	Reference
Earth-abundant	c-CoSe ₂	0.05 M H ₂ SO ₄	$305 \ \mu g_{Co}/cm^2_{disk}$	this work
transition metal	o-CoSe ₂	$0.05 \text{ M} \text{ H}_2 \text{SO}_4$	$152 \ \mu g_{Co}/cm^2_{disk}$	this work
compounds	c-CoS ₂	$0.05 \text{ M} \text{ H}_2\text{SO}_4$	$305 \ \mu g_{Co}/cm^2_{disk}$	this work
Noble metal	Pt-Hg NPs/C	0.1 M HClO ₄	$14 \ \mu g_{Pt}/cm^2_{disk}$	ref. S7
nanoparticles	Pd-Hg NPs/C	0.1 M HClO ₄	$10 \ \mu g_{Pd}/cm^2_{disk}$	ref. S8
(NPs)	Pd-Au NPs	0.1 M HClO ₄	$10 \; \mu g_{metal}/cm^2_{disk}$	ref. S9
	Pt-Hg (pc)	0.1 M HClO ₄	N/A	ref. S7
Noble metal	Pd-Hg (pc)	0.1 M HClO ₄	N/A	ref. S8
polycrystalline	Ag (pc)	0.1 M HClO ₄	N/A	ref. S8
surfaces (pc)	Ag-Hg (pc)	0.1 M HClO ₄	N/A	ref. S8
	Cu-Hg (pc)	0.1 M HClO ₄	N/A	ref. S8
Noble metal	Pt ₁ /SC	0.1 M HClO ₄	$50 \ \mu g_{catalyst}/cm^2_{disk} \ (5.0 \ wt\% \ Pt)$	ref. S10
single-atom	Pt ₁ /TiN	0.1 M HClO ₄	$15 \ \mu g_{catalyst} \ (0.35 \ wt\% \ Pt)$	ref. S11
catalysts	h-Pt ₁ -CuS _x	0.1 M HClO ₄	101 $\mu g_{catalyst}$ /cm ² _{disk} (24.8 at% Pt)	ref. S12
	Co_1 -N-C(1)	0.5 M H ₂ SO ₄	$100 \ \mu g_{catalyst}/cm^2_{disk} (0.4 \ at\% \ Co)$	ref. S13
Transition metal	Co_1 -N-C(2)	0.1 M HClO ₄	$25 \ \mu g_{catalyst}/cm^2_{disk} (1.4 \ wt\% \ Co)$	ref. S14
catalysts	Co_1 -NG(O)	0.1 M HClO ₄	$10 \ \mu g_{catalyst}/cm^2_{disk} (1.4 \ wt\% \ Co)$	ref. S15
,	Mo ₁ -OSG-H	0.05 M H ₂ SO ₄	101 μ g _{catalyst} /cm ² _{disk} (13.47 wt% Mo)	ref. S16
	O-CNTs	0.1 M HClO ₄	$101 \ \mu g_{catalyst}/cm^2_{disk}$	ref. S17
Carbon materials	meso-BMP	0.1 M HClO ₄	$306 \ \mu g_{catalyst}/cm^2_{disk}$	ref. S18
	NCMK	0.5 M H ₂ SO ₄	$50 \ \mu g_{catalyst}/cm^2_{disk}$	ref. S19

Table S6 Summary of RRDE electrode information of c-CoSe₂ and o-CoSe₂ catalysts compared with c-CoS₂ and other reported 2e⁻ ORR electrocatalysts in *acidic* solution.

Fig. S13 (a) Rotation rate profile of catalyst stability tests from RRDE measurements in O₂saturated 0.05 M H₂SO₄ solution (pH 1.20). (b) Electrochemical cleaning of the Pt ring electrode by running cyclic voltammetry at low overpotentials until observing typical ORR polarization curves for fresh Pt. The example shown here was performed during catalyst stability test of *o*-CoSe₂ (152 μ gco/cm²disk) after 101 overall RRDE scans. In the first negative sweep, the ORR catalytic onset on the Pt ring electrode took place at a high overpotential. Starting the second negative sweep, the surface PtO_x was reduced and the ORR catalytic activity of the Pt ring electrode was recovered.

Fig. S14 Raman spectra of (a) c-CoS₂, (b) c-CoSe₂, and (c) o-CoSe₂ catalysts before and after catalyst stability tests from RRDE measurements in 0.05 M H₂SO₄ solution (pH 1.20). Background Raman spectra of bare graphite disk substrate were subtracted from as-measured Raman spectra of c-CoS₂, c-CoSe₂, and o-CoSe₂ catalysts.

Fig. S15 XPS spectra of (a,b) *c*-CoS₂, (c,d) *c*-CoSe₂, and (e,f) *o*-CoSe₂ catalysts before and after catalyst stability tests from RRDE measurements in 0.05 M H₂SO₄ solution (pH 1.20). The strong Co 2p signals of all three catalysts (~778.6 and ~793.6 eV, see Fig. S15a,c,e) suggest the +2 oxidation state of Co. The strong S 2p signals of *c*-CoS₂ catalyst (162.8 and 163.8 eV, see Fig. S15b) correspond to the S₂²⁻ anions. The strong Se 3d signals of both CoSe₂ polymorphs (~54.9 and ~55.5 eV, see Fig. S15d,f) correspond to the Se₂²⁻ anions, whereas the weak Se 3d signals (~59.6 eV) indicate the presence of small amounts of surface SeO_x.

Table S7 Surface atomic ratios of Co : S/Se in *c*-CoS₂, *c*-CoSe₂, and *o*-CoSe₂ catalysts before and after catalyst stability tests from RRDE measurements (see XPS spectra in Fig. S15) and those of Co : Se in the *o*-CoSe₂/CFP electrode #3 before and after the bulk electrolysis at 0.5 V vs. RHE in 0.05 M H₂SO₄ for 5 h (see XPS spectra in Fig. S23).

Sample	Surface Atomic Ratio of Co : S/Se			
Sample	Before	After		
c-CoS ₂	$0.378 \pm 0.004 \ ^{[a]}$	$0.25 \pm 0.03 \ ^{[b]}$		
<i>c</i> -CoSe ₂	$0.325 \pm 0.001 \ ^{[a]}$	$0.25 \pm 0.03 \ ^{[b]}$		
o-CoSe ₂	$0.29 \pm 0.02 \; ^{[a]}$	$0.26\pm0.04~^{[b]}$		
<i>o</i> -CoSe ₂ /CFP #3	0.32 ^[c]	0.26 ^[c]		

^[a] The averages and standard deviations for the as-synthesized catalysts come from two samples made from two replicate synthesis. See representative XPS spectra in Fig. S15.

^[b] The averages and standard deviations for the used catalysts come from four samples recovered from four replicate RRDE measurements. See representative XPS spectra in Fig. S15. ^[c] See XPS spectra in Fig. S23.

Table S8 ICP-MS analysis of the tested electrolyte solutions after catalyst stability tests of c-CoS₂ (305 μ gco/cm²disk), c-CoSe₂ (305 μ gco/cm²disk), and o-CoSe₂ (152 μ gco/cm²disk) from RRDE measurements in 0.05 M H₂SO₄ solution.

ICP-N	AS Sample	Intensity	Standard Curve	[Co]	Average Cobalt Leaching Rate
	$[Co] = 0 ug_{Co}/L$	0.7		-	-
Standard solution of	$[Co] = 5.0 \text{ ug}_{Co}/L$	214.2	y = 42.9 x + 3.4	-	-
$CoSO_4 \text{ in } 0.05 \text{ M } H_2SO_4$	$[Co] = 20.0 \text{ ug}_{Co}/L$	872.3	$(r^2 = 0.99995)$	-	-
	$[Co] = 50.0 \text{ ug}_{Co}/L$	2146.6		-	-
	c-CoS ₂ (305 μg _{Co} /cm ² _{disk}) ^[a] 2.5 h (151 RRDE scans)	1576.0	-	36.6 ug _{Co} /L	0.66 ugc₀/h
Tested electrolyte solution of 0.05 M H ₂ SO ₄ (45 mL)	<i>c</i> -CoSe ₂ (305 μg _{Co} /cm ² _{disk}) ^[a] 2.5 h (151 RRDE scans)	941.6	-	21.8 ug _{Co} /L	0.39 ugco/h
	o-CoSe ₂ (152 μg _{Co} /cm ² disk) ^[a] 4.2 h (251 RRDE scans)	1228.7	-	28.5 ug _{Co} /L	0.31 ugco/h

^[a] Geometric area of the disk electrode is $0.126 \text{ cm}^2_{\text{disk}}$.

Fig. S16 (a–c) SEM images at different magnifications, (d) Raman spectra, (e) Co 2p and (f) Se 3d XPS spectra of as-synthesized *o*-CoSe₂/CFP. Background Raman spectra of bare carbon fiber paper substrate were subtracted from as-measured Raman spectra of *o*-CoSe₂/CFP.

Fig. S17 (a–c) SEM images at different magnifications, (d) Raman spectra, (e) Co 2p and (f) S 2p XPS spectra of as-synthesized *c*-CoS₂/CFP. Background Raman spectra of bare carbon fiber paper substrate were subtracted from as-measured Raman spectra of *c*-CoS₂/CFP.

Fig. S18 Digital photograph of the two-compartment three-electrode H-cell setup used for bulk electrosynthesis of H_2O_2 . Nafion 117 membrane was used to separate the two compartments to avoid the oxidation of H_2O_2 product on the counter electrode. A minimal volume (3–4 mL) of electrolyte solution was used and vigorously stirred at 1200 rpm in the working electrode compartment to achieve higher H_2O_2 concentrations under facilitated mass transfer of O_2 gas. A blanket of O_2 gas was maintained over the surface of O_2 -saturated electrolyte solution during bulk electrosynthesis. A rubber septum punctured with a syringe needle served as the gas outlet, which was removed when a small aliquot of electrolyte solution was capped for the rest of the time to minimize the evaporation of electrolyte solution during bulk electrosynthesis.

Fig. S19 Fabrication of *o*-CoSe₂/CFP and *c*-CoS₂/CFP working electrodes with the same geometric area of $\sim 1 \text{ cm}^2_{\text{geo}}$ for bulk electrosynthesis of H₂O₂.

Table S9 Summary of the catalyst loadings of o-CoSe₂/CFP and c-CoS₂/CFP working electrodes.

Sample	Mass (mg)	Catalyst loading ($\mu g_{Co}/cm^2_{geo}$)
Bare CFP ($3 \times 6 \text{ cm}^2_{\text{geo}}$)	142.8	-
CHCH/CFP $(3 \times 6 \text{ cm}^2_{\text{geo}})$	155.4	~376 [a]
CHCH/CFP (1 st half; $1.5 \times 6 \text{ cm}^2_{\text{geo}}$) ^[b]	78.1	~376 [a]
o-CoSe ₂ /CFP (1 st half; 1.5 × 6 cm ² _{geo}) ^[b]	84.5	~384
CHCH/CFP (2 nd half; $1.5 \times 6 \text{ cm}^2_{\text{geo}}$) ^[b]	76.7	~376 [a]
<i>c</i> -CoS ₂ /CFP (2 nd half; $1.5 \times 6 \text{ cm}^2_{\text{geo}}$) ^[b]	77.3	~363

^[a] The chemical formula of CHCH is $Co(CO_3)_{0.5}(OH) \cdot 0.11H_2O$ (MW = 107.93 g/mol).

^[b] The geometric area is illustrated in Fig. S19.

Fig. S20 (a,c) Absorption spectra of standard solutions of Ce(SO₄)₂ (up to 0.5 mM) in 0.5 M H₂SO₄ and the resultant calibration curve at the peak wavelength of 318 nm (shown as an inset) measured for each run of bulk electrolysis: (a) *o*-CoSe₂/CFP electrode #1 and (c) *c*-CoS₂/CFP electrode #1 (see Fig. 6 in the main text). (b,d) Absorption spectra of stock solution of Ce(SO₄)₂ (~0.4 mM, exact concentration was determined from the respective calibration curve) in 0.5 M H₂SO₄ with and without being titrated with a small aliquot of electrolyte solution sampled from the working electrode compartment at various time points during each run of bulk electrolysis: (b) *o*-CoSe₂/CFP electrode #1 (see Fig. 6 in the main text).

Table S10 Summary of cumulative H_2O_2 concentration and cumulative H_2O_2 yield during the bulk electrolysis runs of *o*-CoSe₂/CFP electrode #1 and *c*-CoS₂/CFP electrode #1 at 0.5 V vs. RHE in 0.05 M H₂SO₄ solution (continuously operated for 5–6 h, see Fig. 6 in the main text).

	Time Point	Electrolyte Volume	Absorbance at 318 nm	Ce4+ Concentration		Cumulative H2O2 Yield
Electrolyte Evaporation Rate	for Aliquot	Before (and After)	Before (and After)	Before (and After)	Cumulative H_2O_2	(and H_2O_2 Produced
During Bulk Electrolysis Run	Sompling	Aliment Compliant [b]	Adding Aliquot into	Adding Aliquot into	Concentration [f]	Between Two Nearest
	Sampling	Anquot Sampning (Ce ⁴⁺ Stock Solution ^[c]	Ce4+ Stock Solution		Aliquot Samplings ^[g])
	0 h	4 mL (3.975 mL)	2.262 (2.204)	$0.432(0.421)^{[d]}$	0.67 mM	0 µmol (0 µmol)
o-CoSe ₂ /CFP #1 (0.05 M	0.5 h	3.840 mL (3.815 mL)	2.262 (2.074)	0.432 (0.396)	2.65 mM	7.53 μmol (7.53 μmol)
H ₂ SO ₄ ; 0.5 V vs. RHE; 6 h)	1 h	3.679 mL (3.654 mL)	2.262 (1.972)	0.432 (0.377)	4.21 mM	12.91 µmol (5.38 µmol)
Initial Volume = 4 mL	1.5 h	3.519 mL (3.494 mL)	2.262 (1.866)	0.432 (0.357)	5.83 mM	18.04 µmol (5.13 µmol)
Aliquot Volume = $25 \ \mu L \times 9$	2 h	3.358 mL (3.333 mL)	2.262 (1.785)	0.432 (0.341)	7.04 mM	21.31 µmol (3.27 µmol)
Electrolyte Evaporation Rate	3 h	3.062 mL (3.037 mL)	2.262 (1.610)	0.432 (0.308)	9.71 mM	27.57 μmol (6.27 μmol)
$= \frac{(4 \text{ mL} - 25\mu\text{L} \times 9) - 2.15 \text{ mL}}{2.15 \text{ mL}}$	4 h	2.767 mL (2.742 mL)	2.262 (1.481)	0.432 (0.284)	11.68 mM	30.39 µmol (2.82 µmol)
= 0.271 mL/h	5 h	2.471 mL (2.446 mL)	2.262 (1.317)	0.432 (0.252)	14.19 mM	33.44 µmol (3.05 µmol)
	6 h	2.175 mL (2.15 mL)	2.262 (1.195)	0.432 (0.229)	16.08 mM	33.69 µmol (0.25 µmol)
<i>c</i> -CoS ₂ /CFP #1 (0.05 M	0 h	4 mL (3.975 mL)	2.133 (2.083)	0.411 (0.401) ^[e]	0.57 mM	0 µmol (0 µmol)
H ₂ SO ₄ ; 0.5 V vs. RHE; 5 h)	0.5 h	3.854 mL (3.829 mL)	2.133 (1.972)	0.411 (0.380)	2.28 mM	6.51 μmol (6.51 μmol)
Initial Volume = 4 mL	1 h	3.707 mL (3.682 mL)	2.133 (1.846)	0.411 (0.356)	4.22 mM	13.42 µmol (6.91 µmol)
Final Volume = 2.59 mL ^[a]	1.5 h	3.562 mL (3.537 mL)	2.133 (1.783)	0.411 (0.344)	5.20 mM	16.39 µmol (2.97 µmol)
Aliquot Volume = 25 μ L × 8	2 h	3.416 mL (3.391 mL)	2.133 (1.713)	0.411 (0.330)	6.28 mM	19.45 µmol (3.06 µmol)
Electrolyte Evaporation Rate	3 h	3.149 mL (3.124 mL)	2.133 (1.678)	0.411 (0.324)	6.81 mM	19.61 µmol (0.16 µmol)
$=\frac{(4 \text{ mL} - 25 \mu \text{L} \times 8) - 2.59 \text{ mL}}{5 \text{ h}}$	4 h	2.882 mL (2.857 mL)	2.133 (1.683)	0.411 (0.325)	6.74 mM	17.77 μmol (-1.84 μmol)
= 0.242 mL/h	5 h	2.615 mL (2.59 mL)	2.133 (1.712)	0.411 (0.330)	6.28 mM	14.94 µmol (-2.83 µmol)

^[a] Final volume of electrolyte solution at the end of bulk electrolysis was determined by transferring all the remaining electrolyte solution out of the working compartment using an Eppendorf pipette.

^[b] The volume of electrolyte solution before and after each aliquot sampling was calculated under the assumption that the electrolyte evaporation rate was constant throughout the bulk electrolysis.

[6] For chemical detection of H₂O₂ product, 25-µL aliquot of electrolyte solution was quantitatively added into 4 mL of Ce⁴⁺ stock solution (see Fig. S20b,d).

^[d] For the bulk electrolysis run of o-CoSe₂/CFP #1, the calibration curve of absorbance at 318 nm vs. Ce⁴⁺ concentration (mM) was y = 5.269 x - 0.013 (see Fig. S20a).

[e] For the bulk electrolysis run of o-CoSe₂/CFP #1, the calibration curve of absorbance at 318 nm vs. Ce⁴⁺ concentration (mM) was y = 5.223 x - 0.012 (see Fig. S20c).

^[f] Cumulative H₂O₂ Concentration (mM) = $(4 \text{ mL} \times [Ce^{4+}]_{before} - 4.025 \text{ mL} \times [Ce^{4+}]_{after}) / (2 \times 0.025 \text{ mL})$, where $[Ce^{4+}]_{before}$ and $[Ce^{4+}]_{after}$ are the Ce⁴⁺ concentration (mM) before and after adding 25-µL aliquot of electrolyte solution into 4 mL of Ce⁴⁺ stock solution, respectively. For example, for the bulk electrolysis run of *o*-CoSe₂/CFP #1, cumulative H₂O₂ concentration at 0.5 h = $(4 \text{ mL} \times 0.432 \text{ mM} - 4.025 \text{ mL} \times 0.396 \text{ mM}) / (2 \times 0.025 \text{ mL}) = 2.65 \text{ mM}.$

 $^{[g]}$ H₂O₂ produced between two nearest aliquot samplings (µmol) = [H₂O₂]_{later} × V_{later} – [H₂O₂]_{earlier} × V_{earlier}, where [H₂O₂]_{later} and [H₂O₂]_{earlier} are the cumulative H₂O₂ concentration (mM) at the later time point and at the earlier time point, respectively; V_{later} (mL) is the electrolyte volume at the later time point *before* aliquot sampling; V_{earlier} (mL) is the electrolyte volume at the earlier time point *after* aliquot sampling. For example, for the bulk electrolysis run of *o*-CoSe₂/CFP #1, H₂O₂ produced between 0 h and 0.5 h = 2.65 mM × 3.840 mL – 0.67 mM × 3.975 mL = 7.53 µmol, H₂O₂ produced between 0.5 h and 1 h = 4.21 mM × 3.679 mL – 2.65 mM × 3.815 mL = 5.38 µmol.

Table S11 Summary of cumulative H2O2 selectivity and cumulative Faradaic efficiency during the bulk electrolysis runs of o-CoSe₂/CFP electrode #1 and c-CoS₂/CFP electrode #1 at 0.5 V vs. RHE in 0.05 M H₂SO₄ solution (continuously operated for 5–6 h, see Fig. 6 in the main text).

Bulk Electrolysis Run	Time Point for Aliquot Sampling	Cumulative H ₂ O ₂ Yield (and H ₂ O ₂ Produced Between Two Nearest Aliquot Samplings ^[a])	Cumulative Charge Passed	Theoretical H ₂ O ₂ Yield ^[b]	Cumulative H ₂ O ₂ Selectivity ^[e]	Cumulative Faradaic Efficiency ^[d]
	0 h	0 µmol (0 µmol)	0 C	0 µmol	-	-
	0.5 h	7.53 µmol (7.53 µmol)	2.013 C	10.43 µmol	83.8%	72.2%
	1 h	12.91 µmol (5.38 µmol)	3.520 C	18.24 µmol	82.9%	70.8%
<i>o</i> -CoSe ₂ /CFP #1 (0.05 M	1.5 h	18.04 µmol (5.13 µmol)	4.875 C	25.26 µmol	83.3%	71.4%
H ₂ SO ₄ ; 0.5 V vs. RHE; 6 h)	2 h	21.31 µmol (3.27 µmol)	6.053 C	31.37 µmol	80.9%	67.9%
	3 h	27.57 μmol (6.27 μmol)	8.045 C	41.69 µmol	79.6%	66.1%
	4 h	30.39 µmol (2.82 µmol)	9.642 C	49.96 µmol	75.6%	60.8%
	5 h	33.44 µmol (3.05 µmol)	10.98 C	56.87 µmol	74.1%	58.8%
	6 h	33.69 µmol (0.25 µmol)	12.15 C	62.95 µmol	69.7%	53.5%
	0 h	0 µmol (0 µmol)	0 C	0 µmol	-	-
	0.5 h	6.51 µmol (6.51 µmol)	2.905 C	15.05 µmol	60.4%	43.3%
	1 h	13.42 µmol (6.91 µmol)	6.144 C	31.84 µmol	59.3%	42.2%
<i>c</i> -CoS ₂ /CFP #1 (0.05 M	1.5 h	16.39 µmol (2.97 µmol)	9.729 C	50.42 µmol	49.1%	32.5%
H ₂ SO ₄ ; 0.5 V vs. RHE; 5 h)	2 h	19.45 µmol (3.06 µmol)	13.71 C	71.03 µmol	43.0%	27.4%
	3 h	19.61 µmol (0.16 µmol)	22.28 C	115.44 µmol	29.0%	17.0%
	4 h	17.77 µmol (-1.84 µmol)	31.26 C	161.97 µmol	19.8%	11.0%
	5 h	14.94 µmol (-2.83 µmol)	40.60 C	210.40 µmol	13.3%	7.1%

^[a] See Table S10.

^[b] Theoretical H₂O₂ Yield (µmol) = Cumulative Charge Passed (C) $\times \frac{1 \text{ mol } e^{-}}{96485 \text{ c}} \times \frac{1 \text{ mol } H_2O_2}{2 \text{ mol } e^{-}} \times \frac{10^6 \text{ µmol } H_2O_2}{1 \text{ mol } H_2O_2}$

^[c] Cumulative H₂O₂ Selectivity (%) = $\frac{\text{Cumulative O}_2 \text{ Consumption that Yields H₂O₂ (µmol)}{\text{Cumulative O}_2 \text{ Consumption (µmol)}} \times 100\%$ Cumulative O2 Consumption (µmol)

Cumulative H2O2 Yield (µmol)

 $\frac{\rm Cumulative H_2O_2 \ 11eta \ (\mu m01)}{\rm Cumulative H_2O_2 \ Yield \ (\mu m0) + Cumulative O_2 \ Consumption \ that \ Yields \ H_2O \ (\mu m0))} \times 100\%$

Cumulative H2O2 Yield (µmol)

× 100% $\frac{1 \mod H_2O_2}{10^6 \mu \min H_2O_2} \text{ Yield } (\mu mol) + [Cumulative Charge Passed (C) - Cumulative H_2O_2 \text{ Yield } (\mu mol) \times \frac{1 \mod H_2O_2}{10^6 \mu \min H_2O_2} \times \frac{1 \mod O_2}{1 \mod H_2O_2} \times \frac{2 \mod e^2}{1 \mod O_2} \times \frac{96485 \text{ C}}{1 \mod e^2} \times \frac{1 \mod O_2}{96485 \text{ C}} \times \frac{2 \mod H_2O}{2 \mod H_2O} \times \frac{1 \mod O_2}{1 \mod O_2} \times \frac{10^6 \mu \textup O_2}$

^[d] Cumulative Faradaic Efficiency (%) = $\frac{\text{Cumulative Charge Passed that Yields H}_{2O_2 (C)} \times 100\%$

 $\frac{\text{Cumulative } H_2O_2 \text{ Yield } (\mu mol) \times \frac{1 \text{ mol } H_2O_2}{10^6 \mu \text{mol } H_2O_2} \times \frac{2 \text{ mol } e^-}{1 \text{ mol } H_2O_2} \times \frac{96485 \text{ C}}{1 \text{ mol } e^-}}{\text{Cumulative Charge Passed (C)}} \times 100\%$

Table S12 ICP-MS analysis of the tested electrolyte solutions of 0.05 M H₂SO₄ after the bulk electrolysis runs of o-CoSe2/CFP electrode #1 and c-CoS2/CFP electrode #1 (continuously operated for 5 h, see Fig. 6 in the main text) as well as o-CoSe2/CFP electrode #2 and c-CoS2/CFP electrode #2 (first operated for 1.5 h, and then operated for another 2.5 h after the H₂O₂-free electrolyte solution was reintroduced, see Fig. S21).

ICP-MS Sample		Intensity	Standard Curve	[Co] in Diluted ICP-MS Sample	Final Electrolyte Volume After Bulk Electrolysis	Average Cobalt Leaching Rate ^[b]
	$[Co] = 0 ug_{Co}/L$	1.0		-	-	-
	$[Co] = 52.3 \text{ ug}_{Co}/L$	2058.4		-	-	-
Standard solution of	$[Co] = 104.5 \text{ ug}_{Co}/L$	4715.2	y = 45.5 x - 114.7	-	-	-
$CoSO_4$ in 0.05 M H_2SO_4	$[Co] = 209.1 \text{ ug}_{Co}/L$	9469.0	$(r^2 = 0.99996)$	-	-	-
	$[Co] = 522.7 \text{ ug}_{Co}/L$	23605.7		-	-	-
	$[Co] = 1045.5 \text{ ug}_{Co}/L$	47499.7		-	-	-
	o-CoSe₂/CFP #1 (4 mL of 0.05 M H ₂ SO ₄ ; 0.5 V vs. RHE; 6 h)	5720.2	-	128.2 ug _{Co} /L	2.15 mL	0.69 ug _{Co} /h
	o-CoSe ₂ / CFP #2 (3 mL of 0.05 M H ₂ SO ₄ ; 0.5 V vs. RHE; 1.5 h)	2724.3	-	62.4 ug _{Co} /L	2.00 mL	1.25 ug _{Co} /h
1:15 Dilution of tested electrolyte solution	<i>o</i> -CoSe ₂ /CFP #2 (Reused) (3 mL of 0.05 M H ₂ SO ₄ ; 0.5 V vs. RHE; 2.5 h)	256.9	-	8.16 ug _{Co} /L	1.99 mL	$0.10 \ ug_{\rm Co}/h$
with 0.05 M $H_2SO_4^{[a]}$	<i>c</i> -CoS ₂ /CFP #1 (4 mL of 0.05 M H ₂ SO ₄ ; 0.5 V vs. RHE; 5 h)	16299.7	-	360.6 ug _{Co} /L	2.59 mL	$2.80 \text{ ug}_{\text{Co}}/\text{h}$
	<i>c</i> -CoS ₂ /CFP #2 (3 mL of 0.05 M H ₂ SO ₄ ; 0.5 V vs. RHE; 1.5 h)	4201.4	-	94.8 ug _{Co} /L	2.06 mL	1.97 ug _{Co} /h
	c-CoS₂/CFP #2 (Reused) (3 mL of 0.05 M H ₂ SO ₄ ; 0.5 V vs. RHE; 2.5 h)	8400.3	-	187.1 ug _{Co} /L	2.08 mL	2.31 ug _{Co} /h

^[a] To prepare ICP-MS sample, 1 part of tested electrolyte solution was diluted with 14 part of 0.05 M H₂SO₄.

^[b] Average Cobalt Leaching Rate ($\mu g_{Co}/h$) = $\frac{[Co] \text{ in Diluted ICP-MS Sample } (ug_{Co}/L) \times 15 \times \text{Final Electrolyte Volume After Bulk Electrolysis } (mL) \times \frac{1 L}{10^3 \text{ mL}}$

Bulk Electrolysis Time (h)

Fig. S21 (a) Chronoamperometry curves of *o*-CoSe₂/CFP electrode #3 (continuously operated for 5 h) and #4 (first operated for 1.5 h, and then operated for another 2.5 h after the H₂O₂-free electrolyte solution was reintroduced) at 0.5 V vs. RHE in O₂-saturated 0.05 M H₂SO₄ solution (pH 1.20) under vigorous stirring (1200 rpm). (b) Cumulative H₂O₂ concentration, (c) cumulative H₂O₂ yield, and (d) cumulative H₂O₂ selectivity and Faradaic efficiency during the bulk electrolysis runs of *o*-CoSe₂/CFP electrode #3 and #4. (e–h) Similar bulk experiments were performed on *c*-CoS₂/CFP electrode #1 (continuously operated for 5 h) and #2 (first operated for 1.5 h, and then operated for another 2.5 h after the H₂O₂-free electrolyte solution was reintroduced).

Table S13 ICP-MS analysis of the tested electrolyte solutions of 0.05 M H₂SO₄ after the bulk electrolysis runs of o-CoSe2/CFP electrode #3 (continuously operated for 5 h, see Fig. S21) and #4 (first operated for 1.5 h, and then operated for another 2.5 h after the H2O2-free electrolyte solution was reintroduced, see Fig. S21).

IC	Intensity	Standard Curve	[Co] in Diluted ICP-MS Sample	Final Electrolyte Volume After Bulk Electrolysis	Average Cobalt Leaching Rate ^[b]	
	$[Co] = 0 ug_{Co}/L$	0.9		-	-	-
	$[Co] = 100.0 \text{ ug}_{Co}/L$	4791.0	y = 47.2 x + 25.6 ($r^2 = 0.99996$)	-	-	-
Standard solution of $CoSO_4$ in 0.05 M H ₂ SO ₄	$[Co] = 200.0 \text{ ug}_{Co}/L$	9331.4		-	-	-
	$[Co] = 500.0 \text{ ug}_{Co}/L$	23832.4		-	-	-
	$[Co] = 1000.0 ug_{Co}/L$ 471			-	-	-
	<i>о</i> -CoSe ₂ /CFP #3 (4 mL of 0.05 M H ₂ SO ₄ ; 0.5 V vs. RHE; 5 h)	2041.4	-	42.7 ug _{Co} /L	2.00 mL	$0.26 \ ug_{Co}/h$
1:15 Dilution of tested electrolyte solution with 0.05 M H_2SO_4 ^[a]	o-CoSe2/CFP #4 (3 mL of 0.05 M H ₂ SO ₄ ; 0.5 V vs. RHE; 1.5 h)	4873.8	-	102.7 ug _{Co} /L	1.79 mL	1.84 ug _{Co} /h
	<i>o</i> -CoSe ₂ /CFP #4 (Reused) (3 mL of 0.05 M H ₂ SO ₄ ; 0.5 V vs. RHE; 2.5 h)	830.7	-	17.1 ug _{Co} /L	1.71 mL	$0.18 \ ug_{Co}/h$

^[a] To prepare ICP-MS sample, 1 part of tested electrolyte solution was diluted with 14 part of 0.05 M H₂SO₄.

^[b] Average Cobalt Leaching Rate ($\mu g_{Co}/h$) = $\frac{[Co] \text{ in Diluted ICP-MS Sample (<math>ug_{Co}/L$) × 15 × Final Electrolyte Volume After Bulk Electrolysis (mL) × $\frac{1 L}{10^3 \text{ mL}}$

Bulk Electrolysis Time (h)

Fig. S22 ICP-MS analysis of the tested electrolyte solutions of 0.05 M H₂SO₄ after the bulk electrolysis runs of (a) *o*-CoSe₂/CFP electrode #1 and #2, (b) *o*-CoSe₂/CFP electrode #3 and #4, and (c) *c*-CoS₂/CFP electrode #1 and #2. The transient catalyst leaching of *o*-CoSe₂ took place mostly at the beginning of bulk electrolysis and was minimal afterwards (see Fig. S22a,b for two replicate experiments), whereas *c*-CoS₂ continuously leached into electrolyte solution throughout the entire bulk electrolysis (see Fig. S22c). *See additional discussion on page S33*.

Additional Discussion of Fig. S22 Based on the low steady state cobalt leaching rate of the *o*-CoSe₂ catalyst (0.10 and 0.18 μ g_{Co}/h in two replicate experiments, see Fig. S22a,b) and the catalyst mass loading of the *o*-CoSe₂/CFP electrode (~370 μ g_{Co} on each electrode with ~1 cm²_{geo}, see Table S9), a back-of-the-envelope estimate suggests the *o*-CoSe₂ catalyst, in theory, could last for several months under the operating conditions of the bulk electrosynthesis of H₂O₂. An example calculation is shown below.

$$370 \ \mu g_{Co}/cm^2_{geo} \times 1 \ cm^2_{geo} \times \frac{1 \ h}{0.10 \ \mu g_{Co}} \times \frac{1 \ day}{24 \ h} \times \frac{1 \ month}{30 \ day} = 5.1 \ months$$

Table S14 Comparisons of the leaching results of o-CoSe₂/CFP under operating conditions of the bulk electrosynthesis of H₂O₂ to those of other cobalt-based electrocatalysts reported for water splitting reactions, due to the fact that there has been no rigorous analysis of metal leaching in the recently reported earth-abundant 2e⁻ ORR catalysts.

Reaction ^[1]	Electrolyte	Catalyst (Substrate)	Catalyst Loading	Catalyst Mass	Cobalt Mass	Electrochemical Operation	Average Cobalt Leaching Percentage	Average Cobalt Leaching Rate	Reference
HER	1 M KOH	CoS ₂ (Ti plate)	$\sim 2.1 \text{ mg/cm}^2_{\text{geo}}$	~4.2 mg	$\sim 1.9 mg_{Co}$	-20 mA/cm ² gco; 250 h	~59.4% (after 250 h) ^[2]	~0.24%/h (after 250 h)	ref. S20
HER	1 M KOH	Ce-doped CoS ₂ (Ti plate)	$\sim 2.1 \text{ mg/cm}^2_{\text{geo}}$	~4.1 mg	$\sim 1.8 \text{ mg}_{\text{Co}}$	-20 mA/cm ² _{gco} ; 250 h	~3.2% (after 250 h) ^[3]	~0.013%/h (after 250 h)	ref. S20
HER 0.5 M H ₂ SO ₄	CoS2/CNT (carbon fiber paper)	$\sim 0.8 \text{ mg/cm}^2_{\text{geo}}$	~0.4 mg	N/A	0.077 V vo. PHE: 20 h	${\sim}17.5\%$ (the initial 0.5 h) $^{[2]}$	~35.0%/h (the initial 0.5 h)	ref \$21	
					-0.077 V VS. KHE, 20 II	~6.7% (from 0.5 h to 20 h) $^{[3]}$	~0.45%/h (from 0.5 h to 20 h)	101. 521	
HER	0.5 M H ₂ SO ₄	CoS P/CNT (carbon fiber paper)	$\sim 0.8 \text{ mg/cm}^2_{\text{geo}}$	~0.4 mg	N/A	-0.077 V vs. RHE; 20 h	~5.0% (after 12 h) ^[3]	~0.42%/h (after 12 h)	ref. S21
OER 0.5 M H ₂ SO ₄	300 nm Co ₃ O ₄ film (FTO)	~0.36 mg/cm ² _{gco} ^[3]	~0.36 mg ^[3]	~0.27 mg _{Co} ^[3]	$10 \text{ mA/cm}^2_{\text{gco}}$; ~10 h	~25% (after ~10 h) $^{[3]}$	~2.5%/h (after ~10 h)	ref \$22	
					1 mA/cm ² geo; ~72 h	${\sim}34\%$ (after ${\sim}72$ h) $^{[3]}$	~0.47%/h (after ~72 h)	101. 522	
2e ⁻ ORR 0.05 M H ₂ SO ₄	H ₂ SO ₄ <i>o</i> -CoSe ₂ /CFP #2 (carbon fiber paper)	$\sim 1.4 \text{ mg/cm}^2$	- 1 4 mg	~0.37 mg _{Co}	0.5 V vs. RHE; 1.5 h + 2.5 h	~0.51% (the initial 1.5 h) $^{[4]}$	~0.34%/h (the initial 1.5 h)	This work	
						${\sim}0.07\%$ (reused for 2.5 h) $^{[4]}$	~0.027%/h (reused for 2.5 h)	T IIIS WOIK	

^[1] "HER" stands for hydrogen evolution reaction, "OER" stands for oxygen evolution reaction.

^[2] These values were present in the original literature.

^[3] These values were calculated based on the information present in the original literature.

^[4] These values were calculated based on the data of the o-CoSe₂/CFP #2 electrode presented in Fig. S22a.

Fig. S23 (a–c) SEM images at different magnifications, (d) Raman spectra, (e) Co 2p and (f) Se 3d XPS spectra of the *o*-CoSe₂/CFP electrode #3 after the bulk electrolysis at 0.5 V vs. RHE in 0.05 M H₂SO₄ for 5 h (see Fig. S21). Background Raman spectra of bare carbon fiber paper substrate were subtracted from all as-measured Raman spectra of *o*-CoSe₂/CFP.

Fig. S24 (a) Co K-edge and (b) Se K-edge XANES spectra, Fourier transforms of (c) Co K-edge and (d) Se K-edge EXAFS spectra, and the first shell fittings of Co K-edge EXAFS spectra of the *o*-CoSe₂/CFP electrode #4 (e) before and (f) after the bulk electrolysis at 0.5 V vs. RHE in 0.05 M H₂SO₄ for overall 4 h (see Fig. S21). The Fourier transform parameters and fitting results are summarized in Table S15.

Table S15 The first shell fitting results of Co K-edge EXAFS spectra of the *o*-CoSe₂/CFP electrode#4 before and after the bulk electrolysis at 0.5 V vs. RHE in 0.05 M H₂SO₄ for overall 4 h.

Sample	Shell	N ^[b]	$R\left({\rm \AA}\right) {}^{[b]}$	$\sigma^2 (10^{-3} \text{ Å}^2)^{[b]}$	$\Delta E_0 \left(eV \right)^{\left[b ight]}$	Reduced $\chi^{2}[b]$	R-factor ^[b]
As-Synthesized	Co-Se	5.9 ± 1.1	2.411 ± 0.007	5.7 ± 0.7	1.9 ± 1.7	43.7445612	0.0120876
After Bulk Electrolysis	Co-Se	5.7 ± 1.0	2.405 ± 0.004	5.4 ± 0.4	0.9 ± 1.0	50.1007662	0.0042312

^[a] For both samples, the Fourier transform parameters are: Hanning window, $k_{min} = 3$, $k_{max} = 12$, dk = 1, no phase correction; the fitting parameters are: $r_{min} = 1$, $r_{max} = 3$, dr = 0, fitting k-weight = 3.

^[b] N is the coordination number of the absorbing Co atom. R is the interatomic distance between the absorbing Co atom and the backscattering S/Se atom. σ^2 is the mean square relative displacement (i.e., the Debye-Waller factor). ΔE_0 is the energy shift parameter used to align the theoretical calculated spectrum to the energy grid of the measured spectrum. For all the first shell fittings, the amplitude reduction factor (S_0^2) is constrained to 0.90 as a reasonable estimation, and the added uncertainty in the coordination number (N) due to the estimation of S_0^2 has already been considered.^{S6} Reduced χ^2 and R-factor are goodness-of-fit parameters.

Classification	Catalyst	Catalyst Loading (Geometric Area)	Acidic Electrolyte (Volume)	Potential	Time	$\begin{array}{l} H_2O_2 \mbox{ Production Rate} \\ (mmol \ g_{catalyst} \ ^l \ h^{-l}) \end{array}$	Cumulative H ₂ O ₂ Concentration	Cumulative H ₂ O ₂ Selectivity	Catalyst Leaching Rate Monitored?	Reference
Earth-abundant transition metal compounds	o-CoSe ₂ /CFP	$\sim\!\!370~\mu g_{Co}/cm^2_{geo}$ $\sim\!\!1.42~mg_{catalysl}/cm^2_{geo}$ $(1~cm^2_{geo})$	0.05 M H ₂ SO ₄ (4 mL)	0.5 V vs. RHE	6 h	4.0	547 ppm	~70%	Yes	this work
Noble metal catalysts	Pt-Hg foil	N/A (0.98 cm ² geo)	0.1 M HClO ₄ (15 mL)	0.4 V vs. RHE	~1 h	N/A	21 ppm	~80% ^[a]	No	ref. S7
Single-atom catalysts	Co ₁ -N-C(1)	$\frac{100 \ \mu g_{catalyst}/cm^2_{geo}}{(1 \ cm^2_{geo})^{[b]}}$	0.5 M H ₂ SO ₄ (42 mL) ^[b]	0.5 V vs. RHE	4 h	9.7	3.1 ppm	~47% ^[a]	No	ref. S13
	Co ₁ -N-C(2)	$\frac{100 \ \mu g_{catalyst}/cm^2_{geo}}{(1 \ cm^2_{geo})}$	0.1 M HClO ₄ (100 mL) ^[b]	0.5 V vs. RHE	10 h	80	27.2 ppm	~81%	No	ref. S14
	h-Pt ₁ -CuS _x	250 μg _{catalyst} (3 cm ² _{geo})	0.5 M HClO ₄ (110 mL) ^[b]	0.05 V vs. HOR ^[c]	1 h	546	~58 ppm	>90%	No	ref. S12
Carbon materials	meso-BMP	$\sim 307 \ \mu g_{catalyst}/cm^2_{geo} \label{eq:geo} (0.196 \ cm^2_{geo})$	0.1 M HClO4 (N/A)	0.1 V vs. RHE	4 h	N/A	13 ppm	N/A	No	ref. S18
	NCMK	$\frac{50 \ \mu g_{catalyst}/cm^2_{geo}}{(1 \ cm^2_{geo})^{[b]}}$	0.5 M H ₂ SO ₄ (145 mL)	0.3 V vs. RHE	6 h	~35	~1.6 ppm	~87% [a]	No	ref. S19

Table S16 Comparisons of the cumulative H_2O_2 concentrations achieved from bulk electrosynthesis of H_2O_2 in *acidic* solution using *o*-CoSe2/CFP and other reported 2e⁻ ORR electrocatalysts in a similar H-cell setup. See additional discussion on page S38.

^[a] Cumulative H₂O₂ selectivity is calculated from the literature value of cumulative Faradaic efficiency using the following equation:

Cumulative H₂O₂ Selectivity (%)=
$$200 \times \frac{1}{1+\frac{100}{1+\text{ Cumulative Faradaic Efficiency (%)}}}$$

^[b] These information was not present in the original literature but was provided by the authors upon request.

^[c] In this previous report,^{S12} the authors operated the H-cell setup as a fuel cell, where the h-Pt₁-CuS_x catalyst was loaded on the cathode for H₂O₂ production and a Pt mesh was used as the anode for hydrogen oxidation reaction (HOR). The cell output was controlled at 0.05 V without any energy input. This operation mode was different from the rest of the previous reports in this Table S16, where the anode was used to drive water oxidation and the H-cell setup was operated as an electrolyzer.^{S7, S13-S14, S18-S19}

Additional Discussion of Table S16 For on-site water treatment applications, it is essential to accumulate a practically useful H₂O₂ concentration up to 1000 ppm from bulk electrosynthesis.^{S23} We demonstrated that o-CoSe₂/CFP successfully accumulated 547 ppm H₂O₂ over 6 h from the steady bulk electrosynthesis at 0.5 V vs. RHE in 0.05 M H₂SO₄ using a two-compartment threeelectrode H-cell setup (Fig. 6 in the main text). We compare this cumulative H₂O₂ concentration achieved by o-CoSe₂/CFP with the few previous reports where the bulk electrosynthesis of H₂O₂ in acidic solution was conducted on other 2e⁻ ORR electrocatalysts in a similar H-cell setup (Table S16). We found that these reported catalysts were operated in larger volumes of electrolyte solution, and the cumulative H₂O₂ concentrations were one or two order(s) of magnitude lower than 547 ppm (Table S16). Therefore, they were evaluated under much less stringent operating conditions because the catalyst stability was less challenged and the electrochemical side reactions of H_2O_2 reduction and/or decomposition were less probable to take place without a significant buildup of H₂O₂ concentration. Although the H₂O₂ production rate of *o*-CoSe₂/CFP (4.0 mmol g_{catalyst}⁻¹ h⁻¹, see Table S16) could be further improved by nanostructuring the catalyst and engineering the oxygen gas diffusion, o-CoSe2/CFP shows enhanced catalyst stability and is highly resistant to electrochemical side reactions under stringent operating conditions, and the cumulative H₂O₂ concentration of 547 ppm is the highest among all the reported 2e⁻ ORR catalysts evaluated in acidic solution in a similar H-cell setup.

Fig. S25 (a) Absorption spectra of standard solutions of RhB (up to 1.00 mg/L) in acidified 0.5 M Na₂SO₄ solution (pH 2.85). (b,c) Absorption spectra of the quantitatively diluted small aliquot of electrolyte solution sampled from the working electrode compartment at various time points during each electro-Fenton degradation test shown in Fig. 7 in the main text: (b) 20 mg/L or (c) 40 mg/L RhB in O₂-saturated acidified 0.5 M Na₂SO₄ solution (pH 2.85) with the presence of 0.5 mM Fe²⁺.

References Cited in the Electronic Supplementary Information

- S1. The Materials Project, <u>https://materialsproject.org/</u>, (accessed April 14, 2020).
- S2. W.-W. Zhao, P. Bothra, Z. Lu, Y. Li, L.-P. Mei, K. Liu, Z. Zhao, G. Chen, S. Back, S. Siahrostami, A. Kulkarni, J. K. Nørskov, M. Bajdich and Y. Cui, ACS Appl. Energy Mater., 2019, 2, 8605.
- S3. A. K. Singh, L. Zhou, A. Shinde, S. K. Suram, J. H. Montoya, D. Winston, J. M. Gregoire and K. A. Persson, *Chem. Mater.*, 2017, 29, 10159.
- S4. H. Sheng, E. D. Hermes, X. Yang, D. Ying, A. N. Janes, W. Li, J. R. Schmidt and S. Jin, ACS Catal., 2019, 9, 8433.
- S5. S. Grimme, J. Antony, S. Ehrlich and H. Krieg, J. Chem. Phys., 2010, 132, 154104.
- S6. S. Calvin, XAFS for Everyone, CRC Press, 2013, pp. 353-354.
- S7. S. Siahrostami, A. Verdaguer-Casadevall, M. Karamad, D. Deiana, P. Malacrida, B. Wickman, M. Escudero-Escribano, E. A. Paoli, R. Frydendal, T. W. Hansen, I. Chorkendorff, I. E. L. Stephens and J. Rossmeisl, *Nat. Mater.*, 2013, **12**, 1137.
- S8. A. Verdaguer-Casadevall, D. Deiana, M. Karamad, S. Siahrostami, P. Malacrida, T. W. Hansen, J. Rossmeisl, I. Chorkendorff and I. E. L. Stephens, *Nano Lett.*, 2014, 14, 1603.
- S9. E. Pizzutilo, O. Kasian, C. H. Choi, S. Cherevko, G. J. Hutchings, K. J. J. Mayrhofer and
 S. J. Freakley, *Chem. Phys. Lett.*, 2017, 683, 436.
- S10. C. H. Choi, M. Kim, H. C. Kwon, S. J. Cho, S. Yun, H.-T. Kim, K. J. J. Mayrhofer, H. Kim and M. Choi, *Nat. Commun.*, 2016, 7, 10922.
- S11. S. Yang, J. Kim, Y. J. Tak, A. Soon and H. Lee, Angew. Chem. Int. Ed., 2016, 55, 2058.
- S12. R. Shen, W. Chen, Q. Peng, S. Lu, L. Zheng, X. Cao, Y. Wang, W. Zhu, J. Zhang, Z. Zhuang, C. Chen, D. Wang and Y. Li, *Chem*, 2019, 5, 2099.
- S13. Y. Sun, L. Silvioli, N. R. Sahraie, W. Ju, J. Li, A. Zitolo, S. Li, A. Bagger, L. Arnarson, X. Wang, T. Moeller, D. Bernsmeier, J. Rossmeisl, F. Jaouen and P. Strasser, *J. Am. Chem. Soc.*, 2019, 141, 12372.
- S14. J. Gao, H. b. Yang, X. Huang, S.-F. Hung, W. Cai, C. Jia, S. Miao, H. M. Chen, X. Yang,
 Y. Huang, T. Zhang and B. Liu, *Chem*, 2020, 6, 658.
- S15. E. Jung, H. Shin, B.-H. Lee, V. Efremov, S. Lee, H. S. Lee, J. Kim, W. Hooch Antink, S. Park, K.-S. Lee, S.-P. Cho, J. S. Yoo, Y.-E. Sung and T. Hyeon, *Nat. Mater.*, 2020, 19, 436.

- S16. C. Tang, Y. Jiao, B. Shi, J.-N. Liu, Z. Xie, X. Chen, Q. Zhang and S.-Z. Qiao, Angew. Chem. Int. Ed., 2020, 59, 9171.
- S17. Z. Lu, G. Chen, S. Siahrostami, Z. Chen, K. Liu, J. Xie, L. Liao, T. Wu, D. Lin, Y. Liu, T.
 F. Jaramillo, J. K. Nørskov and Y. Cui, *Nat. Catal.*, 2018, 1, 156.
- S18. F. Hasché, M. Oezaslan, P. Strasser and T.-P. Fellinger, J. Energy Chem., 2016, 25, 251.
- S19. Y. Sun, I. Sinev, W. Ju, A. Bergmann, S. Dresp, S. Kühl, C. Spöri, H. Schmies, H. Wang,
 D. Bernsmeier, B. Paul, R. Schmack, R. Kraehnert, B. Roldan Cuenya and P. Strasser, ACS Catal., 2018, 8, 2844.
- S20. J. Li, Z. Xia, M. Zhang, S. Zhang, J. Li, Y. Ma and Y. Qu, J. Mater. Chem. A, 2019, 7, 17775.
- S21. W. Liu, E. Hu, H. Jiang, Y. Xiang, Z. Weng, M. Li, Q. Fan, X. Yu, E. I. Altman and H. Wang, *Nat. Commun.*, 2016, 7, 10771.
- S22. J. S. Mondschein, J. F. Callejas, C. G. Read, J. Y. C. Chen, C. F. Holder, C. K. Badding and R. E. Schaak, *Chem. Mater.*, 2017, 29, 950.
- S23. S. Yang, A. Verdaguer-Casadevall, L. Arnarson, L. Silvioli, V. Čolić, R. Frydendal, J. Rossmeisl, I. Chorkendorff and I. E. L. Stephens, *ACS Catal.*, 2018, 8, 4064.