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Table 1: A complete list of the sets and indices used in the H2-CCS infrastructure design model.

Sets and Indices Description

g, g′ ∈ G Spatial grid cells/ nodes that are indexed (54)
r ∈ R All resources (Natural gas, domestic heat, industrial heat, electricity,

biomass, H2 at 5, 20, 40, 60 and 80 bar, emitted CO2, dense-phase
CO2)

ir ⊆ R Importable resources (Natural gas, electricity, biomass)
sr ⊆ R All resources which can be stored as opposed to being emitted (Dense-

phase CO2, H2 at 60 and 80 bar)
t, t′ ∈ T Minor time periods (15)
tm, tm′ ∈ TM Major time periods (7)
m ∈M Performance metrics (CapEx, OpEx)
j ∈ J Technologies (SMR with syngas CO2 capture, SMR with flue gas cap-

ture, ATR with CCS, ATR with GHR and CCS, Biomass gasification
with CCS, Water electrolysis, smaller scale SMRs and ATRs, domes-
tic and industrial natural gas, H2 boiler, intraday cavern, interseasonal
cavern, injection well, H2 and CO2 compressors)

pj ⊆ J Process technologies
sj ⊆ J Storage technologies (intraday cavern, interseasonal cavern, injection

well)
d ∈ D Distribution technologies (Pipelines - 18, 24, 36 and 48 inches for H2,

12 and 26 inches CO2 pipes for both onshore and offshore transport)
od ∈ D Onshore transportation/ distribution technologies
dmo ∈ DMO Distribution modes (e.g., flows at specific pressure ranges)

1 Model components

1.1 Nomenclature

Tables 1, 2 and 3 summarise the indices, sets, parameters and variables used within this optimisation
framework. Units of measurement are omitted here as many of the parameters are block parameters
which are created out of many parameters with specific units.

1.2 Equations

The equations presented here should be combined with those presented in the paper to produce
a complete list, which can be used as a general framework. The import rates are bounded by a
maximum import rate placed on importable resources in importable locations as shown in equation
(1). This is written as follows:

IMir,g,t,tm ≤ IMMAX
ir,g ∀ ir, g, t, tm (1)

where IMMAX
ir,g denotes the maximum import rates of an importable resource ir in a grid cell, g.

Similarly, the flowrate of a resource is bounded by the capacity of their units as shown in equation
(2): ∑

dmo

Qg,g′,d,dmo,t,tm ≤ ND
g,g′,d,tm QMAX

d ∀ g, g′, d, t, tm (2)

where ND
g,g′,d,t is the number of distribution units used to transport a resource from grid cell g to g′

using distribution technology d at major time period tm, QMAX
d is the maximum flowrate achievable

using a single distribution unit for transporting a resource using distribution technology d.
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Table 2: A complete list of the parameters used in the H2-CCS infrastructure design model.

Parameter Description

CI Carbon intensity of the heat supply
DEMTOT Total annual heating demand
CRFj Captial recovery factor for the different technologies
ONg Binary parameter to indicate if a grid, g is onshore/ offshore
INITj,g Initial capacity of technology, j in grid cell, g at the start of the planning

horizon
Dr,g,t,tm Demand for resource, r in grid cell, g at minor time, t and at major time,

tm
NPCj Nameplate capacity for technology type, j (e.g., unit capacity of the tech-

nologies)
νg,g′ Distance between grid cells, g and g′, where g 6= g′

OTt Operational time corresponding to each time period, t
QMAX

d Maximum flowrate of a resource through a single unit of distribution
technology type, d

IMMAX
ir,g Maximum import rate of an importable resource, ir in a grid, g

βr,dmo,d Conversion coefficient of a resource, r in a distribution technology, d
through a distribution mode, dmo

UEr Upstream emissions pertaining to a unit of the resource, r
µpj,r Production/ consumption rate coefficients for resource, r using a process

technology type, pj
τj,g,m Coefficients related to the effects of an investment in a technology type, j

in grid cell, g on the performance metric type, m
NCd,m Coefficients related to the effects of installation of a network using a dis-

tribution technology type, d on the performance metric type, m (e.g.,
CAPEX for construction of a H2 pipeline)

PCpj,m Coefficients related to the effects of the processing of resources using a
process technology type, pj on the performance metric type, m

QCd,m Coefficients related to the effects of the flow of a resource using distribu-
tion technology type, d on performance metric type, m

IMCir,m Coefficients related to the effects of importing a resource, ir on perfor-
mance metric type, m

SCsj,m Coefficients related to the effects of using a storage technology, sj to
store a resource on the performance metric type, m

SMAX
sj,g Maximum storage capacity of a storage technology, sj in grid cell, g

ΓSMAX
sr,sj Maximum injection rate of a storable resource type, sr into a storage

technology type, sj
ΓRMAX
sr,sj Maximum retrieval rate of a storable resource type, sr from a storage

technology type, sj
OWm,tm Overall objective weighting factor corresponding to performance metric

type, m in major time period, tm
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Table 3: A complete list of the variables used in the H2-CCS infrastructure design model.

Variable Description

Ppj,g,t,tm Production rate of a process technology type, pj operating in grid
cell, g at minor time, t and major time, tm

IMr,g,t,tm Import rate of a resource type, r in grid cell, g at minor time, t and
major time, tm

Qg,g′,d,dmo,t,tm Flowrate of resource from grid cell, g to g′, through distribution
mode, dmo in a distribution technology, d at minor time, t and ma-
jor time, tm

εr,g,t,tm Emission rate of resource type, r in grid cell, g at minor time, t and
major time, tm (Intermediates that aren’t stored are emitted.)

λSr,g,sj,t,tm Storage rate of resource type, r using storage technology, sj in grid
cell, g at minor time, t and major time, tm

λRr,g,sj,t,tm Retrieval rate of resource type, r from storage technology, sj in grid
cell, g at minor time, t and major time, tm

Ir,g,sj,t,tm Total inventory of a resource type, r using storage technology type, sj
in grid cell, g at minor time, t and major time, tm

TMm,tm Total contribution to the performance metric type, m in each major
time period, tm

TAC Total annualised costs of the entire network
NP

pj,g,tm Number of process units of process technology type, pj existing in
grid cell, g at major time period, tm

NS
r,sj,g,tm Number of storage units of storage technology type, sj used to store

resource type, r in grid cell, g at major time period, tm
ND

g,g′,d,tm Number of units of distribution technology type, d operational from
grid cell, g to g′ at major time period, tm

NIPpj,g,tm Number of additional process units of process technology type, pj
built in grid cell, g at major time period, tm

NISr,sj,g,tm Number of additional storage units of storage technology type, sj
used to store resource type, r built in grid cell, g at major time pe-
riod, tm

NIDg,g′,d,tm Number of additional units of distribution technology type, d built
from grid cell, g to g′ at major time period, tm

αg,tm Binary indicating if the heat demand in a grid cell, g is supplied using
H2 at major time period, tm
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Further constraints are used to ensure that network is not built between a grid cell g to the exact
same grid cell in equation (3), where g′ = g. This in combination with equation (2) ensures that a
flow cannot occur between the same grid cells. In addition, equation (4) ensures that at most one
pipeline of a particular type is allowed to be built between any two grid cells. Equation (3) and (4)
are written as follows:

ND
g,g′,d,tm = 0 ∀ g, d, t, g′ = g (3)

ND
g,g′,d,tm ≤ 1 ∀ g, g′, tm, d (4)

Equation (5) imposes constraints on the inventory of a resource as a result of the number of storage
units and technologies available as shown below:

Ir,g,sj,t,tm ≤ NS
r,sj,g,tm NPCsj ∀ r, g, sj, t, tm (5)

Ir,g,sj,t,tm = Ir,g,sj,t−1,tm +OTt(λ
S
r,g,sj,t,tm − λRr,g,sj,t,tm)

∀ r, g, sj, t, tm
(6)

where Ir,g,sj,t,tm is the inventory of resource r using storage technology sj in grid cell g at minor
time period t, and major time period, tm. NS

r,sj,g,tm is the number of storage units storing resource r
using technology sj in grid cell g at major time tm. OTt is the operating time corresponding to the
minor time period, t. It is assumed that the inventory is updated at the end of each time period. The
equation is modified for when t reaches the last ordered element of the set T , where the inventory
value from within that major time, tm is used to update the initial inventory for the next tm.

Equation (7) ensures that the inventory of a resource never exceeds the maximum theoretical
capacity of the sites in which it is stored. This equation applies to inventories in all underground
locations.

Ir,g,sj,t,tm ≤ SMAX
sj,g ∀ r, g, sj, t, tm (7)

where SMAX
sj,g is the maximum storage capacity available via storage technology, sj in grid cell,

g. The time-period linking unit balance constraints for storage and distribution units are shown in
equations (8) and (9) respectively:

NS
r,sj,g,tm = NS

r,sj,g,tm−1 +NISr,sj,g,tm ∀ r, sj, g, tm (8)

ND
g,g′,d,tm = ND

g,g′,d,tm−1 +NIDg,g′,d,tm ∀ g, g′, d, tm (9)

where NISr,sj,g,tm and NIDg,g′,d,tm are the additional number of storage and distribution units built
in major time period tm respectively. Constraints on storage and retrieval rates enforce that you
cannot charge into and discharge from the same stores at the same time as shown in equations (10)
and (11):

λSr,g,sj,t,tm ≤ ΓSMAX
r,sj ∀ r, g, sj, t, tm (10)

λRr,g,sj,t,tm ≤ ΓRMAX
r,sj ∀ r, g, sj, t, tm (11)

where ΓSMAX
r,sj is the maximum injection rate of a resource r into a storage technology sj and

ΓRMAX
r,sj is the maximum retrieval rate. Additional constraints are enforced to ensure that CO2 is

never retrieved from the storage sites as shown in equation (12) below.
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λRr,g,sj,t,tm = 0 ∀ g, sj, t, tm, r = CO2 (12)

Equation (13) states that the net stored volume of H2 in interseasonal caverns over an annual time
horizon must equal zero.

(λSr,g,sj,t,tm − λRr,g,sj,t,tm) OTt = 0

∀ g, tm, r = H2, sj = Interseasonal cavern
(13)

Equation (14) and (15) confines the heating supply in a region to be either natural gas or H2

through the introduction of the binary variable, αg,tm. They are written as follows:

PR
pj,g,t,tm ≤ αg,tmM ∀ g, t, tm, pj = H2boiler (14)

PR
pj,g,t,tm ≤ (1− αg,tm)M

∀ g, t, tm, pj = Natural gas boiler
(15)

where M is a large positive real number. These two constraints will enable for the evaluation of
regions where the usage of a particular resource is optimal in a net-zero environment. Equation (16)
ensures that if αg,tm is non-zero, it remains so until the end of the planning horizon. Physically, this
means that if a region has adopted H2, it will not be using natural gas for heating.

αg,tm−1 ≤ αg,tm ∀ g, tm (16)

Equation (17) ensures that both onshore and offshore pipelines are separated out in order to cost
them separately along with the compression requirements. It is written as follows:

ND
g,g′,od,tm ≤ ONgK ∀ g, g′, od, tm (17)

where K is any positive real number greater than or equal to 1 to constitute an upper limit on the
number of pipelines of a given type.

1.3 Discretisation of space

GB is discretised into 54 grid cells (polygons achieving 80 km x 80 km resolution on average), g
as a compromise between accuracy and computational complexity. The centroids of these cells are
subsequently used to compute the euclidean distances between one cell and another for establishing
transport links1. The cells capture geographical features such as existing natural gas import locations,
gas and electricity infrastructure. The total quantity of an entity in a specific cell is determined through
aggregation of that entity over the entire cell area. The spatial aggregation and discretisation was
performed in an open-source GIS software, QGIS 2.182 using specific tools developed for H2-CCS
data processing by the authors as part of the ERA-NET ACT project “Elegancy” 1. The GIS spatial
discretisation in the input data processing tool was achieved using a subset of functions from within
the “Resource Mapping Tool” by Cooper3,4.

1.4 Discretisation of time

This study considers a discrete representation of time where the temporal variations in heating demand
across an annual horizon are discretised. The difficulties associated with capturing intra-day and
inter-seasonal variations in demand are often described as key challenges in numerical representation
of design problems. In addressing this challenge, a mathematical set, t, comprising 15 periods was

1https://www.sintef.no/elegancy
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Figure 1: Discrete representation of the domestic heating demand over the annual time horizon. The
month of June is equated to the starting timeframe of the optimisation. Three distinct clusters of
days are presented; clusters 1, 2 and 3 contain 160, 45 and 125 days respectively.

chosen so that short-term dynamics can be incorporated into the model whilst also considering seasonal
variations. The resulting discrete characterisation of aggregate domestic heating demand is illustrated
in Fig. 1. The specific procedure employed for formulating the discrete time representation is described
in more detail as follows.

k-means clustering was used to identify 3 distinct clusters of points from nation-wide demand
data. Following which, the daily variation of demand in time was discretised by minimising the error
between the discrete aggregate profile and the actual data using variable length time-steps, except for
cluster 2 which contains the peak demand. For cluster 2, the daily demand using the discrete profile
was scaled to coincide with the peak daily demand to ensure adequacy in design. This results in an
overestimate of the total heating demand on a daily basis as the discrete daily profile used in cluster
2 has a greater area than a curve traced through the actual demand data points on the peak day.
Therefore, the total number of representative days in cluster 2 was scaled to ensure that the aggregate
heat demand attributable to cluster 2 using discrete days is equivalent to the aggregate total of the
demand data. Fig. 1 highlights the temporal demand variations over a time frame of 330 days as
opposed to 365 days due to the shrinkage of representative days during scaling in cluster 2.

The effect of this choice on model outputs is discussed in Supplementary information section 3.1.
Two mathematical sets are used for the representation of time, with the first (tm) used for the purposes
of defining investment decisions and the second, t used to distinguish the operational decision space.

1.5 Input summary

• Spatio-temporal demand/ availability of all resources in the system.

• Locations of existing production, transportation and storage infrastructure.

• Techno-economic parameters and performance metrics characterising technologies - CapEx,
OpEx, efficiency, capacity, ramp rates, etc.

1.6 Output summary

• Location, type, capacities of production, distribution and storage technologies.
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• Production, consumption, import, flow, storage and retrieval rates of all resources in the system
in all regions.

• Regional transition pathway from natural gas infrastructure to H2 at varying levels of decarbon-
isation.

1.7 Modelling assumptions

• Low pressure distribution pipelines are assumed to be available. The costs of pressure reduction
stations are assumed to be negligible compared to the network components.

• Temperature variations in heating demands are not considered. Domestic and industrial boiler
efficiencies were assumed to be 94% and 90% respectively for both natural gas and H2

5.

• Both domestic and industrial appliance conversion costs are not explicitly accounted for in the
network design. The authors assume that natural gas and H2-based appliances are comparable
in both performance and total costs.

• A carbon-neutral electricity grid by 2050 is assumed as per legislation in addition to 1.5 % release
in methane supply chain, amounting to 8.7 gCO2/MJ HHV of imported gas6.

2 Methodological innovations

In this section, a hierarchical modelling approach, specifically constructed for the assessment of model
accuracy in the representation of time, is highlighted. Additionally, a multistage mathematical opti-
misation approach, developed for studying the transitions from existing infrastructure, is described as
an alternative to multi-period model formulations.

2.1 Hierarchical analysis: Time

The formulation of discrete time periods could constitute a significant source of inaccuracy in the model
results. A coarse representation of time is used initially as a compromise to improve computational
performance. The effect of such compromises on the accuracy of model outputs is evaluated using a
two-stage analytical approach to determine whether the infrastructure is appropriately sized to supply
the required time-varying demands.

Stage 1 of this formulation identifies the optimal mix of technologies and infrastructure required to
achieve the least cost design for a target reduction in emissions, using a collection of 15 time periods.
Stage 2 initially assigns the integer variables (i.e., quantity of a specific production, transportation
and storage technology installed in a given location) with the respective outputs obtained from stage
1. Upon which, the temporal resolution of the operational time is improved by representing the same
data using a greater number of discrete time periods. The subsequent problem is re-optimised to
determine whether the resulting network has been over/under-sized. If the model instance from stage
2 is proven to be infeasible, then the network has been under-sized and thus, incapable of meeting the
heating demands. In this case, ancillary investments are required to support the additional capacity
requirements. The amount of additional investment required is defined via the relaxation of the initial
assignments, and further incorporation of integer outputs as the lower bound for the realisation of the
investment variables in the subsequent optimisation.

The modelling workflow is graphically depicted in Fig. 2. The inequality constraint in stage 2
reduces the size of the feasible set of solutions, enabling the model instance to be solved at a higher
temporal resolution. Consequently, an optimal solution achieved via this method will clearly detail the
additional infrastructure requirements to ensure technical feasibility and operability. When stage 2
presents a feasible solution, it is possible to identify the extent to which the infrastructure is over-sized.
It is worth noting that this modelling approach can be applied sequentially, in an iterative manner with

8
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Figure 2: A schematic of the workflow used for evaluating the effect of temporal uncertainties where
y and x denote the set of investment and operational decision variables respectively. The numerical
subscript refers to the realisation of these variables within the corresponding stage and the asterix is
used to denote the optimal values for the decision variables.

increasingly higher temporal resolutions to eventually reflect that of the original data set. The main
disadvantage associated with this approach is that solution optimality is only guaranteed at the highest
level of the hierarchy (i.e., stage 1) and improved representations of time result in solutions which
depart from mathematically guaranteed optimum to those that are practicable in design. The authors
note great value in the development of mathematical frameworks and techniques that are capable of
optimising the trade-offs between high spatial and temporal resolutions in planning problems.

2.2 Transition pathway

A multi-stage optimisation model variant was developed to study the transition pathway from natu-
ral gas infrastructure to H2. Typically, multi-period model formulations are used for these purposes
but the presence of large groupings of integer decisions in multi-vector design problems could present
severe computational limitations for problems described over a long-term planning horizon. Instead,
it is possible to use snapshot model formulations (i.e., single investment time horizon) to define a
phased deployment pathway in instances where the inherent model components are not susceptible
to significant change in the long-term. There is inherent uncertainty in the assumption of prices for
resources such as natural gas, electricity and biomass over time. However, these elements are not fore-
casted and exogenously imposed onto the model based on authors’ assumptions. The resulting model
formulation used in this paper utilises a snapshot solution with an iterative component which defines
the deployment rate of technologies as a function of the target reduction in CO2 emissions intensity.
These model outputs are subsequently matched with a time horizon through the satisfaction of CO2

emissions intensities at respective time points. In the pathway analysis, stage 1 of the formulation
is identical to that in 2.1. Subsequently, the emissions intensity constraint is updated. Upon which,
the model is re-optimised using the initial solution from stage 1 as the upper bound for the design
variables, y in the next stage. This significantly reduces the solution space and limits the technological
options to only those present in stage 1. This specific solution procedure is depicted in Fig. 3.

b denotes a set of binary decisions which determine whether a region is supplied with natural gas
or H2. In particular, b is indexed via the set of spatial cells, g and b = 1 indicates that a region is
converted to H2, whereas b = 0 implies the continued usage of natural gas. The key factor influencing
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Figure 3: A schematic overview of the workflow in defining spatially resolved outputs at 5 year
time intervals through a snapshot model solution and subsequent processing as opposed to using a
computationally expensive multi-period formulation.

the resolution of the transition pathway in this model instance is the cardinality of the set, tm. In
particular, the analyses presented in this paper assume 7 discrete intervals of uniform size with the
resulting set spanning across a 35 year time horizon. Hence, a uniform interval length of 5 years is
assumed per element of tm. Thus, under the assumption that tm = {1, 2, .., 7}, the solution procedure
shown graphically in Fig. 3 terminates when tm = Tend = 7. The key benefit of this modelling
approach lies in the possibility for obtaining deployment pathways over shorter time intervals than
what is typically achievable in similar multi-period planning models. The availability of finely resolved
model outputs are invaluable for the contrivement of long-term infrastructural plans.

2.3 Statistical analysis

Key statistical parameters are computed to distinguish the importance of input parameters whilst
ensuring reliable results. They are comprised of the pearson correlation coefficient (r), adjusted coef-
ficient of determination (R̄2), standardised regression coefficient (β), Variance Inflation Factor (V IF )
and the F-ratio. The r value denotes the strength of the linear correlation between model inputs, Zi

and outputs, Y where Z is the vector of randomly generated input values for uncertain parameter i
and Y is the vector of model outputs. The F-ratio is the ratio of the variance explained by the re-
gression model relative to its unexplained residuals. This parameter is compared with the F-statistic
to understand whether the addition of another input in the regression model results in statistically
significant improvements in its predictive ability. Equations for R̄2, β and the VIF are defined as:

R̄2 = 1− (1− R2)
n− 1

n− p− 1
(1)

βi = RCi
σz,i
σy

∀ i (2)

10
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V IFi =
1

1− R2
i

∀ i (3)

where R2 is the coefficient of determination, n is the sample size, p is the number of predictive inputs,
RCi is the regression/ partial coefficient for uncertain parameter i in the regression model, σz,i and σy
represent the standard deviations for Zi and Y. R̄2 adjusts R2 based on the number of independent
variables and the sample size. The βi coefficient describes the proportionate impacts of one standard
deviation of change in the uncertain input parameter i on the standardised model output. Therefore,
βi values can be directly compared and allows for the relative importance of the inputs to be deduced
from the regression model. Finally, the V IFi measures multicollinearity between uncertain model
input parameters. A low degree of multicollinearity is observable at lower V IFi values, whereby the
resulting variance can be attributed to independent input parameters as opposed to a collection of
inputs to improve accuracy of estimation. A stepwise estimation procedure based on Hair et al.7 is
used to build the regression model.

3 Supplementary results

3.1 Representation of time

The TAC was computed via independent optimisations of the model at pre-defined intervals of 5%
reduction in CO2 emissions intensity. The resulting solutions were studied to determine whether the
designs suffice or require additional investments using the two-stage hierarchical modelling approach.
The discernible differences in total costs between stages 1 and 2 are plotted in Fig. 4. The difference
in TAC between 15 and 60 time periods is expressed through the definition of a new variable TACdiff

as follows:
TACdiff = (TAC60 − TAC15)/TAC15 (1)

where TAC15 and TAC60 refer to the total annualised costs of heat supply using the model formulation
with 15 and 60 time periods respectively. Fig. 4 demonstrates that TACdiff equates to zero only at
the origin where the TAC60 and TAC15 are necessarily indistinguishable. Natural gas is continually

Figure 4: A scatterplot of the differences in TAC between 60 and 15 time periods expressed as
a percentage plotted against maximum achievable CO2 removal through independent cost-optimal
designs.

supplied without any additional infrastructural investments when there is no effective CO2 emissions
reduction constraint. Thus, total costs of heat supply remain identical in both stages irrespective of
the temporal resolution. A point to emphasise is the prominence of the data in the positive real space
indicating that using a set of 15 time periods results in an underestimate of the required investments in
this instance. Thus, the initial representation of time results in solutions that are infeasible in practice.
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The largest error in TAC across all optimisations was within 3% of the optimum solution, occuring
at the highest CO2 removal targets. Although the network has been undersized in all instances,
minimal capacity additions are required for ensuring operability of design. Thus, the representation
of operational time was deemed appropriate for this design problem.

3.2 Peak day operating mix for H2 production

Fig. 5 displays the operating capacity during peak supply in the absence of H2 storage. ATRs, SMRs
and BG with CCS are operational throughout the course of the day with elevated production rates
at times of peak demand. In contrast, WE units are only operational for the satisfaction of peak
demand due to their higher OpEx requirements. There is little commercial experience and academic
literature surrounding the flexible operation of SMRs, in part due to its limited use in applications
with temporal demand variability. Thus, operational flexibility criteria must be developed as part of
future research. At present, large scale deployment of the WE process should be recommended for
applications with significant temporal variabilities in the absence of sufficient H2 storage. The resulting
power requirements for WE might necessitate capacity expansions within the electricity transmission
grid especially when peak demands for the given application and power use coincide, amplifying the
magnitude of associated investments.

Figure 5: Operating mix during the peak day in the absence of H2 storage. The importance of the
WE process for supplying peak demands is shown here.

3.3 Statistical analysis of the regression models

Figure 6: Scatterplots to investigate the correlative behaviour between resource prices, cavern costs
and the total annualised cost, TAC using 10,000 samples. Gas price appears to have the strongest
correlation with TAC whereas the electricity price shows the weakest, if any. Both biomass price and
cavern cost seems to have a strong influence on TAC.
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4 scatterplots were generated using randomly generated samples for each input parameter and its
corresponding output as depicted in Fig. 6. The quadrants were generated using the mean for the
input and output TAC. Observations from the scatterplots highlight a stronger correlation between
gas price and TAC in comparison to other resources. In contrast, the electricity price seems to have
little effect on the TAC as illustrated by an approximately equal occupancy of data points within each
quadrant. From the figure, it is not entirely clear whether the TAC is more sensitive to variations in
biomass price or cavern cost.

Multicollinearity between uncertain input parameters was analysed using the V IFi where i is an
element from the set, {gas price, biomass price, electricity price, cavern cost}. All VIF values were
determined to be close to unity within 3 decimal places, implying a lack of correlation amongst the
input parameters. However, there may be underlying correlative effects describing the electricity
price as a function of the gas price rather than as a uniform distribution across the uncertainty
space. Therefore, dependencies between these inputs could potentially distort its impact on TAC.
Nevertheless, regression coefficients and goodness-of-fit statistics are combined to determine the overall
contribution from potentially correlated inputs as shown in Table 4. Within the table, model A
includes gas price, biomass price and cavern costs as the explanatory variables whereas model B
includes electricity price in addition to the aforementioned variables. Therefore model A contains
three degrees of freedom (D.O.F) and model B contains four.

Table 4: Standardised regression coefficients and statistical analysis for multivariate regression models
to scrutinise the inclusion of electricity price as an explanatory variable.

Model A Model B
D.O.F 3 4
R̄2 0.984 0.987
F-Ratio 2.00×105 1.85×105

βgas price 0.709 0.708
βbiomass price 0.513 0.514
βcavern cost 0.465 0.464
βelectricity price - 0.055

The differences between R̄2 and the F-ratio must be noted when comparing models, A and B. In
particular, the F-ratio decreases upon the inclusion of electricity price as a regression variable whilst
displaying a negligible increase in the R̄2 value by 0.003. Thus, model B was rejected, and model
A was confirmed as the most appropriate representation for a multivariate regression model. The
t-statistic was used to ascribe a confidence interval to the regression coefficients in order to confirm
that the estimated regression coefficients are statistically significant. The t-statistic is evaluated using
the estimated regression coefficient and the standard error of estimation. Across all β coefficients, the
maximum error is within ±0.6% of the standardised value which leads to the conclusion that all of
the estimated coefficients are statistically significant since the confidence intervals do not overlap with
zero.

3.4 Impact of grid CO2 intensities

The impact of electricity and natural gas grid CO2 intensities on total costs and energy consumption
was evaluated. Complex system wide trade-offs arise from the presence of upstream supply chain emis-
sions. The extent of their influence on total energy requirement and TAC for complete decarbonisation
of the heating supply is illustrated via Fig. 7.

The percentage increases in total energy consumption were computed as a function of grid CO2

intensities, measured relative to the energy requirements that arise from a carbon neutral electricity
and natural gas grid. The figure affirms the relative importance of reducing upstream methane supply
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Figure 7: An illustration of the percentage increases in primary energy consumption and TAC com-
pared to the requirements at grid CO2 intensities of 0 g/kWh.

chain emissions. Note that the CO2 footprint of the natural gas grid has a greater influence on the
total energy consumption than that of the electricity grid. At higher CO2 intensities, the requirement
for negative emissions should increase. Thus, resulting in a greater deployment of BG with CCS, which
increases the overall energy consumption due to its lower overall energy efficiency. This leads to the
expectation of higher increase in energy requirements than that observed at higher CO2 intensities.
This peculiarity arises from the fact that BG with CCS is deployed to its optimal extent at net zero
emissions targets. It appears economically optimal to combine BG with CCS for H2 supply in certain
regions whilst continuing the supply of natural gas in other regions. A direct implication of this
observation is that a greater deployment of H2 is necessitated by higher grid CO2 intensities, thereby
eventually converting all of the natural gas supply to H2.

Similarly, the effect of grid CO2 intensities on the total costs for decarbonisation is also illustrated
in Fig. 7. The resulting surface illustrates the potential for the TAC to increase by over 15%,
displaying a stronger correlation with increasing CO2 intensities. The extent of this variability provides
a clear incentive for reducing the upstream methane supply chain emissions. This is a crucial point
to consolidate as few studies have extensively focused on the reduction of emissions from gas grids in
comparison to the electricity grid. There is little interdependence between the electricity grid and the
H2 supply system in the absence of significant WE deployment. Naturally, the relative importance
of the decarbonisation of the electricity sector is magnified when the WE process amasses a greater
share of the production mix.
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3.5 Impact of biomass availability and CO2 intensity

The impact of biomass availability and CO2 intensity on optimal value chain design must be under-
stood. Note the distinction between biomass supply CO2 intensity and the embodied emissions that
are released during the gasification and conversion of the feedstock. The former explicitly refers to
the direct and indirect greenhouse gas emissions across the biomass supply chain with its origins from
sourcing and transportation before use. Fig. 8 illustrates the effect of biomass availability and its

Figure 8: An illustration of the percentage increase in total annualised system costs compared to the
minimum cost requirements at a supply CO2 intensity of 0 g/kWh with varying potential availability
of indigenous biomass.

supply chain intensity on TAC for decarbonisation of the heating supply. As expected, the TAC of
decarbonisation is highly influenced by both the CO2 footprint of the biomass supply chain and the
total availability of biomass. In particular, significant economic penalties are associated with a con-
strained supply of biomass. At least 150 TWh of biomass is required for a complete decarbonisation
of the GB H2 supply network at least cost. In addition, the sustainable sourcing of biomass is of
paramount importance for the reduction of TAC, as evidenced by a cost increase as high as 30% as
shown. These findings have major implications on the extent of mobilisation of land for the sourcing
of biomass and its transportation means, which must be considered in the long-term planning of H2

infrastructure.
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