Supplementary information

Superior energy density through tailored dopant strategies in multilayer ceramic capacitors

Zhilun Lua,b, Ge Wanga, Weichao Baoc, Jinglei Lid, Linhao Lie, Ali Mostaeda,e, Huijing Yanga,f, Hongfen Jia,g, Dejun Lii, Antonio Feteirah, Fangfang Xuc, Derek C. Sinclaira, Dawei Wanga,*, Shi-Yu Liua,*, Ian M. Reaneya,*

aDepartment of Materials Science and Engineering, University of Sheffield, Sheffield, S1 3JD, UK
bThe Henry Royce Institute, Sir Robert Hadfield Building, Sheffield, S1 3JD, UK
cState Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Shanghai, 200050, China
dElectronic Materials Research Laboratory, Key Laboratory of the Ministry of Education and International Center for Dielectric Research, Xi’an Jiaotong University, Xi’an 710049, Shaanxi, China
eDepartment of Materials, University of Oxford, Parks Road, Oxford, OX1 3PH, UK
fDepartment of Physics, Tangshan Normal University, Tangshan 063000, China
gLaboratory of Thin Film Techniques and Optical Test, Xi’an Technological University, Xi’an 710032, China
hMaterials and Engineering Research Institute, Sheffield Hallam University, Sheffield, S1 1WB, UK
iCollege of Physics and Materials Science, Tianjin Normal University, Tianjin 300387, China

*Corresponding authors. E-mail addresses:
dawei.wang@sheffield.ac.uk, shiyuliu@mail.tjnu.edu.cn, i.m.reaney@sheffield.ac.uk

\#Author contributions: Z. Lu, G. Wang, W. Bao and J. Li contributed equally to this work.
Figure S1 BSE images acquired from polished surfaces of BF-ST-BMN-\(x\)Nb (\(x = 0, 0.01, 0.02, 0.03, 0.04\) and 0.05) ceramics.

Figure S2 EDS elemental maps obtained from BF-ST-BMN-0.03Nb.
Table 1 Atomic percentage (excl. O) calculated from EDS spectra obtained from different phases presented in BF-ST-BMN-\(x\)Nb (\(x = 0.05\)).

<table>
<thead>
<tr>
<th>Elements</th>
<th>Bright core</th>
<th>Dark core</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bi</td>
<td>37.1</td>
<td>28.9</td>
</tr>
<tr>
<td>Fe</td>
<td>32.4</td>
<td>23.8</td>
</tr>
<tr>
<td>Sr</td>
<td>12.8</td>
<td>22.4</td>
</tr>
<tr>
<td>Ti</td>
<td>13.8</td>
<td>20.6</td>
</tr>
<tr>
<td>Mg</td>
<td>2.0</td>
<td>2.2</td>
</tr>
<tr>
<td>Nb</td>
<td>2.0</td>
<td>2.0</td>
</tr>
</tbody>
</table>

Figure S3 (a) \(Z^*\) plots and (b) \(Z''\) and \(M''\) spectroscopic plots at 703 K of BF-ST-BMN-\(x\)Nb (\(x = 0.01, 0.02, 0.03, 0.04\) and 0.05) ceramics; (c) \(Z^*\) plots and (d) \(Z''\) and \(M''\) spectroscopic plots of \(x = 0.03\) at 12 and 273 K.
Figure S4 The temperature- and frequency-dependent dielectric permittivity (ε_r vs T) and loss (tan δ vs T) data for BF-ST-BMN-xNb, $x = (a) 0, (b) 0.01, (c) 0.02, (d) 0.03, (e) 0.04$ and (f) 0.05.

Figure S5 BSE images acquired from polished surfaces of BF-ST-Nb-yBMN ($y = 0.02, 0.04, 0.06, 0.08, 0.10$ and 0.12).
Figure S6 The temperature- and frequency-dependent dielectric permittivity (ε_r vs T) of BF-ST-Nb-yBMN ($y = 0.02, 0.04, 0.06, 0.08, 0.10$ and 0.12).

Figure S7 (a) Z* plots and (b) Z'' and M'' spectroscopic plots at 703 K of BF-ST-Nb-yBMN ($y = 0.02, 0.04, 0.06, 0.08, 0.10$ and 0.12).
Figure S8 SEM image and corresponding EDS elemental maps obtained from the cross section of BF-ST-Nb-0.1BMN multilayer.