## **Supplementary information**

## Superior energy density through tailored dopant strategies in multilayer ceramic capacitors

Zhilun Lu<sup>a,b#</sup>, Ge Wang<sup>a#</sup>, Weichao Bao<sup>c#</sup>, Jinglei Li<sup>d#</sup>, Linhao Li<sup>a</sup>, Ali Mostaed<sup>a,e</sup>, Huijing Yang<sup>a,f</sup>, Hongfen Ji<sup>a,g</sup>, Dejun Li<sup>i</sup>, Antonio Feteira<sup>h</sup>, Fangfang Xu<sup>c</sup>, Derek C. Sinclair<sup>a</sup>, Dawei Wang<sup>a\*</sup>, Shi-Yu Liu<sup>i\*</sup>, Ian M. Reaney<sup>a\*</sup>

<sup>a</sup>Department of Materials Science and Engineering, University of Sheffield, Sheffield, S1 3JD, UK
<sup>b</sup>The Henry Royce Institute, Sir Robert Hadfield Building, Sheffield, S1 3JD, UK
<sup>c</sup>State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Shanghai, 200050, China
<sup>d</sup>Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education and International Center for Dielectric Research, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
<sup>e</sup>Department of Materials, University of Oxford, Parks Road, Oxford, OX1 3PH, UK
<sup>f</sup>Department of Physics, Tangshan Normal University, Tangshan 063000, China
<sup>g</sup>Laboratory of Thin Film Techniques and Optical Test, Xi'an Technological University, Xi'an 710032, China
<sup>h</sup>Materials and Engineering Research Institute, Sheffield Hallam University, Sheffield, S1 1WB, UK

## \*Corresponding authors. E-mail addresses:

<u>dawei.wang@sheffield.ac.uk</u>, <u>shiyuliu@mail.tjnu.edu.cn</u>, <u>i.m.reaney@sheffield.ac.uk</u> #Author contributions: Z. Lu, G. Wang, W. Bao and J. Li contributed equally to this work.



Figure S1 BSE images acquired from polished surfaces of BF-ST-BMN-*x*Nb (x = 0, 0.01, 0.02, 0.03, 0.04 and 0.05) ceramics.



Figure S2 EDS elemental maps obtained from BF-ST-BMN-0.03Nb.

| Elements | Bright core | Dark core |
|----------|-------------|-----------|
|          |             |           |
| Bi       | 37.1        | 28.9      |
|          |             |           |
| Fe       | 32.4        | 23.8      |
|          |             |           |
| Sr       | 12.8        | 22.4      |
|          |             |           |
| Ti       | 13.8        | 20.6      |
|          |             |           |
| Mg       | 2.0         | 2.2       |
|          |             |           |
| Nb       | 2.0         | 2.0       |
|          |             |           |

Table 1 Atomic percentage (excl. O) calculated from EDS spectra obtained from different phases presented in BF-ST-BMN-xNb (x = 0.05).



Figure S3 (a)  $Z^*$  plots and (b) Z'' and M'' spectroscopic plots at 703 K of BF-ST-BMN-*x*Nb (x = 0.01, 0.02, 0.03, 0.04 and 0.05) ceramics; (c)  $Z^*$  plots and (d) Z'' and M'' spectroscopic plots of x = 0.03 at 12 and 273 K.



Figure S4 The temperature- and frequency-dependent dielectric permittivity ( $\varepsilon_r vs T$ ) and loss (tan  $\delta vs T$ ) data for BF-ST-BMN-*x*Nb, x = (a) 0, (b) 0.01, (c) 0.02, (d) 0.03, (e) 0.04 and (f) 0.05.



Figure S5 BSE images acquired from polished surfaces of BF-ST-Nb-yBMN (y = 0.02, 0.04, 0.06, 0.08, 0.10 and 0.12).



Figure S6 The temperature- and frequency-dependent dielectric permittivity ( $\varepsilon_r vs T$ ) of BF-ST-NbyBMN (y = 0.02, 0.04, 0.06, 0.08, 0.10 and 0.12).



Figure S7 (a)  $Z^*$  plots and (b) Z'' and M'' spectroscopic plots at 703 K of BF-ST-Nb-*y*BMN (y = 0.02, 0.04, 0.06, 0.08, 0.10 and 0.12).



Figure S8 SEM image and corresponding EDS elemental maps obtained from the cross section of BF-ST-Nb-0.1BMN multilayer.