Supporting Information for

Record-Efficiency Flexible Perovskite Solar Cell and Module Enabled by

a Porous-Planar Structure as an Electron Transport Layer

Jaehoon Chung^{1,=}, Seong Sik Shin^{1,=}, Kyeongil Hwang¹, Geunjin Kim¹, Ki Woong Kim¹, Da

Seul Lee¹, Wansun Kim², Boo Soo Ma², Young-Ki Kim³, Taek-Soo Kim², and Jangwon Seo^{1,*}

Affiliations:

¹Division of Advanced Materials, Korea Research Institute of Chemical Technology, 141 Gajeong-Ro, Yuseong-Gu, Daejeon 305-600, Korea

²Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291, Daehak-ro, Yuseong-Gu, Daejeon 34141, Korea

³Center Research Facilities, Ulsan National Institute of Science and Technology

(UNIST), 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan 44919, Republic of Korea

*Correspondence. Email: jwseo@krict.re.kr

⁼These authors contributed equally: Jaehoon Chung; Seong Sik Shin

METHODS

Synthesis of Zn₂SnO₄ nanoparticles

All chemicals for the preparation of NPs were of regent grade and were used without further purification. $ZnCl_2$ (12.8 mmol, Aldrich) and $SnCl_4 \cdot 5H_2O$ (6.4 mmol, Aldrich) were dissolved in deionized water (80 ml) under vigorous magnetic stirring. $N_2H_4 \cdot H_2O$ 8ml was then added dropwise to the reaction solution. White precipitates formed immediately, and this solution, including the precipitate, was heated in an autoclave reactor at 180 °C for 12 h. The obtained products were thoroughly washed with deionized water and ethanol and were then dispersed in isopropyl alcohol, resulting in a colloidal solution.

Fabrication of unit cell on glass and flexible substrate

The SnO₂ precursor solution was obtained from SnO₂ colloidal precursor (Tin(IV) oxide, 15% in H₂O colloidal disperse, Alfa Aesar) diluted in water with volumetric ratio 1:5. For SnO₂ planar structured perovskite solar cells (PSCs), a 30 nm of nanoparticle (np)-SnO₂ film was deposited by spin-coating for 50 s at 4000 rpm onto the In-doped SnO₂ (ITO, $8\Omega/\Box$) substrate using the SnO₂ precursor solution, and then heat treated on a hot plate in ambient air at 150 °C for 1 hour. For the Zn₂SnO₄ (ZSO) porous planar structured PSCs, 100 nm of ZSO nanoparticles were sequentially deposited by spin-coating for 50 s at 3000 rpm onto np-SnO₂/ITO/glass substrate, and then heat treated on a hot plate in ambient air at 150 °C 1 hour. For flexible device fabrication, np-SnO₂ and porous-ZSO ETL were deposited onto PEN/ITO ($15\Omega/\Box$, 87.5% of transmittance, Nano Clean Tech) substrate by using the same deposition procedure onto glass substrate, and then heat treated on hot plate at 100 °C for 1 hour. To deposit perovskite absorbing layer, (FAPbI₃)_{0.95}(MAPbBr₃)_{0.05}, the perovskite precursor solution was prepared by dissolving 1.26 mmol of PbI₂ (Alfa Aesar), 1.26 mmol of FAI (dyesol), 0.06 mmol of MAPbBr₃ and 0.5 mmol of MACl(Sigma Aldrich) in DMF/DMSO (8:1 v/v) mixed solvent. Then, the solution were then coated onto the np-SnO₂/ITO and np-

SnO₂/porous-ZSO/ITO substrate by two consecutive spin-coating steps, at 1000 and 5000 rpm for 3 s and 15 s, respectively. During the second spin-coating step, 1 mL ethyl ether was poured onto the substrate. Then, the resultant substrate was heated on a hot plate at 100 °C for 1 hour. For deposition of hole-transport materials, a Spiro-OMeTAD (LUMTEC)/chlorobenzene (91 mg/ 1 ml) solution with an additive of 21 µl of Li-bis(trifluoromethanesulfonyl) imide (Li-TFSI)/acetonitrile (540 mg/ 1 ml), 35 µl of 4-tert-butylpyridine (TBP) and 9 µl of tris(2-(1H-pyrazol-1-yl)-4-tert-butylpyridine)-cobalt(III) tris(bis(trifluoromethylsulfonyl)imide (FK 209)/acetonitrile (376 mg/1 ml) was spin-coated on (FAPbI₃)_{0.95}(MAPbBr₃)_{0.05}/np-SnO₂/ITO and (FAPbI₃)_{0.95}(MAPbBr₃)_{0.05}/porous-ZSO/np-SnO₂/ITO substrate at 2000 rpm for 30 s. Finally, Au counter electrode was deposited by thermal evaporation. The entire unit cell size is 25 mm x 25 mm. Four active areas with size of 4 mm x 4 mm were fabricated on the unit cell by superposing ITO and Au electrodes. Photovoltaic performance was measured by masking on the active area with a metal mask (0.0935 cm²). In particular, surface treatment on perovskite layer has conducted for Newport certification samples.¹

Fabrication of 100 cm² and 225 cm² flexible perovskite solar mini modules

The module composed of 15-stripes and 22-stripes connected in series was fabricated using a pulsed-type UV laser scriber (Nd:YVO₄ 355 nm with 2 W, 80 khz, Spectra Physics). For fabrication of flexible solar modules, 12 cm × 12 and 17 cm x 17 cm (1 cm of margin on both side edge for encapsulation) PEN/ITO substrate was patterned by the laser with a power of 0.7 W, a frequency of 70 kHz and a spot size of 35 μ m and a scribing width of 150 μ m (P1). Next, all layers including np-SnO₂/porous-ZSO/perovskite/Spiro-OMeTAD were scribed together by the laser with a power of 0.6 W, a frequency of 70 kHz, and a spot size of 35 μ m and a scribing width of 100 μ m (P2). Finally, after thermal evaporation of Au, the top electrode was patterned by the laser with a power of 0.35 W, a frequency of 70 kHz, and a spot size of 35 μ m and a scribing width of 150 μ m (P3). The modules were designed to have a geometric

fill factor of 90%. Planar SnO₂ layer was deposited on the P1-pattered ITO/PEN substrate by low angle-blade coating (solution-shearing) method (PMC-300, Pems-Korea). A SnO₂ colloidal precursor (Tin(IV) oxide, 15% in H₂O colloidal disperse, Alfa Aesar) was used for coating, and 150 µl of SnO₂ solution was loaded in the gap (around 150 µm) between the blade and the substrate and blade angle was adjusted to 7°. The blade coating speed of solution shearing was 1 mm s⁻¹ and precursor solution was coated on the substrate through the meniscus which formed by blade coating. After coating process, thermal annealing process at 100 °C for 30 min was followed. For porous Zn_2SnO_4 layer, the same Zn_2SnO_4 solution with unit-cell was used for solution-shearing onto the SnO₂ layer. A 200 µl of Zn₂SnO₄ solution was loaded in the coating gap, and the coating speed was fixed to 1 mm s⁻¹. The Zn₂SnO₄ solution-shearing process was repeated several times to obtain a fully covered porous Zn₂SnO₄ layer with desired film-thickness for preventing shunt recombination throughout the large area over 100 cm². The Zn₂SnO₄ was also thermally annealed at 100 °C for 60 min after consecutive coatings. Then, for fabrication of the perovskite layer, 1 ml of the same perovskite solution with unit cell was loaded onto the PEN/ITO/np-SnO₂/porous-ZSO substrate and deposited by two consecutive spin-coating steps of 1000 rpm and 3000 rpm for 5 s and 15 s, respectively. During the second spin-coating step (3000 rpm), 10 ml of diethyl ether was poured onto the substrate. The intermediate phase film was put on a hotplate at 100 °C for 60 min. For Spiro-OMeTAD deposition onto the perovskite, 1 ml of the same Spiro-OMeTAD solution with unit-cell was spin-coated onto the perovskite layer at 2000 rpm for 30 s. All the module-fabrication processes were carried out in air with the controlled temperature and relative humidity around 25 °C and 25 %, respectively. Finally, Au electrode was thermally evaporated at vacuum condition. In particular, surface treatment on perovskite layer has conducted to obtain best PCE of sub module.1

Characterization

The morphologies and microstructures were investigated by field emission scanning electron microscopy (FE-SEM, Mira 3 LMU FEG, Tescan) and transmission electron microscopy (TEM, Titan G2). High resolution X-ray diffraction (HR-XRD, SmartLab, Rigaku) was conducted to analyze crystallinity of each perovskite layer from 5 to 50 degree. X-ray photoelectron spectroscopy (XPS) studies were carried out using a Thermo VG Scientific K-Alpha. Ultraviolet photoelectron spectroscopy (UPS) equipped with XPS (He I: 21.2 eV, Kratos, AXIS-Nova Ultra DLD) was used for the analysis of the work function and band structure of SnO₂ and ZSO. Space-charge limited current of the samples (ITO/electron transport layer (ETL)/perovskite/ [6,6]-phenyl-C61-butyric acid methyl ester/Au) were measured with electrochemical measurement system (PGSTAT30, AutoLab, EcoChemie) at various voltages. Using the sample of ITO/ETL/perovskite/Spiro-OMeTAD/Au, Mott-Schottky (M-S) plots were deduced from capacitance-voltage measurements in the voltage range 0 to 1.3 V with a 10 mV AC signal (1kHz) under dark conditions (PGSTAT30, AutoLab, EcoChemie). Atomic force microscopy (AFM) was measured by using Nanoscope IV (Veeco Instrument, Inc) with Pt tip (Bruker) in tapping mode. Time-resolved photoluminescence (TRPL) decay profiles were obtained with the 532 nm excitation (pulse energy attenuated to $\sim 1 \mu$ J) of an optical parametric oscillator (OPO) laser system (NT 342A-10-AW, EKSPLA). The PL emission from samples was collected through a monochromator (SP2150, Princeton Instruments) equipped with a photomultiplier tube (PMT) (Hamamatsu, H10721-20) and the output signal from the PMT was recorded with a digital oscilloscope (DSO-X 3054A, Agilent). Decay profiles of TRPL were fitted to multi-exponential decay functions of time and their average lifetimes were calculated. Transient photocurrent decay profiles of the perovskite solar cells (under the illumination of 0.027 sun) were recorded by a digital oscilloscope (DSO-X 3054A, Agilent) with 50 Ω input termination (1 M Ω termination for photovoltage decay

measurement of the devices) and the 532 nm excitation (pulse energy attenuated to $\sim 1 \mu J$) of an OPO laser system (NT 342A-10-AW, EKSPLA). Decay profiles were fitted to multiexponential decay functions of time. Internal quantum efficiency (IQE) and external quantum efficiency (EQE) were measured by using quantum efficiency measurement system (Oriel Quantx-300, Newport) in range from 380nm to 880nm. The *J*–*V* curves were measured using a solar simulator (Newport, Oriel Sol2A Class ABA 94042A for unit cell and 94082A for mini module, respectively) with a source meter (Keithley 2420) at 100 mWcm⁻², AM 1.5 G illumination, and a calibrated Si-reference cell certified by the NREL. The environmental conditions for photovoltaic device test were maintained at a temperature of 25 °C and a relative humidity of 25% RH. The temperature of the devices was maintained between 30 and 40 °C by air cooling. The J-V curves of unit cells were measured along the reverse scan direction from 1.5 V to -0.2 V or the forward scan direction from -0.2 V to 1.5 V. The step voltage and scan speed were fixed at 10 mV and 150 mV s⁻¹, respectively. The J-V curves of mini modules were measured along the reverse scan direction from 17 V to -0.2 V or the forward scan direction from -0.2 V to 17 V. The step voltage and scan speed were fixed at 10 mV and 150 mV s⁻¹, respectively. For the mechanical stability test, mini module was tested by bending machine (F3-2S, Forehu) with 10 mm radius for 1000 cycle test. The test was conducted in two different direction. One was the top side (direction to gold electrode) and the other was the bottom side (direction to PEN substrate). All module performances were measured after every 250 cycles.

Photostability test

The photostability test was measured by maximum power point tracking method with encapsulated devices. The devices were encapsulated using a getter-dispersed polymer-metal barrier films. The devices with ITO/SnO₂(FAPbI₃)_{0.95}(MAPbBr₃)_{0.05}/Spiro-OMeTAD/Au and

ITO/SnO₂/ZSO/(FAPbI₃)_{0.95}(MAPbBr₃)_{0.05}/Spiro-OMeTAD/Au were kept under AM 1.5 G simulated sun light in nitrogen (N₂) filled chamber. The device temperature in the chamber was maintained between 25 °C by cooling system. PCEs of devices were recorded for 120 hours using a source meter (Keithley 2420).

Scheme S1. Illustration of perovskite solar cell device structures and their characteristics at each deposition process.

Fig. S1. SEM image of perovskite layer on ITO (a) and FTO substrate and AFM image of perovskite layer on ITO substrate (b) and (c) and on FTO substrate (d) and (e).

Table 1. R_q and R_a value of perovskite layer on each substrate

	ΙΤΟ	FTO: TEC 8
$R_q(nm)$	22.2	28.7
R _a (nm)	17.1	22.1

Fig. S2. (a) Changing the particle size of metal oxide and (b) AFM image of their roughness according to particle size. (c) SEM image of corresponding perovskite layer.

Fig. S3. (a) UPS total result, (b) UPS valence band maximum spectra, and (c) UPS cutoff edges of planar (SnO_2) and porous planar (Zn_2SnO_4/SnO_2)

Table S2. Calculated work function, valence band, and conduction band position of each ETL

	hv	Ecutoff	Ф	E _{vbm}	Valence band position	band gap	Conduction band position
Planar	21.2	16.89	4.31	3.5	7.81	3.57	4.24
Porous planar	21.2	17.06	4.14	3.64	7.78	3.65	4.13

Fig. S4. STEM-BF image of (A) planar (SnO₂) layer and (B) porous planar (Zn_2SnO_4/SnO_2) layer on ITO/glass substrate.

Planar

Porous planar

Fig. S5. (a) Best PCE and (b) steady state current of porous planar (Zn_2SnO_4/SnO_2) PSC on glass substrate

Table S3. Solar cell parameters for best PCE of porous planar (Zn_2SnO_4/SnO_2) PSC on glasssubstrate.

	$V_{oc}(\mathbf{V})$	J _{SC} (mA/cm ²)	FF (%)	Efficiency (%)
Porous planar on glass reverse	1.18	24.4	81.2	23.3
Porous planar on glass forward	1.18	24.5	79.2	22.9

Fig. S6. Histograms of the planar (black) and porous planar (red) based solar cell PCEs for 40 cells for (a) V_{OC} , (b) J_{SC} , (c) FF, and (d) efficiency.

	$V_{OC}(V)$	J_{SC} (mA/cm ²)	FF (%)	Efficiency (%)
1	1.17	23.7	80.0	22.3
2	1.18	24.2	79.6	22.7
3	1.15	24.8	80.9	23.0
4	1.15	24.1	80.6	22.3
5	1.14	24.1	80.8	22.1
6	1.14	23.8	82.8	22.7
7	1.13	23.9	82.6	22.4
8	1.16	24.6	80.0	23.0
9	1.16	23.9	82.4	22.8
10	1.15	23.6	82.4	22.6
11	1.15	24.5	81.4	23.1
12	1.17	23.8	79.0	21.9
13	1.17	23.3	78.6	21.6
14	1.16	24.0	76.0	21.2
15	1.18	23.9	79.5	22.5
16	1.19	24.4	78.0	22.6
17	1.18	24.3	79.8	22.9
18	1.17	24.2	80.7	22.8
19	1.16	23.8	80.6	22.4
20	1.18	24.5	79.3	23.1
21	1.17	24.2	80.5	22.9
22	1.18	24.0	79.9	22.6
23	1.18	24.2	78.0	22.5
24	1.17	24.0	79.5	22.3
25	1.17	24.1	77.7	21.8
26	1.16	24.1	80.6	22.7
27	1.15	24.9	80.1	22.9
28	1.15	24.6	80.2	22.7
29	1.15	23.9	79.0	21.9
30	1.17	23.7	79.1	21.9
31	1.16	23.9	79.3	22.1
32	1.18	24.6	78.4	22.7
33	1.17	24.1	78.6	22.1
34	1.17	23.5	78.4	21.7
35	1.15	23.7	79.1	21.6
36	1.16	24.1	78.7	22.0
37	1.17	23.7	82.4	22.8
38	1.16	23.1	82.9	22.1
39	1.15	23.6	81.3	22.2
40	1.16	24.0	80.9	22.7
Average	1.16	24.0	80.0	22.4

Table S4. The parameters of the porous planar (Zn_2SnO_4/SnO_2) based perovskite solar cells.

	$V_{oc}(\mathbf{V})$	J_{SC} (mA/cm ²)	FF (%)	Efficiency (%)
1	1.07	22.8	80.8	19.8
2	1.09	23.3	81.4	20.8
3	1.08	23.3	81.9	20.6
4	1.08	22.4	81.6	19.7
5	1.10	22.6	82.2	20.6
6	1.10	23.0	81.1	20.5
7	1.09	22.6	83.2	20.5
8	1.06	22.7	80.5	19.5
9	1.09	22.5	81.0	19.9
10	1.09	22.6	79.7	19.8
11	1.07	22.8	82.5	20.2
12	1.11	22.6	81.3	20.5
13	1.11	22.9	80.3	20.6
14	1.07	22.9	81.7	20.1
15	1.12	23.3	79.6	20.7
16	1.11	22.9	81.7	20.8
17	1.07	22.7	81.5	19.9
18	1.05	22.5	81.2	19.3
19	1.11	22.9	81.7	20.8
20	1.10	22.9	80.2	20.1
21	1.10	22.7	80.5	20.0
22	1.12	22.8	81.6	20.8
23	1.13	23.3	79.7	21.0
24	1.13	23.1	78.7	20.7
25	1.12	23.2	77.9	20.4
26	1.12	23.0	79.2	20.5
27	1.12	22.9	78.9	20.4
28	1.11	23.1	79.7	20.4
29	1.12	22.7	78.7	20.1
30	1.10	23.2	79.8	20.3
31	1.11	22.9	79.5	20.2
32	1.14	22.8	80.6	20.9
33	1.12	23.1	77.7	20.3
34	1.10	23.0	76.5	19.3
35	1.14	22.9	80.5	21.0
36	1.13	23.0	79.1	20.5
37	1.12	23.2	77.5	20.3
38	1.12	23.1	77.9	20.3
39	1.12	22.8	77.9	20.0
40	1.13	22.1	81.5	20.3
Average	1.10	22.9	80.2	20.3

Table S5. The parameters of the planar (SnO_2) based perovskite solar cells.

Fig. S7. Photostability of planar and porous planar device measured by maximum power point tracking method for 120 hours.

Fig. S8. SEM image of perovskite layer on (a) planar (SnO_2) and (b) porous planar (Zn_2SnO_4/SnO_2) ETL and (c) and (d) their grain size distribution.

Table. S6. Average, maximum, and minimum grain size of perovskite on planar (SnO_2) and porous planar (Zn_2SnO_4/SnO_2) ETL.

grain size	Average (µm)	Max. (µm)	Min. (µm)
Porous planar Zn ₂ SnO ₄	0.57	1.25	0.13
Planar SnO ₂	0.26	0.97	0.14

Fig. S9. Contact angle of water on (a) planar (SnO₂) and (b) porous planar (Zn₂SnO₄/SnO₂) ETL.

Table. S7. XPS deconvolution results of SnO_2 and Zn_2SnO_4

	O ⁴⁻	O ²⁻	O _{abs}
SnO ₂	55.9 %	30.3 %	13.8 %
Zn ₂ SnO ₄	53.1 %	32.2 %	14.7 %

Fig. S11. SEM image of perovskite layer annealing at 100 °C for 1 to 10 min on (a) planar (SnO₂) and (b) porous planar (Zn_2SnO_4/SnO_2) ETL.

Fig. S12. Certification result of porous planar (Zn_2SnO_4/SnO_2) based PSC on flexible PEN substrate tested at an independent and accredited PV testing lab (Newport).

				000100010100000000	0002020202020202020202020202020202020202	000000000000000000000000000000000000000		0.00050200			
	•••	mks				Technol	ogy and Apj	plication PV	Center Lab	D	
	CON NO	ewport	Calibrati	on Cert. # 28	393.01	New	port Calibra	tion Cert.	# 2154		
A DO N ZOD	DUT S/N: 720062 Newport Calibrati Manufacturer: K. Material (single ju Measurement Date Temperature Sens Environmental cor The above DUT ha Corporation. Quote 95% level of confid other measurements parameters reported *Designated area d *Reported perform	20 Flex-Z on #: 2154 orea Research Inst inction): Flexible e: 21-May-2019 or: TC-K, DUT 1 nditions at the tim s been tested using ed uncertainties ar lence. Measureme s and uncertainties in this certificate a lefined by thin me hance parameters	itute of Chemic Perovskite e of calibratio the following e expanded usi are traceable ti apply only at th tal aperture m are average of	al Technology $4.9 \pm 0.7^{\circ}C$ n: Temperatu methods to m ng a coveragy iance is traceas o NIST and the term of the the mask. 7 forward (show	(KRICT) re: 24 ± 3 °C; eeet the ISO 1 \Rightarrow factor of $k =$ ble to the Wo le Internationa est, and do no	Humidity: 30 7025 Standarc = 2 and expre- rild Radiometr d System of U t imply future open-circuit)	± 20 % I by the PV I sed with an ic Reference Inits (SI). Th performance and reverse	Lab at Ne approxin (WRR) a he perform ; ;	ewport nately and all mance ircuit	AN KON KON	
	→ short-circuit) IV steady-state condition	sweep results at ons. At this sweep	a sweep rate o rate, hysteres	f 100 mV/s, a is of +/- 1.3%	nd <u>do not rep</u> of PCE was	oresent the dev observed.	<u>ice behavior</u>	<u>under qu</u>	<u>uasi-</u>		
	Efficency [%] 19.	.91 ± 0.70	V_oc [V]	1.1922	± 0.0091	I_sc [A]	0.002092	± 0.0	000044		
	P_max [mW] 1.9	004 ± 0.063	V_max [V]	0.993	± 0.016	I_max [A]	0.001917	± 0.0	000046		98
TOT N TOT N TOT N	Standard Reportin Spectrum 1000.0 V Secondary Referen Device S Device N Window Certified Calibratio Solar Simulator: Spectrum Total irra Quantum Efficiene Newport Spectral I DUT Calibration P	g Conditions: n: AM1.5-G (ASTT W/m ² at 25.0°C (cc Cell: //N: 10510-0054 K Aaterial: mono-Si Material: MG1 ition: Nation A2LA a ISO Tra- short circuit curre on due date: 29-Se n: Newport Corpo diance: 1000 W/n y for DUT: Corporation filena mismatch correctic rocedures: Corporation docur Corporation docur	If G173-03/IEC G1 al Renewable E correditation cer cking #: 1937 at (I_{sc}) under sta p_{r} 19 ration filename r^{2} based on I_{sc} c me <i>QE</i> 720062 n factor: M = (nent WII (EQE nent Area Meas	c 60904-3 ed. nergy Laborat trificate # 223 andard reporti <i>Sol3A_Specti</i> of the above So <i>0, Flex-Z, 0, 5</i> 0,993 ± 0.01; i).docx surement W12	2) ory 6.01 ng conditions <i>coradiometer</i> econdary Refe 8 <i>mA WLB.log</i> 5 (Area).docx	(SRC): 57.21 Scan_0206.xb rence Cell	mA			AD WAR AR	A A A A A A A A A A A A A A A A A A A
XG_	Newport Cal Cert VI.8 TI	Corporation docur Reviewed a his certificate to be re	nent WI3 (IV.S le nd Approved by: produced in part o	weep).docx ssue Date: Aug . Geoffrey Wick only with writte	21, 2019 ss (Geoffrey Wi n permission fro	cks@Newport.c	om) PV Laboratory	Pa	1ge 2 of 2		

	Structure	J _{SC}	Voc	FF	Eff.	year	Ref.
1	PEN/ITO/ZnO/MAPbI ₃ /PTAA/Au	18.7	1.1	76	15.60%	2016	J. Mater. Chem. A, 4, 1572-1578
2	PEN/ITO/ED-TiO ₂ /BK- TiO ₂ /MAPbI ₃ /spiro-OMeTAD/Au	19.51	1.07	75	15.76%	2017	Adv. Energy. Mater., 7, 1700169
3	PET/ITO/CPTA/MAPbI ₃ / spiro-OMeTAD/Au	21.35	1.09	73.1	17.04%	2017	Adv. Energy. Mater., 7, 1701144
4	PET/ITO/SnO ₂ /C60-SAM/MA ₁₋ _x FA _x PbI ₃ /Spiro-OMeTAD/Au	22.2	1.08	75.1	17.96%	2017	Nano Energy
5	PET/ITO/treated SnO ₂ /C60-SAM/ MA _{1-x} FA _x PbI ₃ /Spiro-OMeTAD/Au	22.1	1.1	75.4	18.36%	2017	ACS Energy Lett., 2, 2118-2124
6	PEN/ITO/C60/MAPbI ₃ / spiro-OMeTAD/Au	18.1	1.01	70	13.90%	2018	Sci. Rep., 8, 442
7	$\begin{array}{c} PEN/ITO/SnO_2\\ QDs/Cs_{0.05}(MA_{0.17}FA_{0.83})_{0.95}Pb(I_{0.83}Br_{0}_{17})_{3}\end{array}$	20.94	1.11	0.73	16.97%	2018	Adv. Mater., 30 , 1706023
8	$\frac{\text{PEN/ITO/SnO}_2/\text{Cs}_{0.05}(\text{MA}_{0.17}\text{FA}_{0.83})_{0.95}}{\text{Pb}(I_{0.83}\text{Br}_{0.17})_3/\text{spiro-OMeTAD/Au}}$	20	1.16	73.1	17.7%	2018	J. Phy. Chem. Lett., 9 , 5460- 5467
9	PEN/ITO/Ti-MOF/PCBM/ (MAPbI ₃) _{0.95} (FAPbI ₃) _{0.05} / spiro-OMeTAD/Au	22.6	1.05	73.4	17.43%	2018	Acs Nano, 12, 4968-4975
10	PET/ITO/SnO ₂ /Al ₂ O ₃ / Cs _{0.05} (FA _{0.83} MA _{0.17}) _{0.95} PbI _{2.5} Br _{0.5} / spiro-OMeTAD/Au	22.8	1.05	76	18.10%	2018	ACS Energy Lett., 3, 1482-1491
11	PET/ITO/E-SnO ₂ /FA _{0.95} Cs _{0.05} I ₃ / spiro-OMeTAD/Au	23.42	1.09	71.6	18.28%	2018	Nature. Comm., 9, 3239
12	PET/ITO/Nb ₂ O ₅ /MAPbI ₃ -DS/ Spiro-OMeTAD/Au	22.48	1.1	74.2	18.4%	2018	Adv. Mater., 30, 1801418
13	PET/ITO/SnO ₂ /FAMAPbI ₃ / Spiro-OMeTAD/Au	22.48	1.11	68.49	17.09%	2019	ACS Sustainable Chem. Eng., 7, 4343-4350
14	PEN/ITO/SnO ₂ /Cs _{0.05} (FA _{0.85} MA _{0.15}) _{0.95} Pb(I _{0.85} Br _{0.15}) ₃ /Spiro-OMeTAD/Au	20.3	1.15	75	17.50%	2019	Adv. Energy. Mater., 9, 1900834
15	PEN/ITO/graphene-SnO ₂ / CsFAMAPbI ₃ /Spiro-OMeTAD/Au	22.1	1.07	75	17.70%	2019	J. Mater. Chem. A, 5 , 13639- 13647
16	PEN/ITO/SnO ₂ /MAPbI ₃ /Spiro- OMeTAD/Ag	21.8	1.13	72.78	18.00%	2019	Adv. Funct. Mater., 29, 1900557
17	PEN/ITO/CPTA/SnO ₂ /C60/ Cs _{0.05} FA _{0.81} MA _{0.14} PbI _{2.55} Br _{0.45} / spiro-OMeTAD/Au	21.35	1.11	76.6	18.10%	2019	Adv. Funct. Mater., 29, 1807604
18	PET/ITO/SnO ₂ /KCl/MAPbI ₃ / spiro-OMeTAD/Ag	20.69	1.11	81	18.53%	2019	ACS appl. Energy Mater., 2 , 3676-3682
19	PEN/ITO/HfO ₂ /SnO ₂ / (Rb ₁ K ₄ CsFAMA)PbI ₃ /Spiro- OMeTAD/Au	21.24	1.135	73.2	19.11%	2019	J. Mater. Chem. A, 7, 4960-4970
20	Willow Glass/ITO/PTAA/MAPbI3/C60/BCP/ Cu	21.49	1.09	79.1	19.72%	2020	Adv. Energy. Mater., 10 , 1903108
21	PEN/ITO/NiO _x / FA _{1-x} MA _x PbI _y Br ₃₋ _y /Spiro-OMeTAD/Au	22.2	1.12	74	18.5	2020	Nano Energy, 70, 104505
22	PEN/ITO/SnO ₂ /ZSO/ (FAPbI ₃) _{0.95} (MAPbI ₃) _{0.05} / spiro-OMeTAD/Au	21.9	1.19	79.6	20.75%	2020	this work

Table S8. Device performance of the state of art of flexible perovskite solar cells.

Fig. S13. Histograms of the porous planar (Zn_2SnO_4/SnO_2) based flexible perovskite solar cell PCEs for 22 cells

	$V_{oc}(\mathbf{V})$	J_{SC} (mA/cm ²)	FF (%)	Efficiency (%)
1	1.12	21.8	76.2	18.7
2	1.12	22.1	78.3	19.3
3	1.1	21.9	73.9	17.8
4	1.14	22	78.1	19.5
5	1.13	22.1	78	19.4
6	1.08	22.2	77.6	18.5
7	1.13	21.9	78.3	19.6
8	1.18	21.9	77.9	20.2
9	1.17	21.9	74.3	19.1
10	1.18	22.0	76.4	19.9
11	1.19	21.8	78.4	20.4
12	1.19	21.9	77.7	20.3
13	1.18	21.4	78.8	19.9
14	1.19	21.6	80.4	20.7
15	1.19	21.4	78.3	20.0
16	1.19	21.6	77.4	19.9
17	1.13	22	77.5	19.4
18	1.16	22.5	78.4	20.4
19	1.14	22.5	77.6	19.9
20	1.14	22.4	78.5	20
21	1.14	22.4	78.4	19.9
22	1.13	22.2	76.9	19.2
Average	1.15	22.0	77.6	19.6

Table S9. The parameters of the porous planar (Zn_2SnO_4/SnO_2) based flexible perovskite solar cells.

Fig. S15. Photograph of porous planar (Zn_2SnO_4/SnO_2) based flexible sub-module with aperture area of unit cell (0.1 cm²), 100 cm², 225 cm² and 400 cm².

Fig. S16. Best PCE of porous planar (Zn_2SnO_4/SnO_2) based flexible perovskite sub-module according to aperture (red) and active area (black).

Table S10. PCE parameters of porous planar (Zn_2SnO_4/SnO_2) based flexible perovskite submodule according to aperture and active area.

		$V_{oc}(\mathbf{V})$	J _{SC} (mA/cm ²)	FF (%)	Efficiency (%)
Aperture size:	Reverse	16.6	1.28	74.83	15.9
100 cm ²	Forward	16.3	1.27	72.59	15.0
Active size:	Reverse	16.6	1.44	74.83	17.9
90 cm ²	Forward	16.3	1.43	72.59	17.0
		Voc(V)	J _{SC} (mA/cm ²)	FF (%)	Efficiency (%)
Aperture size:	Reverse	22.1	0.87	70.0	13.4
225 cm ²	Forward	21.6	0.87	65.7	12.3
Active size:	Reverse	22.1	0.97	70.0	14.9
202.5 cm ²	Forward	21.6	0.97	65.7	13.7
		Voc(V)	J _{SC} (mA/cm ²)	FF (%)	Efficiency (%)
Aperture size:	Reverse	43.4	0.49	55.9	11.8
400 cm ²	Forward	42.3	0.49	56.8	11.8
Active size:	Reverse	43.4	0.54	55.9	13.1
360 cm ²	Forward	42.3	0.54	56.8	13.0

Fig. S17. Image of bending test in each directions (a) bend in (b) bend out

- (a)
- (b)

1 Yoo, J. J. *et al.* An interface stabilized perovskite solar cell with high stabilized efficiency and low voltage loss. *Energy & Environmental Science* **12**, 2192-2199, doi:10.1039/C9EE00751B (2019).