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The special case of band gap narrowing in AZTSe

In Fig. 8(a) of the main article, the calculated band gap narrowing due to the 2(III + IVII) defect cluster
is plotted on the x-axis, based on the values calculated in Refs. 1, 2. The AZTSe data point is, however, a
special case that needs further clarification. First, calculations of defect clusters are only available for AZTS
and not for AZTSe and, second, the 2(AgZn + SnZn) cluster in AZTS has a very high formation energy [2]. As
a worst-case scenario, we considered the defect cluster with the largest calculated band gap narrowing among
low-formation-energy defects in AZTS, which is (SnZn + ZnSn). To extrapolate its band gap narrowing effect
from AZTS to AZTSe we simply followed the trend of the (SnZn + ZnSn) defect from CZTS to CZTSe, as
shown in Ref. 1. We consider this an acceptable approximation since all four compounds have the same crystal
structure (kesterite) and exhibit the same band gap trend, i.e., a band gap decrease by ∼0.5 eV when replacing
S with Se.

When going from CZTS to CZTSe, the valence band upshift is reduced by a factor ∼2, and the conduction
band downshift is reduced by a factor of ∼4 [1]. Using these correction factors, the calculated band gap
narrowing of AZTSe is extrapolated as 70 meV, which is the value plotted on the x-axis of Fig. 8(a) in the
main article for the AZTSe data point. Note that the trend identified in Fig. 8(a) is still valid if a different
defect cluster is chosen for AZTSe, because all the other calculated defect clusters narrow the band gap to a
smaller extent than the (SnZn + ZnSn) cluster [2].
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Figure S 1: Integrated area, position, and full-width at half-maximum (FWHM) of the PL peaks identified in a CBTS
film as a function of temperature and excitation intensity. The parameters of each peak are obtained by least-squares
fitting with a single Gaussian peak. (a): Peak position versus temperature. Each peak is labeled with the type of PL
transition responsible for it. The exciton binding energy estimated from the hydrogen model, and the consequent position
of the band gap energy as a function of temperature, are indicated. The temperature range corresponding to flattening
of band edge fluctuations due to state filling is also indicated. (b): Arrhenius plots of PL peak areas as a function
of temperature The type of transition and the fitted activation energy is indicated for each peak. (c): FWHM versus
excitation intensity at 79 K. The color- and marker scheme is the same as in the previous subfigures. (d): Peak area
versus excitation intensity at 79 K. The power law coefficients k under low- and high excitation are shown. (e): Peak
position versus excitation intensity at 79 K. The intensity of the DDAP1 and DDAP2 peaks is too low for the small
excitation-dependent positions shifts to be determined reliably.
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Figure S 2: Integrated area, position, and full-width at half-maximum (FWHM) of the PL peaks identified in a CSTS
film as a function of temperature and excitation intensity. The parameters of each peak are obtained by least-squares
fitting with a single Gaussian peak. (a): Peak position versus temperature. Each peak is labeled with the type of PL
transition responsible for it. The exciton binding energy estimated from the hydrogen model, and the consequent position
of the band gap energy as a function of temperature, are indicated. The temperature range corresponding to flattening
of band edge fluctuations due to state filling is also indicated. (b): Arrhenius plots of PL peak areas as a function
of temperature The type of transition and the fitted activation energy is indicated for each peak. (c): FWHM versus
excitation intensity at 83 K. The color- and marker scheme is the same as in the previous subfigures. (d): Peak area
versus excitation intensity at 83 K. The power law coefficients k under low- and high excitation are shown. (e): Peak
position versus excitation intensity at 83 K.
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