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This supplementary information provides details and supporting material to the main text.

Aviation contribution to atmospheric NOx mixing ratios

This section quantifies the aviation attributable NOx mixing ratio for the baseline aviation (Figure 
1) as well as the post-combustion emissions control (PCEC) with ultra-low sulfur (ULS) fuel 
scenario (Figure 2). The aviation contribution to cruise altitude (10 – 12 km) NOx mixing ratio in 
the northern hemisphere is approximately 34%, while the use of PCEC with ULS fuel reduces 
this to approximately 0.25% (the change in burden is based on zonally mass weighted average of 
NOx mixing ratios across the Northern Hemisphere at the typical cruise altitudes). 

Figure 1: Zonal plot of aviation attributable NOx mixing ratio on an annual average basis
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Figure 2: Zonal plot of aviation attributable NOx mixing ratios with the use of PCEC along with ULS fuel

Modified Breguet Range Equation
This section provides a detailed derivation of Eq 2, of section 2.4 in the main text. The rate of 
change of an aircraft’s mass is,
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Surface area of pleated geometry
This section provides the derivation of Eq 3 in the main text. A schematic of a single pleat of a 
pleated catalyst geometry is shown below. The total flow through area ( ) of the exhaust flow 𝐴

to be treated is given by,
𝐴 = 2𝑁𝐿 × 𝑠,

Figure 3: Geometry of pleated catalyst design. A single pleat is shown here. The reacting length and the 
pleat depth are  and  respectively. The radius of the inner circle is  and the length of the line segment 𝑙 ℎ 𝑟

AB is , this represents the actual flow area per unit length perpendicular to the paper 𝑠

where  is the number of pleats,  is the total length of the catalyst and  is the length of line 𝑁 𝐿 𝑠

segment shown in Figure 1. The length  is given by,𝑠
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where  is the internal radius as shown in Figure 1. The total flow area is given by,𝑟
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