Manipulation of Planar Oxygen Defect Arrangements in Multifunctional Magnèli Titanium Oxide Hybrid Systems: From Energy Conversion to Water Treatment

Yichen Liu, Jack Yang^a, Yang Liu, Jian Zheng, Wen Lee, Junjie Shi, Jonathan Horlyck, Jiangzhou Xie, Yee Yan Tay, Thiam Teck Tan, Dehong Yu, Richard Mole, Garry McIntyre, Changyong Zhang, Cui Ying Toe, T. David Waite, Jason Scott, Yu Wang, Tom Wu, Shenghao Han and Sean Li

Supplementary Information

Table S1 Reported room temperature electrical and thermal properties of titanium oxides with general formula Ti_nO_{2n-1} and their mother structure TiO_2 . The layer thickness in the table 1 is defined and calculated as the distance between each interfaces/shear plane (the yellow lines) in Figure 1 (a).

Ti _n O _{2n-1} phase	Space group	Layer thickness	Electrical conductivity	Thermal conductivity	Phonon thermal	Thermoelectric	Photothermal	Catalytic
		(nm)	(σ/S cm ⁻¹)	(W/m·K)	(M/m.K)			
					(₩/////К)			
Ti	P4 ₂ /mnm _, hexagonal	n/a	2000 ¹⁹	~20 ¹⁹	No record	No record	No record	Yes
Ti ₂ O ₃	R ³ c,trigonal	0.2592nm	1052 ¹⁶	3.7 ¹⁶	2.9 ¹⁶	Yes	Yes	Yes
Ti₃O₅	C2/c _, monoclinic	0.3741nm	630 ¹⁵	No record	No record	No record	No record	Yes
Ti₄O7	P1, triclinic	0.5162nm	1035 ¹⁷	~3.5 17	~2.7 17	Yes	No record	No record
Ti₅O ₉	P1, triclinic	0.7776nm	450 ¹⁸	~2.2 18	~2.1 18	Yes	No record	No record
Ті ₆ 0 ₁₁	P1, triclinic	1.0898nm	63 ¹⁵	~2.1 15	~2 15	Yes	No record	No record
Ti ₇ O ₁₃	P1, triclinic	1.1445nm	No record	2.5 ¹⁴	2 ¹⁴	Yes	No record	No record
Ti ₈ O ₁₅	P1, triclinic	1.1745nm	25 ¹⁵	2.5 ¹⁴	2.0 14	Yes	No record	No record
Ti ₉ O ₁₇	P1, triclinic	1.4192nm	18 ¹⁵	~2 15	~1.98 15	Yes	No record	No record
TiO ₂	P4 ₂ /mnm _, tetragonal	n/a	~16 ²⁰	~3 ²⁰	~2.98 20	Yes	Yes	Yes

Phase	Ti ₂ O ₃	Ti ₃ O ₅ -1	Ti ₃ O ₅ -2	Ti ₂ 0-1	Ti ₂ O-2	TiO
Crystal system	Rhom <i>R</i> 3 <i>c</i> (167)	Mono C2/m (12)	Mono C2/m (12)	Hex P3m (164)	_{Hex} P6/3m (191)	Fm3m (225)
a(Å)	5.1489	9.74	9.8261	2.96	4.9915	4.2930
b(Å)	5.1489	3.8	3.7894	2.96	4.9915	4.2930
<i>c</i> (Å)	13.6427	9.44	9.9694	4.83	2.8794	4.2930
α	90	90	90	90	90	90
в	90	91.5	91.258	90	90	90
Ŷ	120	90	90	120	120	90
Ti content (wt%)	66.62	64.24	64.24	85.69	85.69	74.96
ICCD	04-005-4632	04-008-1596	04-007-6635	04-005-4375	04-007-2361	04-016-4319

 Table S2 The ICCD information used during the Rietveld analysis.

Table S3 The quality of the refinement results.

Sample	R _B				R _{exp}	R _{wp}	GOF		
	Ti ₂ O ₃	Ti ₃ 0 ₅ -1	Ti ₃ 0 ₅ -2	Ti ₂ 0-1	Ti ₂ 0-2	TiO			
71.6%Ti ₂ O ₃ -28.4%Ti ₃ O ₅	3.41	4.04	3.02	-	-	-	2.11	5.86	2.77
70.3%Ti ₂ O ₃ -29.3%Ti ₃ O ₅ -0.5%TiO	3.94	4.01	3.42	-	-	3.02	2.15	6.54	3.03
62.7%Ti ₂ O ₃ -35.8%Ti ₃ O ₅ -1.5%Ti _x O	3.9	4.12	3.43	-	1.78	2.8	2.19	6.46	2.94
47.8%Ti ₂ O ₃ -48.3%Ti ₃ O ₅ -3.9%Ti _x O	4.52	4.82	5.76	6.91	1.48	4.4	2.16	8.12	3.75

 Table S4 The setting parameters for operations on Lambda 950

Parameter setting						
Scanning Range		380-1100nm				
Scanning Intervals/spee	d	4nm				
Monochromator		860.80nm				
СВМ		100%				
Slit	PMT	2nm				
	Pbs	2nm				
CBD		selected				
Detector Change		860.80nm				

Table S5.	Band	positions	of all	the	samples
-----------	------	-----------	--------	-----	---------

	E _v	E c	Bandgap
71.6%Ti O -28.4%Ti O 3 5	2.91 eV	1.29 eV	1.62 eV
70.3%Ti ₂ O ₃ -29.3%Ti ₃ O ₅ -0.5%TiO	2.86 eV	1.33 eV	1.53 eV
62.7%Ti ₂ O ₃ -35.8%Ti ₃ O ₅ -1.5%Ti _x O	2.83 eV	1.37 eV	1.46 eV
47.8%Ti ₂ O ₃ -48.3Ti ₃ O ₅ -3.9%Ti _x O	3.02 eV	1.66 eV	1.36 eV

Figure S1 Examples of phonon-mode-modulated structures of Ti_2O_3 along the Γ -point eigenvectors with dominant contributions from the vibrations of oxygen-sublattices.

Figure S2 Examples of phonon-mode-modulated structures of Ti_3O_5 along phonon modes with largest Grüneisen parameters (γ).

Figure S3 The bandgap calculations of all the samples using Kubelka-Munk function

Calculation of Band gap using Tauc Plot

For the band gap calculation, the following relational expression proposed by Tauc, Davis, and Mott is used.

$$(hv\alpha)^{1/n} = A(hv - E_a)$$

Where:

The Planks constant (h) =4.1357*10⁻¹⁵ ev·s, frequency of vibration (v) = the speed of light in vacuum(c) / the photon's wavelength(λ), α is absorption coefficient, E_g represent the band gap, A is proportional constant. n is determined to be 1/2. (n = 2 for an indirect allowed transition; n = 3 for an indirect forbidden transition; n = 1/2 for a direct allowed transition; n = 3/2 for a direct forbidden transition.)

Here we use $BaSO_4$ as reference sample, the relatively diffuse reflectance can be obtained by $R_d = R_{Ti}/R_{Ba}*100\%$.

The absorption coefficient was calculated by the following equation:

 $\alpha = \log(1/R_d)$

The $(\alpha h \nu)^2$ on the horizontal axis was plotted against the h ν .

A line is drawn tangent to the point of inflection on the curve of $(\alpha h v)^2 vs h v$, and the hv value at the point of intersection of the tangent line and the horizontal axis is the band gap E_g value.

Note: The point of inflection is found by taking the first derivative of the curve. The point at which the value of the first derivative coefficient begins to decrease after increasing is the point of inflection.

Calculation of Solar-absorption efficiency

Our sample thickness is around 3.1mm, thus the light(280-1100nm) transmitted through the sample is neglect. Then we have absorption $A=1-R_d$. The combination of the standard Air Mass 1.5 solar spectra (ASTM G-173-03) and the absorption spectra gave the solar absorption of our sample in different spectrum region. The results can be calculated via:

Solar absorption = Solar Spectral irradiance * Absorption

Figure S4. The valence band spectrum measured by UPS.