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Fig. S1 Structural and phase analyses of the misfit-layered compound LnxCa3-xCo4-yTryO9-δ [Ln 

= Gd, Nd, and La (x = 0, 0.15, 0.3, 0.45, and 0.6), Tr = Fe, Mn, Ni, and Cu (y = 0, 0.1, 0.18, 

and 0.26)] by using XRD. (a) CCO and Ca-site doping in Ln0.3Ca2.7Co4O9-δ with lanthanides 

(Ln = Gd, Nd, and La). (b) Co-site doping in Gd0.3Ca2.7Co3.9Tr0.1O9-δ with transtion metal 

elements (Tr = Fe, Mn, Ni, and Cu). (c) Optimization of Gd content in GdxCa3-xCo3.9Cu0.1O9-δ 

(x = 0.15, 0.3, 0.45, and 0.6). (d) Optimization of Cu content in Gd0.3Ca2.7Co4-yCuyO9-δ (y = 

0.1, 0.18, and 0.26). (e-f) High-temperature XRD patterns of the GCCCO at temperature range 

from room temperature to 800℃ under dry air (e) and wet (3% H2O) air (f).
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Fig. S2 Morphology characterization and elemental analyses of CCO and GCCCO. (a-b) 

FESEM images of CCO (a) and GCCCO (b). (c-d) HRTEM images of CCO (c) and GCCCO 

(d). (e-f) EDX spectra of each element in CCO (e) and GCCCO (f).
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Fig. S3 Electrode ASRs in BCZYYb symmetrical cells as a function of temperature in wet air 

(3% H2O). (a) Lanthanide- (Ln = La, Nd and Gd) doped Ln0.3Ca2.7Co4O9-δ. (b) Transition 

metal- (Tr = Fe, Mn, Ni, and Cu) doped Gd0.3Ca2.7Co3.9Tr0.1O9-δ. (c) Variation of Gd doping 

content in GdxCa3-xCo3.9Cu0.1O9-δ (x = 0.15, 0.3, 0.45, and 0.6). (d) Variation of Cu doping 

content in Gd0.3Ca2.7Co4-yCuyO9-δ (y = 0.1, 0.18, and 0.26). (e) comparisons of Ca3Co4O9-δ 

(CCO), Gd0.3Ca2.7Co4O9-δ, (GCCO), Ca3Co3.82Cu0.18O9-δ (CCCO), and 

Gd0.3Ca2.7Co3.82Cu0.18O9-δ (GCCCO) in electrical conductivity.
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Fig. S4 Microstructural analyses of NiO-BCZYYb-supported cell with BCZYYb electrolyte 

and GCCCO-BCZYYb composite air/steam electrode by using FESEM. (a-b) Cross-sectional 

view of the as-prepared NiO-BCZYYb single cell (a) and after durability tests (b). (c-d) 

Interfacial region between air electrode and electrolyte before (c) and after durability tests (d). 

(e-f) GCCCO-BCZYYb composite air (steam) electrode before (e) and after durability tests (f).
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Fig. S5 Reproducibility of NiO-BCZYYb anode-supported cells with a composite GCCCO-

BCZYYb air electrode. (a-b) Cell voltage as functions of current density in multiple tests at 

700℃ under PCFC (a) and PCEC modes (b).
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Fig. S6 EIS spectra and comparison of electrode ASR of an anode-supported GCCCO cell 

under PCFC and PCEC modes. (a) EIS in PCFC mode under OCV condition at 450–700℃. (b) 

Electrode ASRs for PCFC and PCEC mode at 0.2 A·cm-2 and ‒0.2 A·cm-2 conditions. 
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Fig. S7 Hydrogen production rate of GCCCO cell as a function of current density at 500–600℃. 

(a) Hydrogen production rate as a function of current density at 500–600℃. (b-d) Hydrogen 

production rate as a function of time under various current density at 600 (b), 550 (c), and 

500℃ (d).
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Fig. S8 Electrochemical performances of the RPCC in PCEC mode under various steam 

concentrations (20–50% H2O in ambient air) at 700 °C. (a) I-V curves of a GCCCO cell. (b) 

EIS in PCEC mode under OCV condition. (c) EIS in PCEC mode under ‒0.2 A·cm-2 condition.
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Fig. S9 XPS and X-ray absorption near edge structure (XANES) survey spectra of GCCCO 

materials. (a-b) Deconvoluted Co 2p XPS spectra for CCO (a) and GCCCO (b) materials. (c) 

Cu K-edge XANES spectra of GCCCO and Cu references (CuO and Cu2O). (d) Deconvoluted 

Cu 2p XPS peaks for GCCCO.
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Fig. S10 The optimized misfit-layered structures. (a) CCO. (b) GCCCO. There are two 

nonequivalent oxygen sites at CaCo2O3 rocksalt layer (inner and outer) and one oxygen site at 

CoO2 layer.
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Fig. S11 EIS spectra and polarization resistance (Rp) for GCCCO under different pH2O 

conditions. (a-c) EIS spectra for GCCCO at 500℃ (a), 550℃ (b), and 600℃ (c). (d-e) pH2O 

dependences of Rp of various oxygen electrodes at 600℃ in low frequency (LF) (d) and middle 

frequency (MF) ranges (e).
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Table S1 The lowest formation energy of oxygen vacancies at nonequivalent oxygen sites at 

EFermi = 0 eV.

       Oxygen sites

Materials
RSI (eV) RSO (eV) CoO2 layer (eV)

CCO 3.14 3.64 3.89

GCCCO 2.19 2.57 3.15


