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Section I. Materials and methods 
 

a. Device fabrication 

All devices were manufactured with inverted architecture (glass/ITO/ZnO/active 
layer/MoO3/Ag). Pre-patterned and non-patterned ITO substrates (purchased from 
Ossila, 100 nm thick and 20 W square-1 sheet resistance), were cleaned by sequential 
ultrasonication in acetone, Hellmanex 10% solution in water, isopropanol and finally 
10% NaOH water solution. A dispersion of ZnO nanoparticles (N-10, Avantama) was 
blade coated onto cleaned ITO substrates in air conditions using an automatic coater 
(ZAA 2300, Zehntner) and a lamination piece of equipment (ZUA 2000, Zehntner). The 
ZnO casting parameters were 50 µm blade gap, 50 µL casting volume, 4 mm s-1 blade 
speed and 40 °C yielding a thickness of 40 nm. A 100 °C post-deposition thermal 
annealing was carried out for 10 min in air. The ZnO coated substrates were then 
transferred into a nitrogen-filled glovebox for the deposition of the active layers.  

All photovoltaic materials were used as received and dissolved in chlorobenzene with a 
total solid concentration of 15 mg mL-1 and stirred overnight at 80 ºC. PBT7-Th and 
PCDTBT were purchased from Ossila. PBDB-T, PBDB-T-2Cl, PBDB-T-2F, ITIC, ITIC-
M and ITIC-4F were purchased from 1-Material. ITIC-C8 and ITIC-C2C6 were 
synthesized following previous publications of one of our groups and are further 
detailed below1. PC70BM was purchased from Solenne. On the one hand, discrete 1D-
thickness graded samples (Figure S1a) were manufactured using premixed inks of 
donor and acceptor materials weighted in controlled fractions in a single vial, resulting 
in devices with fixed composition. D:A mixing ratio solutions extending from 1:0 to 0:1 
were individually prepared to screen the composition space for PTB7-Th:ITIC and 
PBDB-T:ITIC-C2C6. The casting conditions were 100 μm blade gap, 70 μL casting 
volume and 90 ºC casting temperature. The blade was intendedly decelerated from 90 
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mm s-1 to 5 mm s-1 resulting in a thickness-graded active layer (ca. 50-200 nm)2,3. On 
the other hand, 2D-thickness-composition graded samples (Figure S1b) were 
manufactured following the same processing parameters as 1D devices excepting the 
blade speed, which in this case was kept fixed at 5 mm s-1 and two drops of 40 μL each 
of the neat material inks were cast. Finally, 10 nm of MoO3 and 100 nm of Ag were 
thermally evaporated at a rate of 0.1 and 1 Å s-1, respectively. Note that each 1D 
sample contains 24 devices, 12 of them with different thickness values (two per side), 
with a pixel active area of 8 mm2. 

 

 

Figure S1. The two processing schemes for organic solar cells comprising lateral gradients in their 
active layer. (a) By decelerating the applicator during the coating of the active layer we generate a 
thickness gradient for inks of fixed D:A ratio. This approach, in combination with pre-patterned ITO 
substrates and their dedicated evaporation masks, allows the high-throughput screening of the 
thickness-performance dependence in 24 discrete devices. (b) To simultaneously screen very 
efficiently the composition, two drops of the pristine D and A inks coalesce during the coating 
leading to an orthogonal distribution of D:A ratio and active layer thickness. In this case, a single 
large-area device is obtained, which is then mapped by LBIC and Raman spectroscopy imaging. 
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b. Device characterization 

J-V characteristics of 1D devices were automatically extracted by using a Keithley 
source meter and an Arduino based multiplexer/switcher that allows measuring 24 
devices in less than 6 minutes. As a lighting source, a SAN-EI Electric, XES-100S1 
AAA solar simulator was used to ensure a homogenous illumination in a 10 cm x 10 cm 
area. The solar simulator was previously calibrated with a certified silicon solar cell 
(NREL). 

2D gradient large-area devices were characterized using a WITec alpha 300 RA+ 
confocal setup, connected to a current amplifier to extract photocurrent maps of the 
solar cell. The samples were excited using a 10X objective (NA 0.25) coupled to a 488 
nm solid-state laser (with its power set to 3 mW to avoid photodegradation). Our optical 
configuration yields a ca. 10 µm laser spot in diameter once focused on the active 
layer. Light beam induced current (LBIC) with monochromatic light was measured 
simultaneously along with Raman in short-circuit conditions. However, to extend the 
electromagnetic spectrum of the excitation source, we coupled the built-in lamp of the 
WITec alpha 300 RA+ piece of equipment and employed it to map the photovoltaic 
response under white light illumination (Figure S2). Notably, the matching of the lamp 
irradiance with the solar spectrum is limited. As a result, we might expect photocurrent 
underestimations when employing high band gap (<500 nm, UV) or low band gap 
(>700 nm, IR) materials, which are those employed more frequently in semi-
transparent OPV devices. The use of white light yielded a spot size of ca. 150 μm in 
diameter. Data analysis (D:A mixing ratio and thickness from Raman spectra) was 
performed using homemade MATLAB routines described elsewhere4. 

 

 

Figure S2. Normalized emission spectrum of the built-in lamp in the WITec alpha 300 RA+ setup 
measured upon reflection on a silver mirror (solid red line). For comparative purposes, the 
reference AM1.5G irradiance spectrum is also shown (solid black line) to indicate the notorious 
mismatch in regions far from the visible region of the electromagnetic spectrum. 
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c. Synthesis and characterization of ITIC-C2C6 

 

 

Scheme S1. The synthetic route of ITIC-C2C6. 

5,11-Dihydro-5,5,11,11-(2-ethylhexyl)-s-indaceno[1,2-b:5,6-b'] dithieno[3,2-
b]thiophene (2): 

To a suspension of 5,11-dihydro-s-indaceno[1,2-b:5,6-b'] dithieno[3,2-b]thiophene (1) 
(0.70 g, 1.85 mmol) in anhydrous DMSO (40 ml) was added sodium tert-butoxide (1.06 
g, 11.11 mmol) in parts. The reaction mixture was heated at 80 ºC for 1 h, followed by 
the addition of 1-bromohexadecane (2.14 g, 11.11 mmol) dropwise. After complete 
addition, the resultant mixture was heated at 80 ºC for overnight, then poured into ice-
water and extracted by THF/hex (2/1, v/v, 100 mL) for 3 times. The combined organics 
were dried by MgSO4, filtered and concentrated under reduced pressure. This residue 
was purified by column chromatography on silica (eluent: hexane) to give a yellow oil 
(0.72 g, 47%). 1H NMR (400 MHz, CDCl3) δ 7.35 (d, 2H), 7.34-7.29 (m, 4H), 2.11-2.06 
(m, 8H), 0.99-0.73(m, 32H), 0.70-0.45 (m, 28H); 13C NMR (100 MHz, CDCl3): δ 152.2, 
145.4, 143.8, 141.0, 136.6, 134.2, 125.5, 120.3, 113.9, 53.8, 35.0, 34.9, 33.7, 29.1, 
28.5, 28.4, 28.0, 27.0, 26.8, 22.9, 22.8, 22.7, 14.2, 13.8, 10.7, 10.6, 10.2. 

 

6,6,12,12-Tetra(2-ethylhexyl)-6,12-dihydrothieno[3,2-
b]thieno[2'',3'':4',5']thieno[2',3':5,6]-s-indaceno[2,1-d]thiophene-2,8-
dicarbaldehyde (3): 

A solution of n-BuLi (2.1 mL of a 1.6 M solution in pentane, 3.36 mmol) was added 
dropwise into 2 (0.70 g, 0.85 mmol) in THF (40 mL) at -78 °C. After stirred at this 
temperature for 20 min, the mixture was allowed to warm to RT for 1.5 h. Then the 
mixture was cooled to -78 °C , and anhydrous DMF (0.3 mL) was added in one portion, 
and the mixture was allowed to warm to RT slowly and stirred overnight. Water (100 
mL) was added, and the mixture was extracted with DCM (3 × 200 mL). The combined 
organics were dried by MgSO4, filtered and concentrated under reduced pressure. The 
residue was purified by silica gel chromatography (eluent: DCM/hexane = 3/2, v/v) to 
afford an orange oil (0.50 g, yield: 67%). 1H NMR (CDCl3, 400 MHz,) δ (ppm): 9.96 (s, 
2H), 8.00 (s, 2H), 7.48 (s, 2H), 2.16-2.10 (m, 8H), 0.99-0.73 (m, 32H), 0.70-0.44 (m, 
28H); 13C NMR (CDCl3, 100 MHz,) δ (ppm): 182.9, 153.7, 150.4, 146.2, 143.9, 141.3, 
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140.8, 137.0, 130.2, 115.1, 54.2, 54.1, 43.2, 43.1, 42.6, 35.3, 35.1, 35.0, 33.8, 33.4, 
28.5, 28.4, 28.0, 27.1, 27.0, 2687, 26.7, 22.8, 22.7, 22.6, 14.2, 13.8, 10.8, 10.6, 10.1. 

 

{(2Z)-2-[(8-{(E)-[1-(Dicyanomethylidene)-3-oxo-1,3-dihydro-2H-inden-2-
ylidene]methyl}-6,6,12,12-tetra(2-ethylhexyl)-6,12-dihydrothieno[3,2-
b]thieno[2'',3'':4',5']thieno[2',3':5,6]-s-indaceno[2,1-d]thiophen-2-yl)methylidene]-
3-oxo-2,3-dihydro-1H-inden-1-ylidene}propanedinitrile (ITIC-C2C6): 

To a mixture of 3-dihydro-1H-inden-1-ylidene)malononitrile (165 mg, 0.85 mmol) and 
compound 3 (150 mg, 0.17 mmol) in CHCl3 (20 mL) was added pyridine (0.5 mL). After 
addition, the mixture was heated to 80 °C and stirred for overnight, and then poured 
into water (30 mL) and extracted with DCM (3 × 20 mL). The combined organics were 
dried by MgSO4, filtered and concentrated under reduced pressure. The residue was 
purified by silica gel chromatography (eluent: DCM/hexane = 2/1), followed by 
recrystallization from DCM/MeOH to afford a shining golden solid (143 g, yield: 68%). 
1H NMR (CDCl3 , 400 MHz,) δ (ppm): 8.99 (s, 2H), 8.71 (d, 2H), 8.21 (s, 2H), 7.96 (d, 
2H), 7.79-7.76 (m, 4H), 7.54 (d, 2H), 2.29-2.16 (m, 8H), 0.96-0.71 (40H), 0.70-0.46 (m, 
20H); 13C NMR (CDCl3 , 100 MHz,) δ (ppm): 13C NMR (100 MHz, CDCl3) δ (ppm): 
188.3, 160.5, 154.8, 153.7, 147.9, 147.4, 143.2, 140.1, 139.3, 138.4, 137.7, 137.3, 
136.9, 135.2, 134.5, 125.3, 123.8, 122.4, 115.6, 114.7, 69.2, 54.3, 43.1, 43.0, 42.8, 
35.4, 35.2, 33.7, 33.5, 28.6, 28.4, 28.1, 27.2, 27.0, 26.8, 22.8, 22.7, 22.6, 14.2, 13.8, 
10.8, 10.2. 

 

 

Figure S3. UV-Vis absorption spectrum of an ITIC-C2C6 film. The main absorption peaks locate at 
656 nm and 721 nm. The absorption edge locates at 800 nm, corresponding to an optical band gap 
of 1.55 eV. PESA data for ITIC-C2C6 shows an ionization potential of 5.71 eV, which compared to 
ITIC-C8 (IP = 5.68 eV from PESA and HOMO = -5.63 eV from CV) allows setting the HOMO level of 
ITIC-C2C6 at -5.66 eV. 
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Section II. Comparison of Edisonian and high-throughput experimentation 
approaches 
 

a. Sampling the thickness-composition space by means of active 
layer thickness gradients 

For comparative purposes against the high-throughput screening methodology results, 
we prepared multiple solar cell devices in which the D:A blend ratio was varied in 
discrete samples and controlled steps throughout the entire compositional range, 
including in some cases neat active layers (i.e. homojunctions). This is the classical 
approach for D:A blend ratio screening, also known as Edisonian experimentation: the 
preparation of individual devices, each from a compositionally homogenized ink that 
results from the overnight stirring of controlled D:A weights in a single vial. However, to 
accelerate the corresponding active layer thickness screening, the devices were blade 
coated to include an active layer thickness gradient spanning from ca. 50 nm to 200 nm 
for each composition step. This approach, combined with pre-patterned 25x75 mm2 
ITO substrates, enabled us to screen up to 12 different active layer thickness values for 
each D:A composition step, thus speeding up and making more efficient (in time and 
resources) the screening process. 

Figure S4 depicts the solar cell device parameters (Jsc, Voc, FF and PCE) obtained in 
PTB7-Th:ITIC (upper row) and PBDB-T:ITIC-C2C6 (lower row) batches, which are 
those included in Fig. 2 in the main manuscript. We first observe that Voc is fairly 
constant throughout the entire D:A composition diagram. Conversely, the FF varies 
more abruptly with the composition, showing its maximum close to 20-30 wt% of donor 
in PTB7-Th:ITIC blends and 35-40 wt% of donor in PBDB-T:ITIC-C2C6 blends. 
Nevertheless, Jsc is still a good probe for PCE as they both show very similar upper-
shell data distributions (green dashed lines) and peak performance positions in the D:A 
composition space. 

 

Figure S4. Solar cell device parameters (Jsc, Voc, FF and PCE) for discrete composition step 
batches of PTB7-Th:ITIC (upper row) and PBDB-T:ITIC-C2C6 (lower row). Since the devices were 
processed to show an active layer thickness gradient to accelerate its corresponding screening, 
the observed dispersion in the y-axis is exclusively ascribed to such deliberate thickness variation. 
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b. Analysis of the time and material cost savings in high-throughput 
experimentation 

Despite the significant savings in time and resources offered by the (1D) thickness 
graded devices compared to the traditional discrete sampling approach, the use of 
bidimensional (2D) thickness-composition graded devices extends even further the 
abovementioned savings. A detailed time and material cost analysis of the 
corresponding discrete and 1D/2D graded devices is listed in Table S1. According to 
our estimations and compared to 1D graded devices, 2D combinatorial devices offer a 
2,000-fold higher density of data points per sample (12 discrete pixels per 1D sample 
vs 24,000 data points per 2D sample) as well as an eleven-fold reduction in the usage 
of raw semiconducting materials to perform the Jsc-vol% dependence exploration. As a 
result, by following the 2D high-throughput screening approach the experimental time 
required per data point is below 90 seconds and the consumption of raw 
semiconducting material is as low as a few tens of nanograms per data point (Table 
S1). 

 

Table S1. Time and material cost analysis for discrete sampling, 1D thickness-graded devices and 
2D thickness-composition graded devices (high-throughput experimentation) in the full exploration 
of the Jsc-vol% space for a given OPV binary. 

 Discrete sampling 1D thickness 
gradient 

2D thickness- 
composition gradients 

No. samples 66 a 11 b 1 

No. data points per sample 1 12 24,000 

No. data points (total) 66 132 24,000 

Manufacturing time (h) 93.2 c 16.5 5.9 

Measuring time (h) 0.55 d 1.12 c 9 

Data analysis (h) 1 2 13 

Total time (h) 94.8 19.6 27.9 

mg of semiconductor 79.2 13.2 1.2 

Time required per data point (h) 1.44 0.15 0.0012 (86 s) 

mg required per data point 1.2 0.1 5E-05 (50 ng) 

a From, to neat films in 10 vol% steps + 6 homogeneous thickness steps 
b From, to neat films in 10 vol% steps + 12 thickness steps as gradient 
c Assuming 11 batches with co-evaporation of 6 samples per batch 
d J-V curve takes 30 s to be measured 
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c. Reproducibility evaluation of the high-throughput experimentation 
approach 

We tested the reproducibility of the developed high-throughput experimentation 
approach by fabricating two batches of composition graded devices for the same D:A 
pair (PBDB-T:ITIC-C8) in different days. Their corresponding large area maps of active 
layer thickness, donor volume fraction and normalized photocurrent are depicted in 
Figure S5. The spatial correlation of all three magnitudes in both batches is accordingly 
illustrated in Figure S6 and it demonstrates that the high-throughput experimentation 
approach is parametrically highly reproducible and self-consistent in terms of 
normalized photocurrent. 

 

Figure S5. Batch-to-batch comparison of PBDB-T:ITIC-C8 combinatorial devices. Active layer 
thickness maps (a,d) and composition images (b,e) were acquired by properly deconvoluting the 
spatially-resolved Raman spectra.4 The normalized photocurrent images (c,f) were acquired in a 
subsequent step by mapping of a 150 μm white light spot throughout the active area of the device 
in the same Raman imaging setup. 

 

Figure S6. The one-to-one comparison of the PBDB-T:ITIC-C8 batches demonstrates that (a) a 
similar region of the composition vs. active layer thickness diagram is accessed, and (b) that in 
terms of normalized photocurrent the overall trend is overlapping in both cases. 
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d. Morphological characterization of the active layers 

Verifying that in situ mixing during blade coating leads to the same degree of mixing 
attained using fully premixed D:A inks can further support the robustness of the 
conclusions drawn from combinatorial devices. In that regard, we have recently shown 
that Raman shifts and photoluminescence (PL quenching and shifts) can be correlated 
to microstructure in high-throughput experiments.5,6 Raman has, indeed, been used in 
the literature to address the degree of aggregation in bulk heterojunctions.7 Figure S7a 
depicts the Raman shift of the main peaks corresponding to either PBDB-T or ITIC-
C2C6 (with respect to the corresponding pristine materials, i.e. Dw = wblend - wpristine) as a 
function of composition for both, discrete pixels (same as the devices in Figure S4) and 
compositional gradients (Figure 2a,b). As a rule of thumb, the larger the difference 
between the Raman peak and the initial vibration energy (i.e. further blue-shifted 
spectra), the larger the disruption of the local environment. We observe: 

1. As one material is more diluted, there is a stronger variation of the 
corresponding Raman spectra. This is indicative of some degree of miscibility 
between materials. 

2. Judging by the Raman shifts, the gradient samples show different degrees of 
mixing for any given composition, including the best mixing possible, i.e. that 
obtained when the solutions are premixed and here represented by the single 
data points from devices contained in Figure S4. The fact that these well-mixed 
data points lie at the higher extreme (in terms of Raman shift) of the gradient 
samples suggests that the other attained microstructures in that sample are 
more phase separated than when the materials are premixed in solution. This 
also probes that the catalogue of film morphologies explored in compositional 
gradients is richer than in conventional devices. 

3. The Raman shift difference between donor and acceptor (Figure S7b) indicates 
that the maximum Jsc occurs at values close to 3-3.5 cm-1, which might be 
indicative of an optimized degree of phase separation between the blended 
species. Interestingly, we observe that compositional gradients (cloud of 
scattered points) reproduce very well the overall photocurrent trend observed in 
discrete devices (solid line), but providing much more statistical relevance. 

In addition to Raman shifts we have evaluated further potential priors about 
morphology, such as the PL. For this, we have measured PL maps at 633 nm 
excitation in our PBDB-T:ITIC-C2C6 graded device (so that both materials are 
absorbing), in the same setup used to extract Raman. From the scattered data shown 
in Figure S8 we inferred the following trends in terms of PL intensity and shifting: 

1. Photocurrent is optimized at submaximal PL quenching scenarios. This finding 
supports that a certain degree of phase separation is required to maximize 
simultaneously charge photogeneration and charge extraction, probably due to 
a detrimental charge carrier mobility in one of the species (likely to be the donor 
as suggested by our literature revision in Figure S14 and the large Raman shifts 
upon blending). 
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2. Photocurrent achieves its maximum when the PL spectrum is centred in the 
range of 780-800 nm, which could be indicative of enhanced crystallinity in the 
acceptor phase (as showing the more red-shifted PL emission). 

 

 

Figure S7. (a) Raman shift of the main vibrational fingerprints of PBDB-T (red circles) and ITIC-C2C6 
(blue circles) obtained in discrete devices following traditional experimentation workflows (solid 
circles with error bars) and graded devices (depicted as semi-transparent clouds of points). The 
solid black line corresponds to a guide-to-the-eye of the short-circuit current density (Jsc) 
measured in the best performing discrete devices in terms of PCE. (b) A correlation plot of Jsc and 
photocurrent vs Raman shift difference between donor and acceptor indicates that the morphology 
for optimum photogeneration is attained at Raman shift gaps close to 3-3.5 cm-1. 

 

 

 

Figure S8. (a) Photocurrent vs. integrated PL intensity shows that submaximal PL quenching 
scenarios correlate well with enhanced photogeneration and charge extraction. (b) Photocurrent 
vs. PL emission centre shows a broader distribution of values although we observe that 
photocurrent is precisely enhanced when the PL is centred close to 780-800 nm. 
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e. Relationships between Raman, PL, active layer thickness and FF in 
discrete and combinatorial devices 

Since focusing solely on Jsc when optimizing D:A OPV blends might lead in some 
cases to a suboptimal PCE (mainly due to a dissimilar FF dependence with D:A ratio, 
see Figure S4), we have evaluated potential training features that could mitigate this 
effect by modelling also the FF dependence on composition. FF depends on the total 
active layer thickness, the microstructure, charge transport properties (including the 
existence of a space charge limited current (SCLC) scenario), the quality of the 
interlayers and even the active area of the devices, all having important effects on the 
series and shunt resistances.8 To extend the AI study to investigate FF we would need 
initial input parameters that characterize the aforementioned dependencies and, 
moreover, much larger data statistics, as we only made discrete devices for two 
binaries in the present work (those shown in Figure S4). As a preliminary investigation, 
we have evaluated if Raman, PL or thickness can be used as prior for the FF 
dependence on D:A ratio. 

First, we explored the possibility for the Raman shift of the main vibrational modes of 
the blended materials to be a potential prior of the FF variations (Figure S9). In this 
case, we found that the FF peaks close to a D-A Raman shift gap (Dwdonor - Dwacceptor) of 
3.5 cm-1, indicating the formation of a slightly distinct morphology as for maximum 
photocurrent (ca. 3 cm-1). In this respect, electronic transport might be the key element 
to determine FF for a given device architecture. 

The PL intensity and shift could also be included as potential parameters correlated to 
FF. As illustrated in Figure S10a, in PBDB-T:ITIC-C2C6 blends the FF maximizes at 
intermediate PL quenching scenarios. This finding suggests that photogeneration is the 
dominant factor in the compositional window defined by the main photocurrent 
maximum (50-60 vol% of donor) whereas the maximum FF occurs where some degree 
of phase separation is present, likely to improve charge transport. Furthermore, an 
analysis of the PL shifting with FF (Figure S10b) indicates that largely red-shifted PL 
distributions (ca. 800 nm) might correlate better with an enhanced FF in the 
compositional window of 30-40 vol% of donor. This could be indicative of the formation 
of ITIC-C2C6 aggregates as these are responsible for red-shifted PL. This is in good 
agreement with our previous observation regarding PL quenching and photocurrent as 
ITIC-C2C6 shows an improved charge transport compared to PBDB-T (Figure S14). 

Finally, we have also observed that at intermediate D:A ratios the FF correlates 
reasonably well with thicker active layers, as suggested by the trends found as a 
function of the pixel number in discrete devices (Figure S11). With these encouraging 
results in mind, we conclude that Raman shifting, PL quenching and PL shifting 
(including active layer thickness) could be incorporated as additional input variables in 
upcoming AI models to better account for morphology, including its ultimate 
relationship with Jsc, FF and eventually PCE. 
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Figure S9. (a) Raman shift of the main vibrational fingerprints of PBDB-T (red circles) and ITIC-C2C6 
(blue circles) obtained in discrete devices following traditional experimentation workflows (solid 
circles with error bars) and graded devices (depicted as semi-transparent clouds of points). The 
solid black line corresponds to a guide-to-the-eye of the FF measured in the best performing 
discrete devices in terms of PCE. (b) A correlation plot of FF and photocurrent vs Raman shift 
difference between donor and acceptor indicates that the morphology for optimum 
photogeneration is attained at Raman shift gaps close to 3 cm-1, while the FF peaks at slightly 
higher shift gaps (3.5 cm-1). 

 

 

Figure S10. PL data for the PBDB-T:ITIC-C2C6 graded device extracted at 633 nm excitation. (a) The 
integrated PL intensity distribution shows its minimum (i.e. maximum quenching) at the 
compositional window where photocurrent attains its absolute maximum. This is indicative of 
photogeneration being the dominant factor at such compositional regime. (b) The PL shifting 
distribution indicates that the maximum FF is achieved for red-shifted PL spectra compared to 
those collected at the maximum in photocurrent. Dashed lines represent (in both panels) support 
vector machine (SVM) models to the experimental data to draw the main statistical trendlines. Solid 
lines are splines connecting the data observed in the discrete devices. 
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Figure S11. (a) The FF dependence as a function of the pixel number in discrete PBDB-T:ITIC-C2C6 
devices (containing 1D thickness gradients) shows that at balanced D:A ratios the active layer 
thickness largely determines the FF. (b) A SVM model regressor is applied to our experimental data 
to obtain a smoother landscape relating pixel number (i.e. thickness), composition and FF (in 
colour scale). 
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Section III.  Ellipsometric characterization: normalized absorption coefficients 
and Tauc plots 

The absorption coefficients (a) were deduced from the corresponding extinction 
coefficients (k), extracted by means of variable angle spectroscopic ellipsometry 
(VASE) using a Semilab GES5E rotating polarizer ellipsometer. Modeling of the 
ellipsometry data was performed using the Winelli II piece of software package from 
SOPRALAB. 

For the determination of the solid-state optical band gaps using the Tauc plots, we 
depict the magnitude (a hn)1/r vs hn (photon energy in eV), where r = 2 for indirect 
allowed transitions. By consistently extrapolating the linear regime of the absorption 
onset we determine the corresponding optical band gaps. 

 

Figure S12. Combinatorial matrix of normalized absorption coefficients corresponding to the D:A 
binary OPV systems screened in the main manuscript. Data for donors and acceptors are depicted 
in red and blue colors, respectively. 
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Figure S13. Tauc plots used to determine the solid-state optical band gap of the semiconducting 
materials studied. 
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Section IV.  Listing of the optoelectronic descriptors used in the AI modelling 

Donor and acceptor materials are characterized by a set of fundamental and intrinsic 
optoelectronic descriptors formed by 7 different magnitudes. While the optical 
descriptors (κmax, λmax and λedge) are deduced from their corresponding complex 
refractive indices determined by variable-angle spectroscopic ellipsometry (VASE) 
(Figure S12), the electronic descriptors (HOMO, LUMO, Egap and μh,e) are extracted 
from a variety of literature references. Note that Egap is simply computed as the LUMO-
HOMO difference, thus corresponding to the electronic band gap. Therefore, each D:A 
pair has 14 fundamental optoelectronic descriptors ascribed (7 per material). Below, we 
detail the values attained in each of the three distinct sets of descriptors selected for 
the training of AI algorithms. 

In the first set (Table S2), we randomly select HOMO and LUMO energy levels from 
our literature database. We also randomize the selection of the corresponding 
mobilities. Therefore, we do not carefully select the data to be consistently ascribed to 
a unique characterization technique (i.e. cyclic voltammetry (CV) or ultraviolet 
photoelectron spectroscopy (UPS); or space-charge limited current (SCLC) devices or 
time-of-flight (TOF) measurements). 

Table S2. Fundamental optoelectronic features used as a random selection of (electronic) 
descriptors. kmax, lmax and ledge were deduced from the ellipsometric measurements shown above. 

 Material kmax lmax 
(nm) 

ledge 
(nm) 

HOMO 
(eV) 

LUMO 
(eV) 

Egap 
(eV) 

µh,e 
(cm2 V-1 s-1) Ref. 

Do
no

rs
 PTB7-Th 0.91 625 720 -5.24 -3.66 1.58 1.80E-04 9,10 

PBDB-T 1.37 637 651 -5.33 -3.53 1.80 1.08E-04 11,12 
PBDB-T-2F 0.79 568 642 -5.47 -3.65 1.82 2.97E-04 13 
PBDB-T-2Cl 0.84 567 639 -5.51 -3.57 1.94 2.13E-04 13 
PCDTBT 0.95 549 610 -5.50 -3.60 1.90 9.00E-06 14,15 

Ac
ce

pt
or

s  

ITIC 1.60 706 734 -5.64 -3.92 1.72 1.10E-04 1 
ITIC-M 1.68 702 729 -5.58 -3.98 1.60 1.10E-04 11 
ITIC-C2C6 1.86 718 756 -5.66 -3.91 1.75 6.90E-04 * 
ITIC-C8 1.68 737 763 -5.63 -3.91 1.72 6.90E-04 1 
ITIC-4F 1.13 724 756 -5.69 -4.07 1.62 5.05E-04 16,17 
PC70BM 0.40 479 585 -6.10 -3.90 2.20 1.00E-03 18,19 

* For ITIC-C2C6, the corresponding HOMO and LUMO values are reported in Section A. The mobility is 
considered to be the same as ITIC-C8. 

 

In the second set (Table S3), we hand-pick those articles in which both reported 
HOMO and LUMO levels were measured by means of CV whenever possible. To 
further increase the consistency, we also index the value for the carrier mobility 
reported in the same work (if possible), typically measured by SCLC measurements on 
single carrier devices. 
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Table S3. In this selection of optoelectronic descriptors, both HOMO and LUMO energy levels are 
extracted from references using CV measurements whenever possible. Mobility values correspond 
preferentially to those reported in the same works as CV measurements. kmax, lmax and ledge were 
deduced from the ellipsometric measurements shown above. 

 Material kmax lmax 
(nm) 

ledge 
(nm) 

HOMO 
(eV) 

LUMO 
(eV) 

Egap 
(eV) 

µh,e 
(cm2 V-1 s-1) Ref. 

Do
no

rs
 PTB7-Th 0.91 625 720 -5.30 -3.17 2.13 2.40E-04 20,21 

PBDB-T 1.37 637 651 -5.33 -3.29 2.04 3.00E-04 1 
PBDB-T-2F 0.79 568 642 -5.54 -3.61 1.93 5.00E-04 22 
PBDB-T-2Cl 0.84 567 639 -5.52 -3.55 1.97 5.20E-04 22 
PCDTBT 0.95 549 610 -5.50 -3.60 1.90 6.20E-05 14,23 

Ac
ce

pt
or

s 

ITIC 1.60 706 734 -5.64 -3.92 1.72 1.10E-04 1 
ITIC-M 1.68 702 729 -5.58 -3.98 1.60 1.10E-04 11 
ITIC-C2C6 1.86 718 756 -5.66 -3.91 1.75 6.90E-04 * 
ITIC-C8 1.68 737 763 -5.63 -3.91 1.72 6.90E-04 1 
ITIC-4F 1.13 724 756 -5.71 -4.15 1.56 4.50E-04 22 
PC70BM 0.40 479 585 -5.96 -3.90 2.06 5.70E-04 22,24 

* For ITIC-C2C6, the corresponding HOMO and LUMO values are reported in Section A. The mobility is 
considered to be the same as ITIC-C8. 

 

In the third set (Table S4), and according to the large dispersion of HOMO/LUMO 
energy levels as well as mobility values found after accessing more than 80 distinct 
literature references (Figure S14), we take the median values of each of the electronic 
descriptors indexed. This is thought to evaluate the sensitivity of the AI algorithms upon 
usage of third-party measurements. 

 

 

Figure S14. Left panel shows boxplots of the HOMO and LUMO levels for the materials used in this 
work as collected from the available literature. Right panel illustrates boxplots of the reported 
mobility extracted by means of SCLC devices in neat and blend films. More than 80 references 
were indexed in total. 
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Table S4. Fundamental optoelectronic descriptors obtained as median values after data mining of 
more than 80 distinct literature references. kmax, lmax and ledge were deduced from the ellipsometric 
measurements shown above. 

 Material kmax lmax 
(nm) 

ledge 
(nm) 

HOMO 
(eV) 

LUMO 
(eV) 

Egap 
(eV) 

µh,e 
(cm2 V-1 s-1) 

No. 
refs. 

Do
no

rs
 PTB7-Th 0.91 625 720 -5.25 -3.60 1.65 2.58E-04 22 

PBDB-T 1.37 637 651 -5.30 -3.37 1.93 2.10E-04 15 
PBDB-T-2F 0.79 568 642 -5.47 -3.62 1.85 3.25E-04 7 
PBDB-T-2Cl 0.84 567 639 -5.51 -3.57 1.94 9.41E-05 5 
PCDTBT 0.95 549 610 -5.40 -3.52 1.88 6.65E-05 10 

Ac
ce

pt
or

s  

ITIC 1.60 706 734 -5.53 -3.89 1.64 3.13E-04 8 
ITIC-M 1.68 702 729 -5.56 -3.98 1.58 1.10E-04 3 
ITIC-C2C6 1.86 718 756 -5.66 -3.91 1.75 6.90E-04 * 
ITIC-C8 1.68 737 763 -5.63 -3.91 1.72 6.90E-04 1 
ITIC-4F 1.13 724 756 -5.69 -4.14 1.55 4.32E-04 5 
PC70BM 0.40 479 585 -6.00 -3.99 2.01 5.70E-04 17 

* For ITIC-C2C6, the corresponding HOMO and LUMO values are reported in Section A. The mobility is 
considered to be the same as ITIC-C8. 

 

From the above lists of fundamental descriptors, an additional series of features is 
correspondingly derived as detailed in Table S5. These are built from the fundamental 
magnitudes and might refer to either the neat materials or to their corresponding blend. 
This second list of derived descriptors contains 9 elements, thus making a total of 23 
descriptors per D:A pair (14 + 9). Therein, we identify 8 non-dimensional magnitudes, 
namely κmax,d (km1), κmax,a (km2), D%S (dps), A%S (aps), D%A (dpa), CTe (ctel), CTh 
(ctho) and μimb (mamd). 

Table S5. Optoelectronic descriptors derived from any of the fundamental lists of material features 
provided above. 

  Label (var) Definition Mathematical relationship 

El
ec

tro
ni

c 

Bl
en

d  

Egap,d-a (eg21) Energy gap difference 𝐸!"#,%&" = #𝐸!"#,% − 𝐸!"#,"# 

Δgap (dgap) Effective band gap 𝛥!"# = 𝐿𝑈𝑀𝑂" −𝐻𝑂𝑀𝑂% 

CTe (ctel) Charge transfer efficiency for electrons 𝐶𝑇' =
|𝐿𝑈𝑀𝑂% − 𝐿𝑈𝑀𝑂"|

𝑘(𝑇
 

CTh (ctho) Charge transfer efficiency for holes 𝐶𝑇) =
|𝐻𝑂𝑀𝑂% −𝐻𝑂𝑀𝑂"|

𝑘(𝑇
 

Δμ (dmob) Difference in mobility 𝛥𝜇 = |𝜇% − 𝜇"| 
μimb (mamd) Mobility ratio 𝜇*+, =

𝜇"
𝜇%

 

O
pt

ic
al

 Ne
at

 

D%S (dps) Spectral overlap with the sun irradiance 𝐷%. = 1 −
2500 − 𝜆'%!',%

2500  

A%S (aps) Spectral overlap with the sun irradiance 𝐴%. = 1 −
2500 − 𝜆'%!',"

2500  

Bl
en

d  D%A (dpa) Absorption complementarity 𝐷%𝐴 = 1 − 2
𝜆'%!'," − 𝜆'%!',%
𝜆'%!'," + 𝜆'%!',%
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Section V. Training and visualization of the Bayesian machine scientist 

In the first run of the Bayesian machine scientist we take the 8 non-dimensional 
optoelectronic descriptors derived from the fundamental values listed in Table S2 
(random selection of features from the literature). For the feeding of the algorithm we 
randomly select 1,000 data points from the high performing crust of photocurrent 
values in the corresponding Jsc-vol% space of each binary (8 D:A blends in the first 
run). Note that the upper crust of the Jsc-vol% space corresponds to the region where 
thickness and local morphology are more optimal for the OPV performance. By using a 
selection of values from the upper crust only, the computational cost is lowered while 
preserving the meaningful features of the phase space during the training. In addition, 
the machine scientist is biased to return zero normalized photocurrent (NP) at zero 
thickness and/or neat films, which gives physical sense to the most plausible model 
equation eventually found by the algorithm. Such equation returns a mean absolute 
error (MAE) of 0.09 (±0.02) when trained with the 8-element combinatorial matrix 
formed by PTB7-Th and PBDB-T blended with ITIC, ITIC-M, ITIC-C8 and ITIC-C2C6 
(Figure S15), which includes 8,000 experimental data points in total. 

 

Figure S15. Correlation plot for the normalized photocurrent after training of the Bayesian machine 
scientist using 8 combinatorial datasets (8,000 experimental data points in total), namely PTB7-Th 
and PBDB-T individually blended with ITIC, ITIC-M, ITIC-C8 and ITIC-C2C6. The mean absolute error 
(MAE) found corresponds to 0.09 (±0.02). 
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The equation found by the Bayesian machine scientist reads: 

NP = sin((((tan(((((tan(tanh((exp((((((((((((aps / dps) / km2) 
** ((_a6_ / ctel) ** (_a3_ / ctho))) / _a9_) * ((DVF ** 
(tanh(DVF) / (ctho + (DVF + km2)))) ** ((_a8_ + ALT) * dpa))) + 
(_a7_ * ALT)) + ((DVF * _a3_) / (_a4_ + dpa))) + aps) + ((_a1_ + 
DVF) / dpa)) / _a3_) + (aps * (_a5_ * (ctel + ALT))))) * (km1 + 
ctel)))) * ((DVF / mamd) + (((ALT ** dps) * (mamd + ((_a3_ + 
(_a7_ ** _a7_)) ** _a0_))) + _a9_))) / km2) * _a2_) / tan(dps))) 
+ _a2_) / ((km2 ** km2) ** pow3(DVF))) * dpa)), 

This equation includes two variables, namely the active layer thickness (ALT, in nm) 
and the donor volume fraction (DVF); and ten free parameters, valued as: 

'_a0_' = 841.0242941013105, 

'_a1_' = 0.9250910180810115, 

'_a2_' = 0.006865810969620029, 

'_a3_' = 0.20851084069638415, 

'_a4_' = -1.0786072008599603, 

'_a5_' = -1.6604993723756856, 

'_a6_' = 7.989472231285854e+34, 

'_a7_' = 0.10003869806486294, 

'_a8_' = 77.87116793766913, 

'_a9_' = -0.11596721509342561. 

From the ensemble of plausible equations found by the machine scientist, the algorithm 
quantifies the importance of the features according to their rate of appearance. For 
example: a descriptor showing a feature importance (FI) of 0.50 implies that such 
parameter appears in 50% of the most plausible model equations found by the 
algorithm. Since the machine scientist finds quite complicated mathematical 
relationships, it ends up using most variables most of the times, thus leading to an 
uninformative classification of variables: 

'km1' = 0.89, 'km2' = 1.00, 'aps' = 0.96, 'ctel' = 0.93, 'ctho' 
= 0.87, 'dpa' = 0.87, 'dps' = 0.93, 'mamd' = 0.87. 

Nevertheless, and as shown in Figure S16, the model equation demonstrates capability 
to complement the experimental high-throughput exploration and fill the corresponding 
photocurrent phase space with mild patterns. 
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Figure S16. Contour plots for the normalized photocurrent model equation found by the Bayesian 
machine scientist. In this case, the scattered data includes all the experimentally accessed data 
points obtained in each combinatorial D:A device. 

Contrary to its remarkable descriptive power, the model equation does not extrapolate 
well in unknown D:A pairs. In this regard, we illustrate in Figure S17 the predicted 
photocurrent phase space in four different binary validation datasets, namely PTB7-
Th:ITIC-4F, PBDB-T-2Cl:ITIC-4F, PBDB-T:PC70BM and PCDTBT:PC70BM. The 
equation clearly mismatches the experimental normalized photocurrent both in 
absolute values and overall trends. Therefore, the machine scientist cannot be 
employed as an accurate predictive model out of the training set, at least when the 
training set is limited to the aforementioned 8 distinct D:A blends. 

 

Figure S17. Model predictions drawn by the Bayesian machine scientist in four D:A pairs out of the 
training set. The experimental scattered data (black dots) are not properly reproduced by the robot 
(green curves and shaded areas) within the explored phase space diagram, i.e. from neat films up 
to 200 nm in active layer thickness. 

We then employed the median values of the Egaps to train a second Bayesian machine 
scientist algorithm including this time all the experimentally accessed D:A pairs (15 
combinations). For this task, and in order to reduce the computational cost, we 
selected 500 data points from the high-performing crust of photocurrent values in each 
of the binary blends explored, thus making up a total of 7500 data points for the training 
step. After several weeks of training, the resulting 8-parameter, most plausible model 
equation reads: 
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NP = (-(-(tan((sin((((tanh((((cosh(((sinh(((DVF / _a1_) ** 
_a1_)) ** (Eg1 + DVF)) * ((-(sqrt(Eg1)) + (Eg1 / pow2(_a6_))) * 
((_a1_ * _a3_) * (_a3_ * (_a4_ ** sin(fac(Eg1)))))))) ** (((Eg1 
** _a7_) * ((_a4_ + _a4_) + (((_a0_ + ALT) / _a7_) + ((Eg1 + 
ALT) + ((Eg1 * (_a7_ + Eg1)) * (((Eg2 * Eg2) * Eg2) + 
(cos(((_a2_ + cos((Eg1 ** (Eg2 + Eg2)))) / (_a7_ / fac(Eg2)))) / 
cos(Eg1)))))))) ** (_a7_ * (_a3_ * DVF)))) + sin(_a0_)) * ((ALT 
* (_a6_ / _a7_)) / (sin(((((_a5_ * Eg2) + _a2_) ** Eg2) + ((Eg2 
+ (Eg1 ** (_a1_ ** (sqrt((DVF / (((ALT + ALT) / _a0_) + (_a3_ / 
Eg1)))) / (Eg2 ** DVF))))) * _a4_))) + (_a5_ + (pow2((Eg2 / 
Eg1)) * Eg2)))))) + (_a5_ * (ALT / log((_a4_ * exp(_a1_)))))) * 
Eg1) / (sqrt((tan(sinh(DVF)) ** exp(tan(sinh(DVF))))) + ((ALT + 
((-(ALT) + _a2_) / Eg1)) * (_a2_ ** _a6_))))) / (_a1_ ** 
fac(Eg2)))))) / (((DVF ** _a4_) ** (_a5_ * fac(Eg1))) * Eg1)) 

where 

'_a0_': 620.2945177575979, 

'_a1_': '0.958014069387981, 

'_a2_': 3443.5970433103516, 

'_a3_': 1.2935329423986563, 

'_a4_': 107.62433512234023, 

'_a5_': -0.000594846647808181, 

'_a6_': -0.971457385756211, 

'_a7_': -4.2876008724962595 

Interestingly, the MAE obtained in this run (Figure S18) is comparable to our previous 
exploration using a larger set of input descriptors, thus suggesting that the Egaps alone 
are highly descriptive features for the Jsc-vol% dependence. 
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Figure S18. Correlation plot for the normalized photocurrent (NP) obtained after training the 
Bayesian machine scientist using 15 combinatorial datasets (7500 experimental data points in 
total), and two material descriptors only, namely the electronic band gaps of donor (eg1) and 
acceptor (eg2). The mean absolute error (MAE) found corresponds to 0.08 (±0.02). 

By evaluating the abovementioned model equation in a grid, we build largely 
descriptive contour plots that serve us to follow the mild oscillations of the photocurrent 
in the thickness-composition space (Figure S19). Finally, we extrapolate the model to 
four different and unseen D:A pairs to evaluate the predictive capability of the equation 
found (Figure S20). We observe that the model fails at matching the optimum 
composition in blends including semicrystalline polymers such as P3HT, similarly to 
what we observe in the RF model extrapolations (Figure S27). 
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Figure S19. Contour plots for the normalized photocurrent obtained upon training the Bayesian 
machine scientist using data for 15 distinct D:A combinations (500 data points each) and two input 
descriptors only, namely the corresponding electronic band gaps of the donor and the acceptor 
materials. The scattered data shown corresponds to all the data points experimentally generated in 
each D:A combination, which largely exceed the 500 data points selected for the training step. 

 

 

Figure S20. Extrapolations of the model equation found by the Bayesian machine scientist in 
unseen D:A pairs. Note that the only input parameters are the electronic band gaps of donor and 
acceptor materials. The active layer thickness dependence on the photocurrent distribution is 
illustrated by the darkness of the shaded green areas (the darker, the thicker, up to 200 nm). 
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Section VI. Training of the random forest machine-learning algorithm 
 

a. Random forest ensemble optimization 

The RF machine-learning (ML) model is implemented in Python 3.7.3 using the open-
source toolbox Scikit-Learn25 v0.22.2. The RF regressor is first optimized in terms of 
number of trees in the forest (n_estimators) employed by looking for a sweet spot 
between learning performance and computational cost. The learning performance is 
evaluated by averaging the mean absolute error (MAE) and mean squared error (MSE) 
in subsequent leave-one-out cross-validations (LOO-cv) of the 15 experimental binary 
OPV datasets generated in this work. Our results (Figure S21) show that when all 
fundamental and optoelectronic descriptors (23 elements) are employed in the training 
of a RF model, a moderate value of n_estimators = 100 yields converged MAE with 
very limited computational cost (few seconds of training time per LOO-cv). Herein, 
n_estimators is set to 100 by default in our RF training procedures. 

 

Figure S21. Exploration of the influence of the number of trees in the forest (n_estimators) in 
subsequent LOO-cv runs of 15 combinatorial datasets. The values and error bars depicted account 
for the mean and standard deviation of the MAE and MSE in the 15 runs performed at each 
n_estimators step. 

 

b. Leave-one-out cross-validations and extrapolation capability 

The first tentative LOO-cv included 8 datasets and the full list of optoelectronic 
descriptors (23). Our (arbitrary) criterion for successful extrapolation required the MAE 
to be below 0.20 in the validation datasets, which is a figure comparable to our 
experimental error (10-15%) in the determination of active layer thickness and 
composition4. Based on that threshold error, the RF model yields ca. 65% (5/8) 
accuracy in the present LOO-cv case example (Figure S22). Nevertheless, by 
extrapolating a single RF model trained with all 8 datasets we obtain a MAE < 0.20 in 7 
out of 7 D:A binaries out of the training set (Figure S23). Note that the MAE is 
computed with respect to the upper shell of 1,000 values in the corresponding Jsc vs. 
active layer thickness and composition phase space (colored rainbow data in Figure 
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S23). By further extending the training dataset to 15 distinct D:A blends, the LOO-cv 
returns an average MAE of 0.17 (±0.08), as depicted in Figure S24. 

 

Figure S22. LOO-cv of the RF model trained with 23 descriptors and 8 datasets, namely PTB7-Th 
and PBDB-T donors blended with ITIC, ITIC-C8, ITIC-C2C6 and ITIC-M. The extrapolation of the RF 
model is over imposed (black dots) on the actual experimental measurements (in color scale). The 
corresponding Spearman’s rank correlation coefficients (ρ), MAE and MSE obtained in each LOO-
cv run are also included. 
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Figure S23. Full combinatorial matrix of the normalized Jsc phase diagram of five donor polymers 
and six different small molecule acceptors built using a RF model trained with 8 datasets 
(highlighted in green) and 23 optoelectronic descriptors. Subplots highlighted in blue are used to 
test the predictive capability of the model (they were not used for training in the present case). 
Magenta panels remark those binaries in which there are not experimental data available, thus they 
are purely predictive cases. The RF model predictions are depicted as dashed lines corresponding 
to four different active layer thickness values: 50 nm (lightest grey), 100 nm, 150 nm and 200 nm 
(black). 
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Figure S24. LOO-cv of the RF model trained with 23 descriptors and 15 datasets. The extrapolation 
of the RF model is over imposed (black dots) on the actual experimental measurements (in color 
scale). The average MAE obtained is 0.17 (±0.08). 

 

c. Feature selection 

Feature selection in ML algorithms such as RF consists of identifying those descriptors 
that best describe the given set of observables. This is useful to improve the accuracy 
of the model while avoiding overfitting and reducing the computational cost. Thus, 
feature selection generally results in simpler and more generalized models which might 
enable the understanding of their underlying learning structure to perform an intuitive 
interpretation, i.e. providing some physical sense to the model predictions in terms of 
normalized Jsc for a variety of material systems. The here proposed initial list of 
optoelectronic descriptors is notably large (23) yet insignificant with respect to the 
number of observables used in training: 1,000 data points per D:A pair. Note that all 
experimentally accessed D:A datasets (15 OPV binaries) are employed in the feature 
selection procedure to maximize the parametric variability seen by the model, thus 
making up a total of 14,000 data points for the training step (in subsequent LOO-cv 
runs). This implies that overfitting is not expected to arise; therefore, in our case feature 
selection is performed to identify the most relevant descriptors and to provide physical 
intuition to the learning algorithm. 

Feature selection in ML does not follow a unique recipe or searching protocol. 
Conversely, it constitutes a route open to distinct approaches and statistical criteria 
depending on the type of problem (classification vs regression, categorical vs 
numerical features) and the information collected a priori about the target features in 
the explored datasets. In this work, we adopted a greedy mean absolute error (G-MAE) 
feature selection procedure. This approach starts by considering the simplest RF 
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model (i.e. excluding any feature in the modeling) and progressively screens the MAE 
of models of increased complexity. In our case, the G-MAE exploration was 
subsequently performed by LOO-cv of 15 datasets using each of the optoelectronic 
descriptors selections detailed in Section IV. We then averaged the MAE obtained for 
each combination of descriptors to build a G-MAE matrix (Figure S25). In this way, we 
also consider the variability of the input descriptors took from the literature. By following 
this protocol, we identify a series of RF models of two features only that minimize the 
MAE to ca. 0.15, which is a lower figure compared to that obtained using the full list of 
23 descriptors (Figure S24). 

Among the most successful parametric combinations, we generally observe that 
descriptors related to the HOMO energy level of the donor such as dps or ledge1 (as 
well as homo1 itself) result in accurate models. Regarding acceptor material 
descriptors, Egap,a (eg2) appears as the most successful feature in RF model training. 
Also, the combination of µimb (mamd) with features related to the HOMO of the donor 
lead to models with low MAE. 

With all that, one of the most interesting parametric combinations identified is that 
formed by the donor and acceptor materials band gaps, Egap,d and Egap,a. The intuitive 
understanding of such model is remarkable since it indicates that the RF model 
requires only the electronic band gaps of the mixed components to predict the Jsc-vol% 
phase space. Thus, the complementary absorption between donor and acceptor, 
determined by their respective band gaps, is likely to be enough for the RF ensemble 
to shape the normalized Jsc phase space of the corresponding blends. 

Figure S27 illustrates the RF model extrapolations obtained in binary OPV systems out 
of the training set formed by the 15 D:A combinations explored in this work, using the 
electronic band gaps as the only input descriptors. The experimental datasets shown in 
Figure S27 were extracted from literature26–30 and include several examples of 
polymer:fullerene blends as well as a representative example of an all-polymer binary 
blend, namely PBDB-T:N2200. Notably, in two of the blends explored (APFO-
3:PC60BM and PBDB-T:N2200) the RF model is close to reproducing the position of the 
normalized Jsc maximum. Nevertheless, the model clearly fails in predicting the Jsc-
vol% dependence of workhorse D:A pairs such as P3HT:PC60BM. This might be 
indicative of limited extrapolation capabilities when the morphology of the blended 
materials widely differs with respect to the systems explored in the training step, 
namely mostly amorphous vs. semi-crystalline polymers as donors. However, further 
extension of the training dataset to such semi-crystalline systems could enhance the 
predictive power of the RF model. 
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Figure S25. G-MAE matrix of RF models trained with combinations of two descriptors only using 15 
experimental datasets. The MAE values were obtained by averaging the MAE in 15 successive 
LOO-cv runs for each of the optoelectronic descriptors selections detailed in Section IV. The 
diagonal components correspond to the MAE obtained in one-parameter RF models. The donor 
volume fraction (DVF) and the film thickness (FT) are included implicitly in all models. 
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Figure S26. Full combinatorial matrix obtained after RF model training with 8 datasets (green 
frames) and 2 descriptors only, namely eg1 and eg2. By constraining the extension of the training 
dataset, the MAE raises up to 0.16 (±0.07). 

 

Figure S27. RF model extrapolations in binary OPV blends out of the initial training set. For the 
training of the RF, only two features were considered, namely eg1 and eg2, apart from DVF and FT. 
The full list of D:A blends explored in this work (15) was employed in the training step. The 
scattered experimental datasets depicted were extracted from literature.26–30 In the conversion from 
wt% to vol%, an average density for the polymers and fullerenes of 1.1 g mL-1 and 1.6 g mL-1 was 
considered, respectively. 
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d. Sensitivity analysis of the input descriptors in the two-parameter 
model 

In this work, the HOMO, LUMO (thus Egap) and mobility values are not consistently 
measured in the neat materials; they are, instead, took from a variety of literature 
references. Since there might be large quantitative differences between 
characterization methods (Section IV, Supporting Information), it is interesting to 
evaluate how critical these values are for the successful training of a RF model.  

For that purpose, we trained a RF ensemble using the median values obtained in our 
HOMO/LUMO data mining study (Figure S14). As shown in Figure S28, the median 
values obtained in the corresponding distributions are still largely descriptive inputs for 
the RF algorithm. The model returns a MAE of 0.16 (±0.07), a figure which is in 
excellent agreement with our previous models using hand-picked literature values from 
CV measurements only (Fig. 6 in the main manuscript). 

Finally, since Tauc plots (Figure S13) can be employed to quantify the solid-state 
optical band gap of thin film materials, we further validated a RF model using such 
descriptors for the donor and acceptor materials only (Eg,opt,d and Eg,opt,a). This approach 
is thought to keep the experimental consistency in our work since the complex 
refractive indices of the here studied materials were all measured in our group using 
the same experimental setup (a Semilab GES5E rotating polarizer ellipsometer). With 
all that, the results shown in Figure S29 indicate once again great modeling 
consistency as the MAE slightly raised to 0.18 (±0.07). 

 

Figure S28. LOO-cv of a 2-parameter RF model trained using the median values of the electronic 
band gaps found in the literature. The resulting MAE reads 0.16 (±0.07). 
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Figure S29. LOO-cv of a 2-parameter RF model trained using as input descriptors the 
corresponding solid-state optical band gaps of the materials, as obtained from the Tauc plots 
shown in Figure S13. The average MAE obtained equals 0.18 (±0.07). 

Section VII. Conversion from volume to weight fractions via density ratio 

Optical probes such as Raman spectroscopy, UV-vis photometry or ellipsometry have 
access to volume fractions and ratios as these are the fundamental properties 
associated to effective medium approximations of mixtures. However, the conversion 
from volume fractions (vd and va for donor and acceptor, respectively) to weight 
fractions (wd, wa) in a blend is straightforward if the density ratio of the blended 
materials (x = rd / ra) is known by applying the following formula: 

𝑤! =
𝑣!𝜌!

𝜌" + 𝑣!(𝜌! − 𝜌")
= 1 − 𝑤" 

By exploiting our series of discrete pixels of controlled D:A ratios used originally to 
validate the high-throughput methodology, we can actually determine x by fitting the 
equation above to our experimental data. Interestingly, there is no need to determine 
the absolute values of rd and ra since x alone controls the conversion from volume to 
mass fractions (and vice versa). Figure S30 shows the volume fraction as deduced 
from Raman in homogeneous samples of controlled D:A ratios (w:w) for PTB7-Th:ITIC 
and PBDB-T:ITIC-C2C6 blends. These were prepared by pipetting controlled weights of 
a pristine acceptor aliquot in distinct vials containing neat polymer only; this procedure 
minimizes the error committed during pipetting viscous inks (neat polymers). A strong 
deviation from a straight line in Figure S30 indicates the existence of a large density 
difference (see green and red dashed lines in Figure S30 as extreme case examples). 
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Figure S30. Correlation between donor weight fractions (as prepared from the corresponding 
aliquots) and donor volume fractions measured by Raman spectroscopy. 

In our case, such deviation is not very pronounced, thus suggesting that the D:A 
material combinations have similar densities. In particular, we have determined x = 
0.81 and x = 1.12 for the PTB7-Th:ITIC and PBDB-T:ITIC-C2C6 blends, respectively. 
Assuming a density for PTB7-Th of 1.17 g cm-3 (as reported for PTB7)31 and a density 
for PBDB-T of 1.1 g cm-3 (similar to other conjugated polymers),2 the corresponding 
densities of ITIC and ITIC-C2C6 read 1.44 g cm-3 and 0.98 g cm-3. With all that, the 
conversion from volume to weight fractions leads to a lateral displacement of the 
original volumetric-based data distribution (Figure S31) that is comprised within our 
experimental error in the determination of composition by Raman spectroscopy (5-10 
vol% in the best case).4 

 

Figure S31. Normalized short-circuit current density distributions obtained in discrete devices of 
(a) PTB7-Th:ITIC and (b) PBDB-T:ITIC-C2C6 blends depicted as a function of donor volume (red) and 
weight (blue) fractions. 
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