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I. Experimental

Sample Preparation

This work investigates the thermoelectric performance of half-Heusler compounds with 

compositions ZrCoSb1-xSnx, Zr1-yTiyCoSb, and ZrCo1-zFezSb (x=0, 0.02, 0.04, 0.06, 0.08, 

0.1, 0.12, 0.14, 0.16, 0.2, 0.25, and 0.3; y=0, 0.1, 0.2, and 0.3; z=0, 0.06, 0.1, 0.15). In 

general, 15 grams of raw elements, including Zr sponge (99.5%, MaTeck), Ti sponge 

(99.95%, Alfa Aesar), Co powder (99.9%, MaTeck), Fe powder (99.5%, Alfa Aesar), Sb 

broken rod (99.8%, Alfa Aesar) and Sn powder (99.5%, Alfa Aesar), are weighted 

according to the stoichiometry in an Ar-filled glovebox with O2 and H2O levels lower 

than 1 ppm. The weighed raw elements are ball milled for 30 hours by a SPEX 8000D 

machine using hardened steel vials and two ϕ12 mm tungsten carbide balls with powder 

loosing on the 10th and the 20th hour. Subsequently, the ball-milled powders are 

compacted using a field-assisted sintering technique (FAST, FCT Systeme GmbH) at 

1323 K and 50 MPa for 3 minutes. The entire sintering is carried out under vacuum. The 

sintered compounds are cut and polished to the desired sizes for thermoelectric transport 

measurement.

Two special samples with composition ZrCoSb0.8Sn0.2 are synthesized for comparison 

purposes. One of the samples is sintered at 1473 K and 50 MPa for 30 minutes to enlarge 

the grain size. The other sample starts from weighing the high purity raw elements in an 

Ar-filled glovebox according to the stoichiometry. The ingot is obtained by applying an 

arc melting under Ar protection. Note that 3% addition Sb is added to compensate for the 

evaporation. During the intervals of the three-times melting, the sample is flipped over to 

guarantee the homogeneity. The arc-melted ingot is then powderized by the high energy 

ball milling (SPEX 8000D) for 2 hours. The obtained powder is sintered using the same 

SPS device but at 1473 K and 50 MPa for 3 mins. The sintering conditions are optimized 

to guarantee relative sample densities larger than 98%.



Sample Characterization

 Microstructural Features

Room-temperature X-ray diffraction patterns are measured in a Bruker D8 Advance 

diffractometer (Co radiation) to characterize the phases. A scanning electron microscope 

(SEM) is employed to characterize the morphology of sample surfaces that are either fine 

polished or freshly broken. Energy-dispersive X-ray spectroscopy (EDX) is employed to 

characterize the sample homogeneity and elemental ratio of selected compounds. The 

specimen for transmission electron microscope (TEM) investigations are prepared by 

traditional mechanical polishing, dimpling, and then ion milling with liquid nitrogen 

stage. Scanning TEM (STEM) imaging was carried out with JEOL ARM 200F equipped 

with double correctors.

 ICP measurement

The elemental ratios are additionally characterized by inductively coupled plasma optical 

emission spectrometry (ICP-OES; iCAP 6500 Duo View, Thermo Fisher Scientific) with 

a standard deviation of approximately 1% for each element. Three parallel weights of 

each sample about 30 mg are taken in a glove box. The materials are digested in a 

mixture of HNO3 and HF at room temperature. The digestion solutions are filled up to 

300 g. The final solutions for measurements have an acid concentration of 2% HNO3 

(65%) and 0.5% HF (40%). Every solution is measured four times.

 Rietveld Refinement

Selected samples for Rietveld refinement are hand milled by mortar and pestle. The 

powders are fixed between two acetate amorphous fine films by a glue that is a mixture 

of Amyl acetate and Collodion. The spectra are obtained by a STOE Stadi P 

Diffractormeter with a Mo source and a Ge 111 Monochromator which yields a single 

wavelength of 0.7093 Å. For each sample, the scanning time is 7 to 8 hours for 2-Theta 

between 5o to 50o. The refinement is performed using Fullprof.

 Sound velocity

Samples with a size of ~10 × 10 × 2 mm3 are used for sound velocity measurements. The 

experiments are carried out by a RITEC Advanced Ultrasonic Measurement System 



RAM-5000. The system realizes the pulse-echo method of time propagation 

measurements with an accuracy of about 10-3 µs. To generate longitudinal (L) and shear 

(S) ultrasonic bulk waves, Olympus transducers V129-RM (10 MHz) and V157-RM 

(5 MHz) are used. Propylene glycol and SWC (Olympus) are used as couplant materials 

for L and S modes, respectively. Thickness measurements are carried out using Mitutoyo 

ID-HO530 device. All data are obtained at 300 K.

 Thermoelectric Properties

The electrical resistivity ( ) and the Seebeck coefficient ( ) are measured using a 𝜌 𝑆

commercial device LSR-3 (Linseis). The thermal conductivity ( ) is calculated as a 𝜅𝑡𝑜𝑡

multiplication of thermal diffusivity ( ), specific heat ( ), and mass density ( ) that are 𝐷 𝑐𝑃 𝑑

measured by laserflash (LFA1000, Linseis), differential scanning calorimetry (DSC 404, 

Netzsch), and an Archimedes kit, respectively. Carrier concentrations ( ) are measured 𝑛𝐻

by a physical property measurement system (PPMS, Quantum Design) at room 

temperature using the Hall bar method under ±3 T magnetic induction. The Hall mobility 

( ) is calculated as . The measurement errors are 4%, 5%, and 12% for 𝜇𝐻 𝜇𝐻 = 1 𝜌𝑛𝐻𝑒

electrical resistivity, Seebeck coefficient, and thermal conductivity, respectively. 

Explicitly, the uncertainties of thermal conductivity originate from 2% in mass density, 4% 

in diffusivity, and 6% in specific heat. Therefore, the uncertainties in power factor and zT 

are 10% and 20%, respectively. To increase the readability of the graphs, we do not add 

the error bars on the curves.

Ab initio calculations based on density functional theory

The formation energy of different defects and electronic calculations in this work are 

based on density functional theory (DFT) implemented in the Vienna Ab-initio 

Simulation Package (VASP)1, 2. A supercell cell consisting of 27 (3 × 3 × 3) chemical 

units is adopted for structural relaxation and electron band calculations. The elements are 

represented by projector-augmented wave (PAW) potentials3, 4 with 350 eV energy cutoff 

and the 12 valence electrons for Zr(4s24p65s24d2); 9 for Co (3d74s2); 5 for Sb (5s25p3); 

and 4 for Sn (5s25p2) are treated explicitly. Initial relaxation and energetics are calculated 

via the generalized gradient approximation, Perdew−Burke−Ernzerhof (PBE)5. The first 



Brillouin zone is sampled by the tetrahedron method on a gamma-centered 8 × 8 × 8 k-

mesh. All structures are relaxed until the force on each atom is less than 0.01 meV/Å. 

The defect formation energy, , as a function of charge state  and ∆𝐻(𝑞,𝜇) 𝑞 ∈ [ ‒ 5, + 5]

Fermi energy , is calculated using the standard supercell approach,6𝜇

(S1)
∆𝐻(𝑞,𝜇) = 𝐸𝐷 ‒ 𝐸0 ‒ ∑

𝑖

𝑛𝑖𝜇𝑖 + 𝑞(𝜇 + 𝐸𝑉 ‒ ∆𝑉0/𝑏) + 𝐸𝐷
𝑐

where  is the difference in total energy between defective supercell and defect-𝐸𝐷 ‒ 𝐸0

free supercell,  is the chemical potential for missing atoms i,  is the corresponding 𝜇𝑖 𝑛𝑖

number of missing atoms. The electron chemical potential term, , is 𝑞(𝜇 + 𝐸𝑉 ‒ ∆𝑉0/𝑏)

calculated with the valence band maximum , and potential alignment term  in 𝐸𝑉 ‒ ∆𝑉0/𝑏

the charge-neutral case. The last term  is the correction term, and is calculated by the 𝐸𝐷
𝑐

approach developed by Freysoldt, Neugebauer, and Van de Walle7. In this work, we 

consider vacancies (VZr,VCo, VSb), interstitials (IZr, ICo, ISb) at the 4d sites, and Frenkel 

defects (only VCo-ICo stable, other cases unstable). The elemental chemical potentials, µi 

(i=Zr, Co, Sb), are determined under the element-rich conditions where the chemical 

potentials of elemental metals ( ) are employed to represent that of elemental atoms 𝜇𝑚𝑒𝑡𝑎𝑙

( ). For example, in calculating the total formation energy of Zr interstials, IZr, we set 𝜇𝑎𝑡𝑜𝑚

the elemental-rich condition that  in Equation S1. This is applied to 𝜇𝑍𝑟, 𝑎𝑡𝑜𝑚 = 𝜇𝑍𝑟, 𝑚𝑒𝑡𝑎𝑙

all defect calculations.

Using density functional theory, we also calculated the dispersion relations and modal 

scattering rate. These require second-order and third-order interatomic force constants 

(IFCs), denoted by Φλ,λ′ and Φλ,λ′λ′′. For this purpose, we applied the finite displacement 

technique implemented in Phonopy8 and Phono3py9, respectively. For the second-order 

IFC calculations, to construct the dynamical matrices, we displaced each atom by 0.01 Å 

in 3 × 3 × 3 supercells (81 atoms). A Γ-centered 15 × 15 × 15 k-mesh was used for 

Brillouin zone sampling. For the third-order IFC calculations, we used a 2 × 2 × 2 

supercell, atomic displacements of 0.03 Å, and a 45 × 45 × 45 k-grid. For both second-

order and third-order IFCs, we used density functional theory as described above for total 



energy calculations. Given the third-order IFCs, the three-phonon scattering rate  can 
1 𝜏𝜆

be formulated based on the Fermi’s golden rule,

1
𝜏𝜆

=
36𝜋

ℏ2 ∑
𝜆'𝜆''

|Φ
𝜆𝜆'𝜆''|2 × {(𝑛0

𝜆' + 𝑛 0
𝜆'' + 1)𝛿(𝜔𝜆 ‒ 𝜔

𝜆' ‒ 𝜔
𝜆'') + (𝑛0

𝜆' ‒ 𝑛 0
𝜆'')[𝛿(𝜔𝜆 + 𝜔

𝜆' ‒ 𝜔
𝜆'')

‒ 𝛿(𝜔𝜆 ‒ 𝜔
𝜆' + 𝜔

𝜆'')] }

(S2)

where  indicates phonon mode (q, j), n0 is the Bose-Einstein distribution, and the delta 𝜆

function δ(·) enforces energy conservation during scattering. The formalism of Fermi’s 

golden rule is consistent with the single-mode relaxation time approximation (RTA) of 

the Boltzmann equation. Both of these assume the single-particle transport picture. In the 

RTA, the lattice thermal conductivity can be defined as 

(S3)
𝜅 =

1
𝑉∑

𝜆

𝐶𝜆𝑣𝜆⨂𝑣𝜆𝜏𝜆

where V is the volume,  is modal heat capacity, 𝐶𝜆 = 𝑘𝐵𝑥 𝑒𝑥𝑝(𝑥)/(𝑒𝑥𝑝(𝑥) ‒  1)

, and  and  are group velocity and relaxation time for mode . The 𝑥 = ℏ𝜔𝜆 𝑘𝐵𝑇 𝑣𝜆 𝜏𝜆 𝜆

group velocity could be obtained from phonon dispersion, and all the calculated results 

are presented in Section IV below.

In addition, the Grüneisen parameter for mode , , is calculated by the finite (𝑞,𝜔) 𝛾𝑞𝜔

difference method. Here q is phonon wave vector and  is energy. In terms of the 𝜔

dynamical matrix , modal Grüneisen parameter is defined as𝐷𝑞

(S4)
𝛾𝑞𝜔 =‒

𝑉
𝜔𝑞

∂𝜔𝑞

∂𝑉
=‒

𝑉

2𝜔2
𝑞
⟨𝑒𝑞𝜔│∂𝐷𝑞

∂𝑉 │𝑒𝑞𝜔⟩
where V is the volume of a unit cell,  is a phonon eigenvector. We calculate the �|𝑒𝑞𝜔�⟩
phonon modes for three systems: equilibrium (V), compressed (-V), and expanded (+V), 

based on which central difference is used to approximate the  operator, ∂𝐷𝑞 ∂𝑉



. The phonon modes are calculated with Phonopy and the perturbation ∂𝐷𝑞 ∂𝑉 ≈ ∆𝐷𝑞 ∆𝑉

in volume is made by a 3% change in lattice constant8.

II. Thermoelectric properties of ZrCoSb1-xSnx



Figure S1. Temperature-dependent a) electrical resistivity, b) Seebeck coefficient, c) 

power factor, d) total thermal conductivity, e) Lorenz number, f) electronic thermal 

conductivity, g) lattice thermal conductivity, and h) zT of ZrCoSb1-xSnx where x=0, 0.04, 

0.06, 0.08, 0.1, 0.12, 0.16, 0.2, 0.25, and 0.3.



Figure S2. a) The carrier concentration (nH) and carrier mobility (μH), and b) the 

Pisarenko plot of ZrCoSb1-xSnx at 300 K, where x=0.04, 0.06, 0.08, 0.1, 0.12, 0.16, 0.2, 

0.25, and 0.3. The dotted line in b) suggests the corresponding density-of-states effective 

mass ( ).𝑚 ∗
𝐷𝑂𝑆



III. Anomalous reduction of κL in other half-Heusler compounds

Figure S3. Anomalous κL reduction of a variety of half-Heusler compounds at 300 K 

including Zr(Co,Ni)Sb10, NbCo(Sn,Sb)11, (Nb,Zr)FeSb12, Ti(Co,Fe)Sb13, ZrCo(Sb,Sn) 

(this work), and Zr(Co,Fe)Sb (this work).



IV. Phonon dispersion and lattice thermal conductivity from first principles

With the methods detailed in Section I, We performed first-principle calculations for two 

compounds, ZrCoSb and ZrCoSb0.875Sn0.125. The calculated phonon dispersions, 

scattering rates, and group velocities are shown in Figure S4. Besides, the temperature-

dependent calculated  are shown in Figure S5 together with experimental  of ZrCoSb 𝜅𝐿 𝜅𝐿

and ZrCoSb0.88Sn0.12. Comparing the two materials in Figure S4, the dispersion relation 

change only negligibly due to Sn substitution. Besides, the change of group velocity is 

within 5%. Concerning the scattering rate, as expected, only the top-band optical modes 

are mostly influenced. Overall, doping 12.5% Sn on the Sb sites barely changed the 

dispersion or scattering rates of low-frequency modes.

Furthermore, although the substitution of Sn decreases  both theoretically and 𝜅𝐿

experimentally, the reduction in  show distinct behaviors in theory and experiments. In 𝜅𝐿

Figure R2b, we compare the temperature-dependent ratios of / by using 𝜅𝐿_𝑆𝑛0.12 𝜅𝐿_𝑍𝑟𝐶𝑜𝑆𝑏

either calculated or experimental  from 250 K up to 1000 K. Based on the calculated 𝜅𝐿

results, we find that the of /  ratio locates between 0.6 to 0.65 with minor 𝜅𝐿_𝑆𝑛0.12 𝜅𝐿_𝑍𝑟𝐶𝑜𝑆𝑏

variation within the calculation temperatures. This roughly-constant ratio of /𝜅𝐿_𝑆𝑛0.12

 is because of the dominant three-phonon process for both compounds that 𝜅𝐿_𝑍𝑟𝐶𝑜𝑆𝑏

yields the κL~T-1 relation. Moreover, using the experimental , the ratio of /𝜅𝐿 𝜅𝐿_𝑆𝑛0.12

 is close to the calculation ones at temperatures higher than 750 K (the Green-𝜅𝐿_𝑍𝑟𝐶𝑜𝑆𝑏

shaded region in Figure R2b) since the phonon-phonon interaction dominates at high 

temperatures. On the other hand, the experimental ratio deviates from the calculation at 

lower temperatures (the Red-shaded region in Figure R2b), hindering the existence of 

another phonon scattering mechanism.



Figure S4. First-principle-calculation results of a) and b) phonon dispersion relations; c) 

and d) scattering rates; and e) and f) group velocities of ZrCoSb (a, c, e) and 

ZrCoSb0.875Sn0.125 (b, d, f).



Figure S5. a) Comparison of temperature-dependent lattice-thermal-conductivity among 

the pristine ZrCoSb (from experiments and calculations), ZrCoSb0.875Sb0.125 (from 

calculation), and ZrCoSb0.88Sb0.12 (from experiments). b) The temperature-dependent 

ratios of κL_Sn0.12/κL_ZrCoSb from experiments (star) or calculations (dotted line).



V. X-ray diffraction patterns

Figure S6. XRD of ZrCoSb1-xSnx and Zr1-yTiyCoSb with x=0, 0.04, 0.06, 0.08, 0.1, 0.12, 

0.16, 0.2, 0.25, 0.3 and y=0.1, 0.2, and 0.3.



VI. EDX mapping

Figure S7. EDX mapping of ZrCoSb0.8Sn0.2, showing the secondary electron image (SEI, 

a and f) and the elemental distributions of Sn (b and g), Co (c and h), Sb (d and i), and Zr 

(e and j). The compounds are either synthesized by a long-termed ball milling (30 hours), 

following a current assisted sintering (a to e); or by using arc melting, following a short-

term ball milling (2 hours), then the current assisted sintering (f to j). Uniform elemental 

distributions are observed for the compound that is long-term ball milled (a to e); 

meanwhile, obvious impurities such as elemental Zr and an unknown phase that is rich in 

Co and Sn are spotted in the other sample (f to j).



Figure S8. TEM images together with EDX mapping of ZrCoSb0.7Sn0.3.



Figure S9. TEM images together with EDX mapping of ZrCoSb.



VII. Grain size distribution for selected compounds

Figure S10. Statistical analysis of grain sizes by counts (bar, left axis) and cumulative 

percentage (blue line, right axis) of compounds a) ZrCoSb, b) Zr0.7Ti0.3CoSb, c) 

ZrCoSb0.8Sn0.2, d) ZrCoSb0.8Sn0.2, and e) ZrCoSb0.7Sn0.3. The enlarged grain size of 

ZrCoSb0.8Sn0.2 in c) is due to the modified sintering condition at 1473 K and 50 MPa for 

30 mins, whereas the other compounds are sintered at 1323 K and 50 MPa for 3 mins. 

The area-weighted average grain sizes are also presented for each compound.



VIII. The BvK-Debye model details

In the BvK-Debye model, we apply the following assumptions,

1) The periodic boundary condition, i.e., the Born-von Karman (BvK) boundary 

condition is applied instead of the acoustic-elastic-wave assumption that was used 

by Debye in 191214. With the BvK boundary condition, the Debye dispersion is 

violated for phonons with wavevectors near the Brillouin zone boundary. The 

acoustic dispersion tends to be a sine-function instead of linear, as shown in 

Figures S11a and S11b. This dispersion was emphasized by Dames, et al.15, and 

the equations were given by Chen, et al.16,

(S5)
𝜔𝑎, 𝑗(𝑘) =

2
𝜋

𝑣𝐴, 𝑗𝑘𝑐sin (𝜋
2

𝑘
𝑘𝑐

)
where the subscript  represents acoustic branches,  defines the polarization of 𝑎 𝑗

lattice vibrations, and  is the cut-off frequency. We simplify the first Brillouin 𝑘𝑐

zone of a 3D solid as a sphere. Besides, acoustic branches are approximated as 

degenerate.

2) If the number of atoms in the primitive cell ( ) is one, then there is no optical 𝑁𝑢𝑛𝑖𝑡

branch and the whole dispersion is a sine function. However,  is more than 𝑁𝑢𝑛𝑖𝑡

one for most materials (e.g.,  for half-Heusler compounds). Therefore, 𝑁𝑢𝑛𝑖𝑡 = 3

the Brillouin zone is folded and the optical phonons appear. Typically, the heat-

carrying optical phonons are approximated as a series of standing waves (i.e., the 

Einstein oscillator) with a series of constant frequencies ( ) (Figure S11c)17. 𝜔𝑜, 𝑖

According to Einstein’s assumption, each of these optical modes possesses a 

minimum relaxation time, taken as half of its period.

(S6)
𝜏𝑚𝑖𝑛,  𝑜,𝑖 =

𝜋
𝜔𝑜, 𝑖

This assumption, being employed by Chen, et al. together with the BvK 

dispersion, tends to underestimate the relaxation time of these modes as well as 

the optical thermal conductivity. Alternatively, as shown in Figure S11d, we 

apply a Debye dispersion to these optical branches. Thus, these optical phonons 



obtain non-vanishing group velocities. Moreover, instead of assuming a minimum 

relaxation time (Equation S6), the scattering rate of these optical branches can be 

treated by the widely used Debye-Klemens model18. With the revised dispersion 

relation, we can assess the lattice thermal conductivity more accurately.

Figure S11. Schematics showing the phonon dispersions for the 1D atomic chain. (a) the 

Debye dispersion, (b) the BvK dispersion, (c) The BvK-Einstein dispersion (Chen, et 

al.)16, and (d) the BvK-Debye dispersion (this work).

3) Specifically, for the grain boundary scattering, usually the “grey” model, i.e., a 

frequency-independent scattering rate was applied,

(S7)𝜏 ‒ 1
𝐺𝐵 = 𝑣𝐴 𝐷

This treatment has been widely used due to its simplicity and high accuracy at 

higher temperatures. However, a previous work of Wang, et al. observed a  𝜅𝐿~𝑇2

relation for nanocrystalline silicon at lower temperatures, which violates the 



 variation that was predicted in the grey model19. The inconsistency was 𝜅𝐿~𝑇3

alleviated by considering a “non-grey” model where the scattering rate become 

frequency-dependent,

(S8)𝜏 ‒ 1
𝐺𝐵~𝐶𝜔

With the non-grey model, Wang, et al. reproduced the  relation at lower 𝜅𝐿~𝑇2

temperatures but with fitting parameter (the pre-factor  in Equation S8). Further, 𝐶

the frequency dependence in the non-gray model was rationalized by Kim, et al. 

by treating grain boundary as a collection of dislocations20. Then phonon 

scattering by grain boundaries was considered as scattering by dislocation cores 

(DC) and dislocation strains (DS),

(S9)
𝜏 ‒ 1

𝐷𝐶 = 𝑁𝐷
𝑉4 3

𝑣2
𝐴

𝜔3

(S10)
𝜏 ‒ 1

𝐷𝑆 = 0.6 × 𝐵 2
𝑒𝑓𝑓𝑁𝐷𝛾2{1

2
+

1
24(1 ‒ 2𝑟

1 ‒ 𝑟 )2 × [1 + 2(𝑣𝐿

𝑣𝑆
)2]2}𝜔

 is the dislocation density,  is the effective Burgers vector, and  is the 𝑁𝐷 𝐵𝑒𝑓𝑓 𝑟

Poisson’s ratio. Note that phonon scattering rates by dislocation core and 

dislocation strain follow the  and  relations, respectively. Nevertheless, the 𝜔3 𝜔

scattering intensity from dislocation strain is usually much stronger than 

dislocation cores21, thus yielding a  relation, i.e., .𝜏 ‒ 1
𝐺𝐵~𝜔 𝜏 ‒ 1

𝐺𝐵 ≈ 𝜏 ‒ 1
𝐷𝑆

Accordingly, we employ the non-gray model to evaluate the boundary scattering. 

The density of dislocation can be estimated from the grain size through22,

𝑁𝐷 =
12 × 𝜀

𝐷 × 𝐵𝑒𝑓𝑓

(S11)

 is the area-weighted average grain size. The strain, , is obtained from the 𝐷 𝜀

powder XRD pattern following the Williamson-Hall plot23. The norm of the 



Burgers vector ( ) for fcc lattice is usually calculated from the lattice 𝐵𝑒𝑓𝑓

parameter ( ),𝑎

(S12)
𝐵𝑒𝑓𝑓 =

𝑎
2

< 110 >=
𝑎
2

(12 + 12 + 02)0.5 =
𝑎
2

The equations for the BvK-Debye modeling are given as follows:

 The acoustic branch follows Chen, et al.16,

The average sound velocity ( ) is calculated based on the speeds of the longitudinal 𝑣𝐴

( ) and shear mode ( ),𝑣𝐿 𝑣𝑠

(S13)

1

𝑣3
𝐴

=
1
3( 1

𝑣3
𝐿

+
2

𝑣3
𝑆
)

The Poisson’s ratio ,𝑟

(S14)
𝑟 =

1 ‒ 2(𝑣𝑆 𝑣𝐿)2

2 ‒ 2(𝑣𝑆 𝑣𝐿)2

The Grüneisen parameter ,𝛾

(S15)
𝛾 =

3
2( 1 + 𝑟

2 ‒ 3𝑟)
The cut-off wave vector of the acoustic branch ,𝑞𝑎

(S16)
𝑞𝑎 = ( 6𝜋2

𝑉𝑁𝑢𝑛𝑖𝑡
)

1
3

where  is the average volumetric occupation of each atom in the lattice (not the 𝑉

volume of the atom itself),  is 3 for half-Heusler compounds.𝑁𝑢𝑛𝑖𝑡

(S17)𝑉 = �̅� 𝑑

 is the average atomic mass,  is the mass density.�̅� 𝑑

Accordingly, the cut-off frequency ( ) is given by,𝜔𝐷



(S18)
𝜔𝐷 =

2
𝜋

𝑣𝐴𝑞𝑎

The effective “Debye temperature” of the acoustic branch ( ),𝜃𝐷,  𝑎

(S19)
𝜃𝐷,  𝑎 =

ℏ
𝑘𝐵

𝜔𝐷

With the sine-dispersion, the frequency-dependent group velocity is ,𝑣𝑔

(S20)
𝑣𝑔 = 𝑣𝐴 1 ‒ (𝑇 ∗ 𝑥

𝜃𝐷,  𝑎
)2

The frequency-dependent phase velocity ,𝑣𝑝

𝑣𝑝 =
𝑥

2
𝜋

∗ 𝑞𝑎 ∗ 𝑎𝑟𝑐𝑠𝑖𝑛(𝑇 ∗ 𝑥
𝜃𝐷,  𝑎

)
∗

𝑘𝐵𝑇

ℏ

(S21)

where  is the reduced frequency,𝑥

(S22)
𝑥 =

ℏ𝜔
𝑘𝐵𝑇

The relaxation time of the phonon-phonon interaction is ,𝜏𝑃𝑃

(S23)
𝜏 ‒ 1

𝑃𝑃 = (𝑘𝐵𝑇

ℏ )2
2𝑘𝐵𝑉1 3𝛾2𝑇

𝑀𝑣2
𝑝𝑣𝑔

𝑥2

The relaxation time of the grain boundary scattering ( ) follows Equations S9 to 𝜏𝐺𝐵

S12.

The relaxation time of the point defect scattering ( ) will be discussed later in 𝜏𝑃𝐷

section XIII.

The total relaxation time follows the Matthiessen’s rule,

(S24)𝜏 ‒ 1
𝑒𝑓𝑓 = 𝜏 ‒ 1

𝑃𝑃 + 𝜏 ‒ 1
𝐺𝐵 + 𝜏 ‒ 1

𝑃𝐷 + …



The lattice thermal conductivity from the acoustic branch is calculated as,

(S25)
𝜅𝐿,𝑎 =

𝜃𝐷,  𝑎 𝑇

∫
0

𝑣2
𝑔 ∗ 𝜏𝑒𝑓𝑓 ∗

𝑘𝐵𝑥2

2𝜋2𝑣2
𝑝𝑣𝑔

(𝑘𝐵𝑇

ℏ )3 ∗
𝑥2𝑒𝑥

(𝑒𝑥 ‒ 1)2
𝑑𝑥

 The optical branches are evaluated in the following way,

Note that transverse and longitudinal modes are degenerated, therefore, we consider 

only 2 (instead of 6) optical branches for half-Heusler compounds. We name the 

lower-frequency optical branch as the “first” optical phonon, whereas the higher-

frequency optical branch is called the “second” optical phonon.

The lower cut-off wavevector of the first optical branch ,𝑞𝑜1, ‒

(S26)
𝑞𝑜1, ‒ = ( 6𝜋2

𝑉𝑁𝑢𝑛𝑖𝑡
)

1
3 = 𝑞𝑎

The upper cut-off wavevector of the first optical branch ,𝑞𝑜1, +

(S27)
𝑞𝑜1, + = ( 6𝜋2

𝑉(𝑁𝑢𝑛𝑖𝑡 ‒ 1))
1
3

The lower cut-off wavevector of the second optical branch ,𝑞𝑜2, ‒

(S28)
𝑞𝑜2, ‒ = 𝑞𝑜1, + = ( 6𝜋2

𝑉(𝑁𝑢𝑛𝑖𝑡 ‒ 1))
1
3

The upper cut-off wavevector of the second optical branch ,𝑞𝑜2, +

(S29)
𝑞𝑜2, + = ( 6𝜋2

𝑉(𝑁𝑢𝑛𝑖𝑡 ‒ 2))
1
3

The upper cut-off frequency of the second optical branch ,𝜔𝑜2, +

𝜔𝑜2, + =
2
𝜋

𝑣𝐴𝑞𝑜2, +

(S30)



The lower cut-off frequency of the second optical branch ,𝜔𝑜2, ‒

(S31)
𝜔𝑜2, ‒ = 𝜔𝑜2, + sin (𝜋

2

𝑞𝑜2, ‒

𝑞𝑜2, +
)

The upper cut-off frequency of the first optical branch ,𝜔𝑜1, +

(S32)
𝜔𝑜1, + = 𝜔𝑜2, + sin (𝜋

2

𝑞𝑜1, +

𝑞𝑜2, +
)

The lower cut-off frequency of the first optical branch ,𝜔𝑜1, ‒

(S33)
𝜔𝑜1, ‒ = 𝜔𝑜2, + sin (𝜋

2

𝑞𝑜1, ‒

𝑞𝑜2, +
)

The effective group velocity of the first optical branch ( )𝑣𝑔,𝑜1

(S34)
𝑣𝑔,𝑜1 =

𝜔𝑜1, + ‒ 𝜔𝑜1, ‒

𝑞𝑜1, + ‒ 𝑞𝑜1, ‒

The effective group velocity of the second optical branch ( )𝑣𝑔,𝑜1

(S35)
𝑣𝑔,𝑜2 =

𝜔𝑜2, + ‒ 𝜔𝑜2, ‒

𝑞𝑜2, + ‒ 𝑞𝑜2, ‒

The effective “Debye temperature” of the first optical branch ( ),𝜃𝐷,  𝑜1

(S36)
𝜃𝐷,  𝑜1 =

ℏ
𝑘𝐵

𝜔𝑜1, +

The effective “Debye temperature” of the second optical branch ( ),𝜃𝐷,  𝑜2

(S37)
𝜃𝐷,  𝑜2 =

ℏ
𝑘𝐵

𝜔𝑜2, +

The lattice thermal conductivity from the first optical branch ( ) can be evaluated 𝜅𝐿,𝑜1

within the Debye-Klemens model18,



(S38)

𝜅𝐿,𝑜1 =
𝑘𝐵

2𝜋2𝑣𝑔,𝑜1
(𝑘𝐵

ℏ )3𝑇3

ℏ𝜔𝑜1, + 𝑘𝐵𝑇

∫
ℏ𝜔𝑜1, ‒ 𝑘𝐵𝑇

𝜏𝑒𝑓𝑓
𝑥4𝑒𝑥

(𝑒𝑥 ‒ 1)2
𝑑𝑥

Similarly, the lattice thermal conductivity from the second optical branch ( ),𝜅𝐿,𝑜2

(S39)

𝜅𝐿,𝑜2 =
𝑘𝐵

2𝜋2𝑣𝑔,𝑜2
(𝑘𝐵

ℏ )3𝑇3

ℏ𝜔𝑜2, + 𝑘𝐵𝑇

∫
ℏ𝜔𝑜2, ‒ 𝑘𝐵𝑇

𝜏𝑒𝑓𝑓
𝑥4𝑒𝑥

(𝑒𝑥 ‒ 1)2
𝑑𝑥

The total relaxation time follows the Matthiessen’s rule,

(S40)𝜏 ‒ 1
𝑒𝑓𝑓 = 𝜏 ‒ 1

𝑃𝑃_𝑜 + 𝜏 ‒ 1
𝐺𝐵 + 𝜏 ‒ 1

𝑃𝐷 + …

Since the dispersion relation is assumed as linear for optical branches, a different 

expression of the phonon-phonon interaction relaxation time applies24,

(S41)
𝜏 ‒ 1

𝑃𝑃_𝑜1 =
4𝜋

2
 
𝑘𝐵𝛾2

1𝑉1 3

𝑀𝑣 3
𝑔,𝑜1

𝑇𝜔2

(S42)
𝜏 ‒ 1

𝑃𝑃_𝑜2 =
4𝜋

2
 
𝑘𝐵𝛾2

1𝑉1 3

𝑀𝑣 3
𝑔,𝑜2

𝑇𝜔2

 is the reduced Grüneisen parameter and , where  is the number of 𝛾1
𝛾1 =

1
𝑁

𝛾
𝑁

atoms in the conventional unit cell25, for half-Heusler  =12.𝑁

The relaxation time from grain boundaries ( ) and point defects ( ) are treated 𝜏𝐺𝐵 𝜏𝑃𝐷

identically as of the acoustic branch.



IX. Electron-phonon interaction intensity of ZrCoSb, NbFeSb, and ZrCoBi

Under the framework of the Debye-Klemens model, the intrinsic three-phonon process 

can be considered as the “background” of the scattering profile, of which the relaxation 

time is determined by Equations S23, S41, and S42. According to a previous report, we 

consider ZrCoBi possessing a stronger phonon-phonon interaction than ZrCoSb and 

NbFeSb; meanwhile, the phonon-phonon interaction intensities between ZrCoSb and 

NbFeSb should be similar due to their similar thermal conductivities from room 

temperature up to 973 K26.

For comparing the scattering intensity from the charge carriers, we consider the phonon 

relaxation time ( ) of acoustic branches at higher temperatures27,𝜏𝐸𝑃

(S43)
𝜏 ‒ 1

𝐸𝑃 (𝜔) =
(2𝜋𝑚 ∗ )1 2𝐸 2

𝑑𝑒𝑓

(𝑘𝐵𝑇)3 2𝑁𝑉𝑑𝑣𝐴

𝑒𝑥𝑝( ‒
𝑚 ∗

𝐷𝑂𝑆 𝑣2
𝐴

2𝑘𝐵𝑇 )𝑛𝐻𝜔

where   is the density-of-state effective mass,  is the deformation potential,  𝑚 ∗
𝐷𝑂𝑆 𝐸𝑑𝑒𝑓 𝑁𝑉

is the valley degeneracy, which can be counted from the electron band structure,  is the 𝑑

sample density, and  is the phonon frequency.  can be evaluated as28,𝜔 𝐸𝑑𝑒𝑓

𝜇0 =
2 2𝑒𝜋ℏ4

3(𝑘𝐵𝑇)3 2

𝑣2
𝐿𝐷

𝐸 2
𝑑𝑒𝑓(𝑚 ∗

𝐷𝑂𝑆)5 2

(S44)

(S45)
𝜇𝐻 =

𝐹0(𝜂)

2𝐹1/2(𝜂)
𝜇0

where  is the Hall mobility,  is the Fermi integral of order ,𝜇𝐻 𝐹𝑛(𝜂) 𝑛

(S46)
𝐹𝑛(𝜂) =

∞

∫
0

𝜒𝑛

1 + 𝑒𝜒 ‒ 𝜂
𝑑𝜒

 is the reduced Fermi level, which can be evaluated from the Seebeck coefficient,𝜂

(S47)
𝑆 =+ (𝑘𝐵

𝑒 )[2𝐹1(𝜂)

𝐹0(𝜂)
‒ 𝜂]



The related parameters are presented in Table S1, from which we evaluate the EP 

interaction intensities and find that ZrCoSb has a scattering rate similar to ZrCoBi, but 

larger than NbFeSb by roughly 3 times. Since the EP interaction is already insignificant 

for the  reduction of ZrCoSb, it is less likely to yield effective phonon scattering in 𝜅𝐿

ZrCoBi and NbFeSb. Our comparison study suggests that the EP interaction contributes 

insignificantly to the phonon scattering of the ZrCoSb-, the NbFeSb-, the ZrCoBi- and 

possibly the ZrNiSn-based half-Heusler compounds29.

Table S1. Some important parameters for the phonon relaxation times. Three 

compositions, ZrCoSb0.9Sn0.1, Nb0.92Zr0.08FeSb, and ZrCoBi0.9Sn0.1, are specifically 

selected to compare the EP interaction intensity due to their similar carrier concentrations.

Parameters ZrCoSb0.9Sn0.1 Nb0.92Zr0.08FeSb ZrCoBi0.9Sn0.1

nH (1021 cm-3) 1.25 1.21 1.46
γ 1.55 1.7 1.61

Nv 8 8 10
d (g cm-3) 8.01 8.46 9.6
vA (m s-1) 3582 3438 2747
Edef (eV) 20.9 12.1 17.6
m* (m0) 8.7 7.5 10.7



X. Low-magnification TEM images

We perform a low-magnification TEM study of ZrCoSb0.7Sn0.3. Figure S12 displays some 

representative TEM images that are taken at randomly selected regions, showing the 

uniformity of morphology throughout the compound. Besides, it reveals that the sample 

is well crystallized with a grain size in the order of ~200 nm, similar to the SEM results. 

Besides, the concentrations of some other defects such as dislocations and precipitates are 

small, indicating their negligible contribution to the reduction of .𝜅𝐿



Figure S12. Low-resolution TEM images of ZrCoSb0.7Sn0.3.

XI. Elemental ratios

Table S2. Mass ratio of ZrCoSb0.8Sn0.2, ZrCoSb, and Zr0.8Ti0.2CoSb determined by ICP

Zr Ti Co Sb Sn

ZrCoSb0.8Sn0.2 33.83 (0.32) -- 21.50 (0.18) 35.54 (0.35) 8.68 (0.06)

ZrCoSb 33.50 (0.18) -- 22.27 (0.09) 44.62 (0.25) --



Zr0.8Ti0.2CoSb 27.68 (0.34) 3.64 (0.05) 22.04 (0.24) 46.03 (0.57) --

Figure S13. SEM image of the polished surface of ZrCoSb0.7Sn0.3. The markers show the 

positions of EDX measurement.

Table S3. EDX compositions of ZrCoSb0.7Sn0.3, the positions are shown in Figure S13.

Position Co Zr Sn Sb
1 33.69 34.69 9.05 22.58
2 33.36 32.87 9.74 24.04
3 33.09 34.89 9.27 22.74
4 33.91 32.77 9.59 23.73
5 33.45 32.82 9.92 23.82
6 33.26 33.61 9.47 23.65
7 33.68 33.79 9.25 23.28
8 33.08 34.74 8.97 23.21



9 33.03 34.85 9.11 23.01
10 33.40 33.90 9.65 23.06
11 33.60 32.65 9.73 24.02
12 33.09 35.48 8.82 22.61
13 33.58 34.42 9.05 22.96
14 32.96 34.08 9.23 23.73
15 33.32 32.98 9.74 23.97
16 33.66 32.44 9.79 24.11
17 33.92 35.13 8.52 22.43
18 33.42 34.65 9.05 22.88
19 33.36 33.43 9.33 23.88
20 34.00 33.99 9.02 22.99
21 33.48 33.13 9.89 23.50
22 33.11 34.92 9.22 22.74
23 33.56 35.48 9.10 21.86
24 33.71 34.80 8.63 22.86
25 33.57 33.88 9.49 23.06
26 32.82 34.90 9.56 22.71
27 33.46 33.55 9.53 23.46
28 33.05 35.70 9.07 22.19
29 33.59 34.52 9.16 22.72
30 33.56 32.76 10.08 23.60
31 33.13 33.52 9.75 23.60
32 33.30 33.87 9.38 23.45
33 33.96 33.04 9.77 23.23
34 32.90 34.69 9.33 23.08
35 33.68 33.20 9.63 23.49
36 32.81 35.62 9.12 22.45
37 33.57 33.02 9.61 23.81
38 32.93 35.64 8.97 22.46
39 33.31 33.22 10.17 23.30
40 33.39 33.07 9.84 23.71
41 33.32 33.18 10.05 23.45
42 33.00 33.52 9.91 23.58
43 32.87 33.50 9.45 24.17
44 33.02 35.44 8.98 22.56
45 33.36 33.54 9.91 23.19
46 33.28 34.86 8.96 22.90
47 33.27 33.56 9.61 23.57
48 33.01 36.06 8.76 22.16

Mean 33.34 34.05 9.68 22.93
s.d. 0.30 0.97 1.86 2.13

XII. Rietveld refinement

Figure S14 shows the refinement patterns of ZrCoSb0.8Sn0.2 with or without including the 

Co/4d Frenkel defects. The refinement quality factors are given in Table 3 in the main 

text.



Figure S14. The Rietveld refinement of ZrCoSb0.8Sn0.2 a) without and b) with Co/4d 

Frenkel defects.

XIII. Co/4d Frenkel defects for  reduction𝜅𝐿

We investigate the effect of Co/4d Frenkel defects for  reduction under the framework 𝜅𝐿

of the BvK-Debye model. The point defect scattering the phonon relaxation time ( ) is,𝜏𝑃𝐷



(S48)
𝜏 ‒ 1

𝑃𝐷 =  
𝑉

4𝜋𝑣2
𝑝𝑣𝑔

Γ𝜔4

where , the scattering parameter, is related to the types and quantities of point defects. It Γ

is generally defined as30, 31,

(S49)
Γ =

1
3(�̅�

�̅�)2[∑
𝑖

𝑓𝑖(1 ‒
𝑚𝑖

�̅� )2 + 𝜖∑
𝑖

𝑓𝑖(1 ‒
𝑟𝑖

�̅� )2]
The two terms in the bracket of Equation S49 correspond to the fluctuations of mass and 

radius due to the point defects, respectively, and they represent the perturbations of the 

lattice Hamiltonian from the kinetic energy and the potential energy, respectively.  is �̅�

the average atomic mass.  and  are the average atomic mass and average radius of the  �̅� �̅�

substituted sites, respectively. , , and  are the fractional concentration, atomic mass, 𝑓𝑖 𝑚𝑖 𝑟𝑖

and atomic radius of the i-th substitution atom, respectively, and  is a phenomenological 𝜖

parameter for fitting, which is usually between 10 to 200. The term  is included since 

1
3

there are three atoms in the primitive cell of the half-Heusler compounds. The scattering 

parameter  is addable from defects at different lattice sites.Γ

Firstly, assume that the Co/4d Frenkel defects are absent, and phonon scattering mainly 

originates from the contrasts in the mass and the (covalence) radius between Sb (138 pm) 

and Sn (141 pm). In this case, we find that the fitting parameter, , has to reach ~1500 to 𝜖

match the experimentally reduced . Such an immense  is unphysical, suggesting that 𝜅𝐿 𝜖

phonon reduction should not originate from the Sb/Sn substitutional defect.

Contrarily, under the presence of vacancy point defects, the lattice Hamiltonian is 

modified by a kinetic energy term due to the missed vibration of atomic mass ( ), as 𝑇'

well as by a doubled potential energy term due to the removal of bonding ( ). 2𝑈'

Furthermore, the perturbations from the kinetic energy and the potential energy can be 

combined into a single term according to the virial theorem ( = )32, thus the scattering 𝑇'  𝑈'

parameter is,



(S50)
Γ𝑣𝑎𝑐 =

1
3( 1

�̅�)2[𝑓𝑖( ‒ 𝑚𝑣𝑎𝑐 ‒ 2�̅�)2]

where  is the mass of the vacant atom, and  is the concentration of vacancies. This 𝑚𝑣𝑎𝑐 𝑓𝑖

way the fitting parameter  is removed. Similarly, for scattering by interstitials with mass 𝜖

, the scattering parameter is33,𝑚𝑖𝑛𝑡

(S51)
Γ𝑖𝑛𝑡 =

1
3( 1

�̅�)2[𝑓𝑖(𝑚𝑖𝑛𝑡 + 2�̅�)2]

The total scattering parameter is addable from different point defects, therefore, for 

Frenkel defects, we have

(S52)Γ = Γ𝑣𝑎𝑐 + Γ𝑖𝑛𝑡

To match up to the experimental , the calculated concentrations of Co/4d Frenkel 𝜅𝐿

defects are 2.5% and 3.3% for ZrCoSb0.8Sn0.2 and ZrCoSb0.7Sn0.3, respectively, which are 

similar to the ones that are determined from other approaches.



XIV. The impact of Co/4d defects on the electronic transport properties

Based on our calculation results from first principles, the formation of Co/4d Frenkel 

point defects in the doped compounds is driven by electrons for trying to maintain the 

charge neutrality. The defects serve as extra scattering centers for charge carriers. As 

shown in Figure S15, the temperature-dependence index ( ) of  shows a gradual 𝛽 𝜌~𝑇𝛽

transition from 1.5 to 0.5 upon increasing the content of Sn, suggesting that the charge 

carriers experience a stronger alloy scattering which is following the existence of atomic 

point defects34. Accordingly, the carrier mobility is also reduced because of the additional 

scattering, as shown in Figure S2a.

Figure S15. Temperature-dependent electrical resistivity of ZrCoSb1-xSnx. The variation 

index ( ) of  shows a gradual transition of 1.5 to 0.5, suggesting a stronger alloy 𝛽 𝜌~𝑇𝛽

scattering upon increase the content of Sn.



Furthermore, the positively charged Co/4d defects yield n-type self-doping and modify 

the Fermi-level position. Accordingly, based on the reduced doping efficiency, we 

estimate the concentration of Co/4d Frenkel defects additionally. As shown in Figure 

S16a, we observe a doping efficiency of ~70% for the compound series ZrCoSb1-xSnx. 

The reduced doping efficiency has two potential origins: 1) the insufficient ionization of 

the dopants due to the relative distance of the impurity level to the band edge; 2) charge 

compensation due to the formation of charge “killer” defects, such as Co/4d Frenkel 

defects in our case. By assuming the reduced ~30% doping efficiency entirely originating 

from the charge-compensation effect, we evaluate the concentration of Co/4d defect. 

Figure S16b shows the varied defect concentration with the dopant quantity with a +3 

charge of Co/4d defects by summing the +2 charge of ICo and the +1 charge of VCo. 

Accordingly, the calculated defect concentrations are ~2.2% and ~2.9% under 20% and 

30% Sn substitution at the Sb sites, respectively, which are consistent with other 

evaluating approaches in this work.

Figure S16. a) The carrier concentration of ZrCoSb1-xSnx, showing a ~70% doping 

efficiency. b) The estimated Co/4d defect concentrations are ~2.2% and ~2.9% for 

ZrCoSb0.8Sn0.2 and ZrCoSb0.7Sn0.3, respectively, by considering a +3 charge of Co/4d 

Frenkel defect and that the reduced doping efficiency entirely originates from the charge-

compensation effect.
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