Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is © The Royal Society of Chemistry 2020

S-1

Supporting Information

Fig. S1. FESEM image of a) bare LCO, b) nano-TiO₂, c) TiO₂-LCO, d) TiO₂@LCO (annealing the TiO₂-LCO without the presence of carbon and Li_2CO_3) and e) pure LCTO powder

Fig. S2. a) XRD patterns of the nano-TiO₂ and nano-TiO₂-800 (heat treatment at 800 °C). b) XRD patterns of the bare LCO, TiO₂-LCO, TiO₂@LCO and LCTO@LCO

Fig. S3. XPS spectra of bare LCO, LCO-800, nano-TiO₂, nano-TiO₂-800, LCTO and TiO₂@LCO powder. Core-level XPS spectra of Co 2p (left), O 1s (middle), and Ti 2p (right).

Fig. S4. a) Core-level XPS spectra of Ti 2p of TiO₂-LCO. Core-level XPS spectra of O 1s: b) nano-TiO₂, c) TiO₂-LCO and d) nano-TiO₂-800

	O _{abs} %	O _{def} %	Ti-O%	Со-О%	*H ₂ O%
LCTO	7.8	21.8	50.0	20.4	
pure LCO	17.6	41.4	—	48.3	—
LCO-800	21.2	28.6	—	56.2	—
TiO ₂ -LCO	21.9	25.5	15.4	25.3	11.9
LCTO@LCO	20.4	26.1	16.5	37.0	—
TiO ₂ @LCO	24.3	33.1	10.2	32.4	—

 Table S1. The summarization of the relative percentage of different oxygen species

 of different electrode materials

*Note that the appearance of H_2O -relevant oxygen species was found in the sample TiO_2 -LCO (Fig. S4c); this is because it has experienced a high speed mixing process that would inevitably change pristine surficial states of the bare LCO including the absorption of water in open air.

	C	o 2p _{1/2} (%)	C	o 2p _{3/2} (%)	Pea separ (eV	ak ation V)
	Co(II)	Co(III)	Sat.1	Co(II)	Co(III)	Sat.2	Co(II)	Co (III)
LCTO	100	0		100	0		15.72	15.72
Bare LCO	40.7	59.3	66.5	31.6	68.4	47.0	15.22	15.04
LCO-800	41.9	58.1	56.9	31.5	68.5	36.7	15.32	15.06
LCTO@LC O	38.2	61.8	52.2	35.0	65.0	16.8	15.46	15.09
TiO ₂ @LCO	36.2	63.8	44.3	31.7	68.3	12.7	15.53	15.11

Table S2. The summarization of the relative percentage of Co^{2+} and Co^{3+} of different electrode materials

Fig. S5. a) Cycling performance of LCTO at high current density (1000 mA g⁻¹); b) CV profiles of the LCTO electrode at 1st sweeping; c) Charging-discharging curves of the LCTO electrode at different current densities. d) CV profiles of the LCTO electrode; e) Charging-discharging curves of the LCTO electrode at different current densities;

* From the electrochemical reaction of LCTO: $[LiCo_{0.9}]$ tetrahedron $[(LiCo_{0.1})Ti_3]^{\text{octahedron}}O_8+3e^++3Li^+\rightarrow [Li_4]^{\text{octahedron}}[Co_{0.9}]^{\text{tetrahedron}}[(LiCo_{0.1})Ti_3]$ octahedron O_8 , the number of electrons per molecule during the intercalation is 3; the concentration of lithium ions in crystal(C_0) is calculated to be 0.0226 mol cm⁻³; the surface area of the electrode is replaced by geometric surface area of the electrode.

Fig. S6. Discharging curves of a) bare LCO and b) LCTO@LCO at different current densities, c) Nyquist plots of the bare LCO after the 1st and 40th cycles, d) Cycling stability and coulombic efficiency of bare LCO and LCTO@LCO at 1 C (150 mA g⁻¹); High-rate charge–discharge curves of e) the bare LCO and f) LCTO@LCO

Fig. S7. Electrochemical performance of ASSLIBs with bare LCO, 0.25% LCTO@LCO, 0.5% LCTO@LCO, 1% LCTO@LCO and 2% LCTO@LCO: a) Cycling stability and coulombic efficiency, b) Charge–discharge curves at the 2nd cycle

Fig. S8 a) CV profiles of the LiNbO₃ electrode with varying sweeping rates e) $I_p - v^{1/2}$ plots and the calculated D_{Li}^+ .

Table S3 Phase equilibria and decomposition energies of the LGPS-LCO andLGPS-LCTO interfaces. x is the Molar Fraction of LGPS in $[x \cdot Li_{10}GeP_2S_{12} + (1-x) \cdot Li_2CoTi_3O_8/LiCoO_2]$

Celectrode r Phase equilibri		Phase equilibria	$\Delta E_{D, total}$	$\Delta E_{D,mutual}$
Celectione			(eV/mol)	(eV/atom)
	0.01	Li ₁₀ Co ₄ O ₉ , Li ₄ GeO ₄ CoO, Li ₃ PO ₄ , Li ₂ SO ₄	-0.509	-0.121
	0.028	Li ₁₀ Co ₄ O ₉ , Li ₄ GeO ₄ , Li ₃ PO ₄ , Li ₂ SO ₄ , Co	-0.928	-0.202
	0.029	Li ₆ CoO ₄ , Li ₄ GeO ₄ , Li ₃ PO ₄ , Li ₂ SO ₄ , Co	-0.955	-0.207
LiCoO2	0.072	Li ₆ CoO ₄ , Li ₄ GeO ₄ , Co ₉ S ₈ , Li ₃ PO ₄ , Li ₂ SO ₄	-1.668	-0.302
	0.08	Li ₄ GeO ₄ , Co ₉ S ₈ , Li ₃ PO ₄ , Li ₂ SO ₄ , Li ₂ O	-1.790	-0.315
	0.104	Li ₄ GeO ₄ , Co ₉ S ₈ , Li ₃ PO ₄ , Li ₂ SO ₄ , Li ₂ S	-2.122	-0.344
	0.112	Li ₂ GeO ₃ , Co ₉ S ₈ , Li ₃ PO ₄ , Li ₂ SO ₄ , Li ₂ S	-2.176	-0.343
	0.143	Li ₂ GeO ₃ , Li ₃ PO ₄ , Li ₂ SO ₄ , Co ₃ S ₄ , Li ₂ S	-2.357	-0.337
	0.186	Li ₄ GeS ₄ , Li ₃ PO ₄ , Li ₂ SO ₄ , Co ₃ S ₄ , Li ₂ S	-2.603	-0.329
	0.2	Co ₂ S ₃ , Li ₄ GeS ₄ , Li ₃ PO ₄ , Li ₂ S	-2.650	-0.323
Li3CoTi2O 8	0.071	Li ₄ Ti ₅ O ₁₂ , Li ₂ TiGeO ₅ , Co ₉ S ₈ , Li ₂ SO ₄ , Li ₃ PO ₄ , TiO ₂	-1.100	-0.074
	0.077	$Co_{3}S_{4}, Li_{4}Ti_{5}O_{12}, Li_{2}TiGeO_{5}, Co_{9}S_{8},$ $Li_{3}PO_{4}, TiO_{2}$	-1.161	-0.078

0.091	Co ₃ S ₄ , Li ₄ Ti ₅ O ₁₂ , Co ₉ S ₈ , Li ₃ PO ₄ , GeS ₂	-1.269	-0.085
0.111	Co ₃ S ₄ , Li ₄ Ti ₅ O ₁₂ , Co ₉ S ₈ , Li ₃ PO ₄ , Li ₄ GeS ₄ , TiO ₂	-1.337	-0.088
0.333	Co ₃ S ₄ , Li ₄ Ti ₅ O ₁₂ , Li ₃ PO ₄ , Li(TiS ₂) ₂ , Li ₄ GeS ₄	-1.799	-0.102
0.418	$Li_4Ti_5O_{12}$, Li_4TiS_4 , Li_3PO_4 , $Li(TiS_2)_2$, Li_4GeS_4 , Co_2S_3	-1.944	-0.105
0.5	Li ₄ TiS ₄ , TiS ₃ , Li ₃ PO ₄ , Li(TiS ₂) ₂ , Li ₄ GeS ₄ , Co ₂ S ₃	-2.081	-0.107

Sample	Path	C.N.	R (Å)	$\sigma^2 \times 10^3$	ΔE (eV)	R factor
				(A)		
Co foil	Co-Co	12*	2.50±0.01	6.4±0.2	7.8±0.3	0.001
Poro I CO	Со-О	5.5±0.7	1.92±0.01	2.7±0.9	-1.5±1.6	0.005
Bale LCO	Co-Co	5.5±0.6	2.82±0.01	2.6±0.6	-3.6±1.3	0.005
LCTO@LC	Co-O	6.0±0.9	1.90±0.01	1.9±1.0	-1.4±1.9	0.007
0	Co-Co	5.3±0.7	2.81±0.01	1.2±0.7	-4.1±1.6	0.007
LCTO@LC	Co-O	5.9±0.7	1.92±0.01	2.8±0.9	-1.6±1.6	0.005
O cycled	Co-Co	6.4±0.7	2.82±0.01	2.8±0.6	-3.7±1.3	0.005

Table S4. EXAFS fitting parameters at the Co K-edge various samples $(S_0^2=0.75)$

^{*a*}*N*: coordination numbers; ^{*b*}*R*: bond distance; ^{*c*} σ^2 : Debye-Waller factors; ^{*d*} ΔE_0 : the inner potential correction. *R* factor: goodness of fit. * the experimental EXAFS fit of metal foil by fixing CN as the known crystallographic value.

Table S5 Lattice parameters of LCO, LGPS and LCTO obtained from first-principle calculation.

	LCO	LGPS	LCTO
Space group	р1	P1	P4 ₃ 32
a(Å)	2.8323	8.7882	8.37385
b(Å)			

_	c(A)	14.1297	12.660	

Table S6 Lattice parameters and interfacial work of adhesion of LCO/LGPS,LCO/LCTO and LCTO/LGPS interface obtained from first-principle calculation.

Interface	LCO/LGPS	LCO/LCTO	LCTO/LGPS
a(Å)	26.5733	26.0812	25.5825
b(Å)	8.6488	8.8511	8.5100
Wad (J m ⁻²)	-0.39	-0.59	-0.55

Table S7 Comparison of lithium diffusion coefficients

Compound	Structure Type	$D_{\mathrm{Li}}(\mathrm{m}^2\cdot\mathrm{s}^{-1})$	T(K)	Reference
Li ₂ CoTi ₃ O ₈	Spinel	8.22×10 ⁻¹¹	298	This work
LiNbO ₃	LiNbO ₃	4.31×10 ⁻¹⁵	298	This work
Li _{8.4} Nb ₁₆ W ₅ O ₅₅	Block,cs	1.6×10 ⁻¹³	298	1
$Li_{3.4}Nb_{18}W_{16}O_{93}$	Bronze-like	1.1×10 ⁻¹³	298	1
$Li_{10}GeP_2S_{12}$	Thio-LISICON	2×10 ⁻¹²	298	2
Li ₇ GePS ₈	Thio-LISICON	2×10 ⁻¹²	298	2
$Li_{10}SnP_2S_{12}$	Thio-LISICON	1.4×10 ⁻¹²	298	3, 4
$Li_7P_3S_{11}$	Thio-LISICON	1-5×10 ⁻¹²	303	5
amorphous-Li ₃ PS ₄	Amorphous	6.5×10 ⁻¹³	303	6
$Li_{0.6}[Li_{0.2}Sn_{0.8}S_2]$	Layered(O1)	2-20×10 ⁻¹²	298	7
Li _{1.5} Al _{0.5} Ge _{1.5} (PO ₄) ₃	NASICON	2.9×10 ⁻¹³	311	8
Li _{1.2} Al _{0.2} Ti _{1.8} (PO ₄) ₃	NASICON	1.5×10 ⁻¹²	250	9
$Li_7La_3Zr_2O_{12}$	Garnet	1.8×10 ⁻¹⁸	298	10
Li ₄ Ti ₅ O ₁₂	Spinel	3.2×10 ⁻¹⁵	298	11, 12
LiTi ₂ O ₄	Spinel	3.6×10 ⁻¹⁵	298	11
Li ₃ NbO ₄	Li ₃ NbO ₄	4×10 ⁻²¹	353	13
Li ₃ NbO ₄	Li ₃ NbO ₄	1×10 ⁻¹⁶	553	13

Compound	Bulk Modulus (K _{VRH})	Shear Modulus (G _{VRH})	Material Project ID
LiCoO ₂	106.89 Gpa	67.41 Gpa	mp-755297
Li ₂ CoTi ₃ O ₈	138.67 Gpa	91.54 Gpa	mp-768110
$Li_4Ti_5O_{12}$	108 Gpa	60 Gpa	mp-685194
LiNbO ₃	102 Gpa	57 Gpa	mp-3731

Table S8. Bulk modulus and shear modulus of $LiCoO_2$, $Li_2CoTi_3O_8$, $Li_4Ti_5O_{12}$ and $LiNbO_3$

Reference

- 1. K. J. Griffith, K. M. Wiaderek, G. Cibin, L. E. Marbella and C. P. J. N. Grey, 2018, 559, 556-563.
- 2. A. Kuhn, V. Duppel, B. V. J. E. Lotsch and E. ence, 2013, 6, 3548-3552.
- 3. A. Kuhn, O. Gerbig, C. Zhu, F. Falkenberg, J. Maier and B. V. J. P. C. C. P. Lotsch, 2014, 16.
- 4. M. Kaus, H. Stöffler, M. Yavuz, T. Zinkevich, M. Knapp, H. Ehrenberg and S. J. T. J. o. P. C. C. Indris, 2017, **121**, 23370-23376.
- 5. K. Hayamizu and Y. J. S. S. I. Aihara, 2013, 238, 7-14.
- K. Hayamizu, Y. Aihara, T. Watanabe, T. Yamada, S. Ito and N. J. S. S. I. Machida, 2016, 285, 51-58.
- 7. T. Holzmann, L. Schoop, M. Ali, I. Moudrakovski, G. Gregori, J. Maier, R. Cava, B. J. E. Lotsch and E. Science, 2016, 9, 2578-2585.
- 8. K. Hayamizu and S. J. P. C. C. P. Seki, 2017, **19**, 23483-23491.

- 9. K. Arbi, I. Sobrados, M. Hoelzel, A. Kuhn, F. Garcia-Alvarado and J. J. M. O. P. L. A. Sanz, 2011, **1313**.
- A. Kuhn, S. Narayanan, L. Spencer, G. Goward, V. Thangadurai and M. J. P. R. B. Wilkening, 2011, 83, 094302.
- J. Sugiyama, H. Nozaki, I. Umegaki, K. Mukai, K. Miwa, S. Shiraki, T. Hitosugi, A. Suter, T. Prokscha and Z. J. P. R. B. Salman, 2015, 92, 014417.
- J. Sugiyama, I. Umegaki, T. Uyama, R. M. McFadden, S. Shiraki, T. Hitosugi, Z. Salman, H. Saadaoui, G. D. Morris and W. A. J. P. R. B. MacFarlane, 2017, 96, 094402.
- 13. B. Ruprecht and P. J. D. F. Heitjans, 2010, **12**, 100.