Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is © The Royal Society of Chemistry 2021

Supplementary Information for

The Economic Outlook for Converting CO₂ and Electrons to Molecules

Zhe Huang^{1,2}, R. Gary Grim^{1,2}, Joshua A. Schaidle^{1*}, and Ling Tao^{1*}

¹ National Renewable Energy Laboratory, Golden, CO, USA.

² These authors contributed equally to this work

*Corresponding Authors: joshua.schaidle@nrel.gov, ling.tao@nrel.gov

Complementary Website: Interactive visualizations of the cost breakdown information reported in this manuscript can be found at: https://www.nrel.gov/bioenergy/co2-utilization-economics/.

Table of Contents

1.	Process Flow Diagram and System Boundary of Studied CO ₂ Reduction Processes2
2.	Material Unit Prices2
3.	Capital and Operating Cost Assumptions3
4.	Major Economic Assumptions5
5.	Cost Breakdown Analysis7
6.	Sensitivity Analysis11
7.	CO ₂ Price Sensitivity under Current Scenario16
8.	References17

1. Process Flow Diagram and System Boundary of Studied CO₂ Reduction Processes

Figure S1. Process flow diagram of the CO_2 reduction processes. The system boundary in this study is shown by shaded are including the CO_2 reduction, recycle of unconverted feedstocks, and product purification stages. Adapted from ref [21].

2. Material Unit Prices

Table S1: Raw material unit prices inflated to 2016\$

Components	Cost (2016\$)	Ref
Sulfuric acid	\$0.09kg ⁻¹	IHS Market Connect ¹
Lime	\$0.15kg ⁻¹	IHS Market Connect ¹
Monopotassium phosphate	\$1.76kg ⁻¹	IHS Market Connect ¹
Dipotassium phosphate	\$1.49kg ⁻¹	IHS Market Connect ¹
Ammonium sulfate	\$0.26kg ⁻¹	IHS Market Connect ¹
Magnesium sulfate heptahydrate	\$0.64kg ⁻¹	IHS Market Connect ¹
Sodium chloride	\$0.06kg ⁻¹	IHS Market Connect ¹
Magnesium chloride hexahydrate	\$0.37kg ⁻¹	IHS Market Connect ¹
Ferrous sulfate	\$0.17kg ⁻¹	IHS Market Connect ¹
Sodium sulfide	\$0.60kg ⁻¹	IHS Market Connect ¹
Calcium chloride	\$0.36kg ⁻¹	IHS Market Connect ¹
Ammonium chloride	\$0.09kg ⁻¹	IHS Market Connect ¹
Yeast extract	\$1.33kg ⁻¹	IHS Market Connect ¹
CO (sold)	\$0.18kg ⁻¹	IHS Market Connect ¹
Hydrogen (sold)	\$1.47kg ⁻¹	IHS Market Connect ¹
Acetic acid (sold)	\$0.61kg ⁻¹	IHS Market Connect ¹
Ethylene (sold)	\$0.71kg ⁻¹	IHS Market Connect ¹
Cu-Zn Catalyst	\$20.38kg ⁻¹	2010 NREL Report ²
Cobalt Catalyst	\$38.21kg ⁻¹	2010 NREL Report ²
CuZnOAl ₂ O ₃ Catalyst	\$22.75kg ⁻¹	2015 NREL Report ³
CuZnOAl ₂ O ₃ /HZM ₅ Catalyst	\$24.18kg ⁻¹	2015 NREL Report ³
23%Ni/Al ₂ O ₃ /5%CaO Catalyst	\$10.00kg ⁻¹	Alibaba ⁴
Fresh water	\$0.00022kg ⁻¹	2015 NREL Report ³
Amine	\$823.00kg ⁻¹	Mar Perez-Fortes, 2016 ⁵
Natural gas	\$3.00MMBTU ⁻¹	2019 EIA Data ⁶

Cost from IHS Market Connect is 5 year (2014-2018) average U.S. market price in 2016\$

-	-		
Species	US Market Price ^a (2016\$)	High Bar ^b	Low Bar ^b
Carbon monoxide	\$0.18kg ⁻¹	\$0.23kg ⁻¹	\$0.14kg ⁻¹
Formic acid	\$0.66kg ⁻¹	\$0.70kg ⁻¹	\$0.63kg ⁻¹
Methanol	\$0.35kg ⁻¹	\$0.46kg ⁻¹	\$0.23kg ⁻¹
Methane ^c	\$0.15kg ⁻¹	\$0.22kg ⁻¹	\$0.12kg ⁻¹
Acetic acid	\$0.61kg ⁻¹	\$0.71kg ⁻¹	\$0.50kg ⁻¹
Oxalic acid	\$1.73kg ⁻¹	n.a.	n.a.
Ethanol	\$0.52kg ⁻¹	\$0.73kg ⁻¹	\$0.43kg ⁻¹
Ethylene	\$0.71kg ⁻¹	\$1.29kg ⁻¹	\$0.38kg ⁻¹
Polyhydroxybutyrate	\$1.50kg ⁻¹	n.a.	n.a.
Dimethyl ether	\$0.65kg ⁻¹	\$0.76kg ⁻¹	\$0.53kg ⁻¹
Fischer-Tropsch liquids	\$0.97kg ⁻¹	\$1.27kg ⁻¹	\$0.80kg ⁻¹

Table S2: U.S. market price for studied CO_2R products in 2016\$^{1,7}.

a: 2014-2018 average market price in United States.

b: High/Low bars reflect the upper and lower bounds of the observed market price in the 2008-2018 period.

c: Renewable natural gas (RNG) has higher market price of \$0.37-\$1.31/kg compared with reported natural gas market price⁸.

3. Capital and Operating Cost Assumptions

Table S3: Cost assumptions for LTE/HTE/MES CO₂ Electrolyzers

From the DOE H2A analysis for central electrolysis, the reported capital costs for PEM, SOEC and Alkaline water electrolyzers are used to estimate the CO_2 Electrolyzer capital costs for LTE, HTE and MES pathways, respectively. The equation below is used to calculate CO_2 electrolyzer capital costs on the basis of \$/m².

 CO_2 Electrolyzer installed capital cost (\$/m²) = Uninstalled capital cost (\$/kW) × Cell voltage (V) × Current Density (mA/cm²) × (1000mA/A) × (1kW/1000W) × (10000cm²/m²) × Installation Factor

Parameter	Uninstalled Capital Cost (\$2016/kW)	Cell Voltage (V)	Current Density (mA/cm2)	Installation Factor	Justification and Reference	
PEM Electrolyze	r					
Current	460	1.9	2000	1.12	From DOE H2A analysis model ⁹ . Pt group metal is assumed 16% of uninstalled capital with Anode/Cathode loading ratio 7/4 ¹⁰ .	
Future	233	1.8	3000	1.1	From DOE H2A analysis model ¹¹ . Pt group metal is assumed 13% of uninstalled capital with Anode/Cathode loading ratio 7/4 ¹⁰ .	
Theoretical	100	1.8	3000	1.1	From DOE H2A technical report ¹² . Pt group metal is assumed 13% of uninstalled capital with Anode/Cathode loading ratio 7/4 ¹⁰ .	
SOEC Electrolyz	er					
Current	523	1.285	1000	1.12	From DOE H2A analysis model ¹³	
Future	357	1.285	1200	1.1	From DOE H2A analysis model ¹⁴	
Theoretical	150	1.285	2000	1.1	From DOE H2A analysis model ¹²	
Alkaline Electrolyzer						
Current	378	1.75	175	1.2	From DOE H2A analysis model ^{15, 16}	

Future	295	1.65	200	1.1	From DOE H2A analysis model ^{15, 16}
Theoretical	197	1.65	200	1.1	From DOE H2A analysis model ^{15, 16}

Table S4: Cost assumptions for Bio- and Thermo- reactor.

Parameter	Assumption	Year of Quote	Installation Factor	Justification and Reference
Capital Cost (CAPEX)				
Bioreactor	[X/ (5.00E +5)] ^ 1.0*(\$782,600)	2013	1.6	From 2011 NREL design report ¹⁷ . (x in unit of Liter per hour)
Thermo-reactor	[X/ (12.5)] ^ 0.6*(\$872,300)	2011	2.6	From 2011 NREL design report ¹⁸ . (x in unit of mmscf per hour)

Table S5: Cost assumptions for separation processes

Parameter	Assumption	Year of Quote	Installation Factor	Justification and Reference				
Capital Cost (CAPEX)	Capital Cost (CAPEX)							
CO ₂ Separation Cost (\$/Metric Ton CO ₂ separated)	[271.3(X)]^-0.245	2016	1.0	From IHS potassium carbonate CO ₂ separation system based on the total recycled CO ₂ amount. (x in unit of million lb per year)				
Pressure Swing Adsorption (PSA)	[X/ (4.40 E +6)] ^ 0.65*(\$10,800,000)	2010	1.0	From Joshua Spurgeon et al. 2018 ¹⁹ , Xuping Li et al. 2016 ²⁰ . (x in unit of mol per hour)				
Liquid/Gas Flash Tank	[X/ (2.64E +5)] ^ 0.70*(\$511,000)	2009	2.0	From 2011 NREL design report ¹⁷ . (x in unit of kg per hour)				
Ethanol Distillation	[X/ (2.27E +4)] ^ 0.60*(\$6,008,000)	2009	2.1	From 2011 NREL design report ¹⁷ . (x in unit of kg per hour)				
Methanol Distillation	[X/ (2.27E +4)] ^ 0.60*(\$3,407,000)	2009	2.1	From 2011 NREL design report ¹⁸ . (x in unit of kg per hour)				
Formic Acid Reactive Distillation	[X/ (1500)] ^ 0.60*(\$834,000)	2014	1.7	From ChemCAD Model and Mar Perez-Fortes, 2016 ²¹ . (x in unit of kg per hour)				
Base/Acid Mixer Tank Agitator	[X/ (1.40E+5)] ^ 0.60*(\$9,000)	2007	3.0	From 2011 NREL design report ¹⁷ . (x in unit of kg per hour)				
Base/Acid Mixer Tank	[X/ (1.40E+5)] ^ 0.60*(\$131,000)	2007	3.0	From 2011 NREL design report ¹⁷ . (x in unit of kg per hour)				
Liquid/Solid Separator	[X/ (3.20E+4)] ^ 0.80*(\$293,000)	2009	3.0	From 2011 NREL design report ¹⁷ . (x in unit of kg per hour)				
Acetate Membrane Separator	[X/ (3.62E+5)] ^ 0.70*(\$8,000,000)	2010	2.0	Estimated in Aspen Capital Cost Estimator. (x in unit of kg per hour)				
PHB Separator	[X/ (1.60E+4)] ^ 0.80*(\$27,500,000)	2011	1.0	Estimated in Aspen Capital Cost Estimator. (x in unit of kg per hour)				
Operating Cost (OPEX)								
CO ₂ Recycle Stream Compressor Power (kWh)	Calculated			The CO ₂ compressor power is modeled in Aspen Plus under different scenarios based on the total recycled CO ₂ amount.				
Pressure Swing Adsorption (PSA) Power (kWh)	0.25 kWh/m³ g		From Jouny et al., 2018 ²²					
Distillation Reboiler Duty (Btu)	6750 Btu/kg product		From 2011 NREL design report ¹⁸ .					
Amine for Formic Acid Reactive Distillation (kg)	5.8g Amine/g Formic a		From Mar Perez-Fortes, 2016 ⁵					
Lime for Oxalic Acid precipitation	0.6 g Lime/g Oxalic ac	id produced		Based on reaction stoichiometry				
Sulfuric acid for oxalic acid separation	1.1 g Sulfuric acid/g Oxali	c acid produce	d	Based on reaction stoichiometry				

4. Major Economic Assumptions

Table S6: Major	economic assum	ptions for disco	unted cash flow	v analysis
-----------------	----------------	------------------	-----------------	------------

Economic parameters	Assumed basis			
Basis year for analysis	2016			
Debt/equity for plant financing	60%/40%			
Interest rate and term for debt financing	8%/10 years			
Internal rate of return for equity financing	10%			
Total income tax rate	21%			
Plant life	20 years			
Construction period	3 year			
	32% in year 1			
Fixed capital expenditure schedule	60% in year 2			
	8% in year 3			
Start-up time	0.5 year			
Revenues during start-up	50%			
Variable costs during start-up	75%			
Fixed costs during start-up	100%			
Site development cost	9% of ISBL, total installed cost			
Warehouse	1.5% of ISBL			
Working capital	5% of fixed capital investment			
Indirect costs	% of total direct costs			
Prorated expenses	10			
Home office and construction fees	20			
Field expenses	10			
Project contingency	10			
Other costs (start-up and permitting)	10			
Fixed operating cost	Assumed Basis			
Plant operators' salaries	5.24 Operators / Shift			
Maintenance salaries	1% of fixed capital investment			
Supervision & administration	40% of operators & maintenance labor			
Fringe benefits	30% of total labor			
Supplies	1.75% of fixed capital investment			
Insurance and local tax	0.8% of fixed capital investment			
ISBL=inside battery limits (of the plant)				

Table S7: Major Technical Parameters for Future and Theoretical Scenarios

LTE Pathway						
	Future Scenario	Theoretical Scenario	Justification and Reference			
Current Density (mA/cm ²)	1500	2000	Quote from reported current density values for PEM water electrolyzer in DOE H2A model ⁹ .			
Cell Voltage (V)	Theoretical +0.6V	Theoretical	Future scenario applies +0.6V cell overpotential on the theoretical voltage based on the reported overpotential values for PEM water electrolyzer ²³ .			
Faradaic Efficiency (%)	95	100	Quote from current CO2-to-CO faradaic efficiency that is reported ${\sim}100\%^{24}.$			
Single-pass CO ₂ Conversion (%)	90	100	Future projection of 90% single-pass CO ₂ conversion is made by assuming ongoing technologies such as direct electrolytic conversion of carbon capture solutions ^{25, 26} can potentially			

			address the low CO ₂ conversion issue.			
HTE Pathway						
Current Density (mA/cm ²)	2,500	3,000	Quote from reported current density values for SOEC system ²⁷ .			
Cell Voltage (V)	Avg of SOT and Theoretical Cell Voltages	Theoretical	This assumption is based on engineering judgement. Other major technical parameter assumptions such as faradaic efficiency and single-pass CO ₂ conversion are consistent with LTE pathway.			
MES Pathway		1				
Current Density (mA/cm ²)	100	200	 Quote from reported current density values for alkaline water electrolyzer^{15, 16}. Other major technical parameter assumptions such as cell voltage, faradaic efficiency and single-pass CO₂ conversion are consistent with LTE pathway. 			
BC Pathway						
Feedstock (H ₂ /CO ₂) Ratio	Stoichiometry	Stoichiometry	Stoichiometry has the optimistic H ₂ : CO ₂ ratio and excess H ₂ feedstock is needed in some SOT cases to enhance the production rate of final product.			
Product Titer (g/L)	Highest reported value in Batch	Bacteria death limit	These assumptions are based on subject matter expert interviews and engineering judgement.			
Productivity (g/L/hr)	Highest reported value in Batch	10	Theoretical productivity projection is made based on the reported commercialized ethanol productivity~10g/L/hr ²⁸ .			
Single-pass CO ₂ Conversion (%)	90	98	Future project of 90% single-pass CO_2 conversion is made to be consistent with LTE pathway. 2% CO_2 loss to cell growth is assumed in theoretical scenario ²⁹ .			
TC Pathway						
Feedstock (H ₂ /CO ₂) Ratio	Stoichiometry	Stoichiometry	Consistent assumptions with BC pathway.			
Single-pass CO ₂ Conversion (%)	90	Theoretical	Theoretical is calculated using ASPENPlus Gibbs Reactor. Future project of 90% single-pass CO ₂ conversion is made to be consistent with LTE pathway. Future single-pass CO ₂ conversion equals theoretical value if <90%			
Product Selectivity (%)	95	100	Future project of 95% product selectivity is made to be consistent with LTE pathway faradaic efficiency.			

5. Cost Breakdown Analysis

Scenarios	Current	Future	Theoretical
СО			
PEM Electrolyzer Capital	37%	20%	26%
Separation Capital	1%	2%	0%
CO ₂ Cost	4%	13%	0%
Electrolysis Cost	37%	56%	73%
Utility & Supplies	1%	3%	0%
CO ₂ Separation	20%	6%	0%
Minimum Selling Price (\$/kg)	1.55	0.23	0.07
Formic Acid			
PEM Electrolyzer Capital	40%	28%	25%
Separation Capital	1%	5%	0%
CO ₂ Cost	3%	10%	0%
Electrolysis Cost	34%	45%	75%
Utility & Supplies	4%	7%	0%
CO ₂ Separation	16%	5%	0%
Minimum Selling Price (\$/kg)	1.36	0.23	0.05
Oxalic Acid			
PEM Electrolyzer Capital	42%	15%	23%
Separation Capital	1%	2%	0%
CO ₂ Cost	2%	5%	0%
Electrolysis Cost	34%	13%	77%
Utility & Supplies	11%	62%	0%
CO ₂ Separation	10%	2%	0%
Minimum Selling Price (\$/kg)	2 23	0.33	0.03
Ethylene	2.25	0.00	0.05
PFM Electrolyzer Capital	13%	29%	28%
Separation Capital	1%	1%	0%
CO ₂ Cost	3%	5%	0%
Electrolysis Cost	66%	61%	71%
Utility & Supplies	1%	1%	1%
CO ₂ Separation	16%	2%	0%
Minimum Selling Price (\$/kg)	6 3 9	1.20	0.42
Ethanol	0.55	1.20	0.12
PEM Electrolyzer Capital	47%	29%	25%
Separation Capital	1%	2%	6%
CO ₂ Cost	2%	5%	0%
Electrolysis Cost	41%	57%	59%
Litility & Supplies	1%	4%	10%
CO ₂ Separation	9%	2%	0%
Minimum Selling Price (\$/kg)	6.07	0.74	0.30
Methanol	0.07	0.7 4	0.50
PEM Electrolyzer Canital	7/%	3/1%	26%
Separation Capital	0%	2%	1%
CO ₂ Cost	0%	5%	
Electrolysis Cost	23%	52%	60%
Litetrorysis Cost	10/	/0/	10%
CO. Separation	1/0 70/	470	0%
Minimum Solling Drice (\$ /kg)	270	2%	0.22
Mothana	14.82	0.54	0.22
DEM Electrolyzer Conitel	E 20/	210/	220/
PEIVI Electrolyzer Capital	23%	31%	33%
Separation Capital	1%	2%	0%
LU ₂ LOST	1%	3%	0%

Table S8: Cost breakdown of selected products for LTE pathway

Electrolysis Cost	37%	46%	67%
Utility & Supplies	2%	16%	0%
CO ₂ Separation	5%	1%	0%
Minimum Selling Price (\$/kg)	16.97	1.74	0.47

Table S9: Cost breakdown of selected products for HTE pathway

Scenarios	Current	Future	Theoretical
СО			
SOEC Electrolyzer Capital	24%	14%	19%
Separation Capital	3%	2%	2%
CO ₂ Cost	16%	22%	0%
Electrolysis Cost	48%	52%	70%
Utility & Supplies	2%	6%	8%
CO ₂ Separation	6%	5%	0%
Minimum Selling Price (\$/kg)	0.38	0.15	0.05
CH ₄			
SOEC Electrolyzer Capital	15%	19%	17%
Separation Capital	2%	2%	2%
CO ₂ Cost	1%	7%	0%
Electrolysis Cost	66%	64%	77%
Utility & Supplies	5%	4%	3%
CO ₂ Separation	11%	3%	0%
Minimum Selling Price (\$/kg)	11.15	0.77	0.36

Table S10: Cost breakdown of selected products for MES pathway

Scenarios	Current	Future	Theoretical
CH ₄			
MES Reactor Capital	74%	44%	41%
Separation Capital	0%	0%	0%
CO ₂ Cost	0%	4%	0%
Electrolysis Cost	25%	47%	51%
Utility &Supplies	0%	3%	7%
CO ₂ Separation	1%	2%	0%
Minimum Selling Price (\$/kg)	107.76	1.90	0.76
Formic Acid			
MES Reactor Capital	71%	54%	45%
Separation Capital	1%	5%	10%
CO ₂ Cost	1%	5%	0%
Electrolysis Cost	23%	22%	30%
Utility &Supplies	1%	11%	15%
CO ₂ Separation	3%	2%	1%
Minimum Selling Price (\$/kg)	26.42	0.29	0.21
Acetic Acid			
MES Reactor Capital	66%	50%	52%
Separation Capital	2%	7%	6%
CO ₂ Cost	1%	5%	0%
Electrolysis Cost	23%	32%	35%
Utility &Supplies	1%	3%	6%
CO ₂ Separation	7%	2%	0%
Minimum Selling Price (\$/kg)	5.32	0.57	0.22
Ethanol			
MES Reactor Capital	76%	55%	58%
Separation Capital	0%	2%	3%

CO ₂ Cost	0%	3%	0%
Electrolysis Cost	22%	34%	29%
Utility & Supplies	0%	5%	9%
CO ₂ Separation	1%	2%	0%
Minimum Selling Price (\$/kg)	441.01	1.10	0.54

Table S11: Cost breakdow	n of selecte	d products for	r BC pathway

Scenarios	Current	Future	Theoretical
CH ₄			
Bioreactor Capital	5%	5%	3%
Separation Capital	0%	0%	0%
CO ₂ Cost	5%	5%	0%
H ₂ Cost	89%	88%	96%
Nutrient Cost	0%	1%	1%
Utility & Supplies	0%	1%	1%
Minimum Selling Price (\$/kg)	2.22	1.04	0.64
Acetic Acid			
Bioreactor Capital	11%	5%	5%
Separation Capital	6%	7%	7%
CO ₂ Cost	6%	9%	0%
H ₂ Cost	55%	70%	78%
Nutrient Cost	13%	7%	7%
Utility & Supplies	9%	3%	3%
Minimum Selling Price (\$/kg)	0.95	0.34	0.21
Ethanol			
Bioreactor Capital	3%	3%	8%
Separation Capital	3%	3%	9%
CO ₂ Cost	5%	9%	0%
H ₂ Cost	79%	64%	75%
CO and Nutrient Cost	7%	13%	0%
Utility & Supplies	3%	8%	9%
Minimum Selling Price (\$/kg)	1.27	0.64	0.39
РНВ			
Bioreactor Capital	12%	10%	15%
Separation Capital	9%	12%	17%
CO ₂ Cost	5%	6%	0%
H ₂ Cost	61%	59%	50%
Nutrient Cost	3%	3%	4%
Utility & Supplies	9%	10%	14%
CO ₂ Separation	1%	2%	0%
Minimum Selling Price (\$/kg)	1.36	0.64	0.37

Table S12: Cost breakdown of select	ed products for TC pathway
-------------------------------------	----------------------------

Scenarios	Current	Future	Theoretical
СО			
Thermo Capital	1%	1%	1%
Product Separation	3%	5%	2%
CO ₂ Cost	14%	13%	0%
H ₂ Cost	63%	52%	53%
CO ₂ Separation	10%	18%	28%
Utilities	9%	11%	15%
Minimum Selling Price (\$/kg)	0.45	0.25	0.16
CH ₄			

Thermo Capital	1%	1%	1%
Product Separation	2%	3%	2%
CO ₂ Cost	5%	5%	0%
H ₂ Cost	86%	84%	88%
CO ₂ Separation	1%	1%	5%
Utilities	4%	4%	4%
Minimum Selling Price (\$/kg)	2.28	1.08	0.68
Methanol			
Thermo Capital	1%	1%	1%
Product Separation	6%	9%	6%
CO ₂ Cost	5%	4%	0%
H ₂ Cost	48%	43%	44%
CO ₂ Separation	16%	25%	36%
Utilities	24%	19%	13%
Minimum Selling Price (\$/kg)	1.66	0.80	0.52
DME			
Thermo Capital	1%	1%	1%
Product Separation	6%	8%	4%
CO ₂ Cost	5%	4%	0%
H ₂ Cost	58%	55%	53%
CO ₂ Separation	15%	22%	29%
Utilities	15%	10%	13%
Minimum Selling Price (\$/kg)	1.89	0.87	0.58
FT-hydrocarbon (HC)			
Thermo Capital	17%	21%	28%
Product Separation	2%	3%	2%
CO ₂ Cost	4%	5%	0%
H ₂ Cost	55%	66%	67%
CO ₂ Separation	11%	2%	0%
Utilities	11%	4%	2%
Minimum Selling Price (\$/kg)	4.52	1.31	0.81

6. Sensitivity Analysis

Figure S2. Sensitivity analysis of selected products in LTE pathway. Key cost drivers include current density, onstream factor and electrolyzer cost. Blue and orange bars reflect technical and market parameters respectively.

Figure S3. Sensitivity analysis of selected products in HTE pathway. Key cost drivers include electricity, CO₂ single-pass conversion and CO₂ cost. Blue and orange bars reflect technical and market parameters respectively.

Figure S4. Sensitivity analysis of selected products in MES pathway. Key cost drivers include productivity, current density and onstream factor. Blue and orange bars reflect technical and market parameters respectively.

Figure S5. Sensitivity analysis of selected products in BC pathway. Key cost drivers include electrolytic H_2 cost, production rate and onstream factor. Blue and orange bars reflect technical and market parameters respectively.

Figure S6. Sensitivity analysis of selected products in TC pathway. Key cost drivers include electrolytic H₂ cost, onstream factor and CO₂ cost. Blue and orange bars reflect technical and market parameters respectively.

7. CO₂ Price Sensitivity under Current Scenario

Figure S7. The percent change in product minimum selling price (MSP) as a function of CO_2 capture cost assuming current scenario conditions and an initial capture cost of \$40/tonne. Assumed capture costs of -\$35/tonne (45Q), \$25/tonne (IGCC), \$29/tonne (cement), \$37/tonne (iron/steel), \$53/tonne (PC), \$63/tonne (NGCC), and \$250/tonne (DAC) are based on published literature reports²²⁻²⁴.

8. Reference

- 1. IHS Market Connet, 2019.
- R.M. Swanson, A. Platon, J.A. Satrio, R.C. Brown, D.D. Hsu, Techno-Economic Analysis of Biofuels Production Based on Gasification, National Renewable Energy Laboratory (NREL), Golden, CO., 2010, <u>https://www.nrel.gov/docs/fy11osti/46587.pdf</u>, (accessed 11/11/2019).
- E.C. Tan, M. Talmadge, A. Dutta, J. Hensley, J. Schaidle, M. Biddy, D. Humbird, L.J. Snowden-Swan, J. Ross, D. Sexton, R. Yap, National Renewable Energy Laboratory (NREL), Golden, CO., 2015, <u>www.nrel.gov/docs/fy15osti/62402.pdf</u>, (accessed 11/11/2019).
- 4. Alibaba, Methanation Catalyst Prices, <u>https://www.alibaba.com/showroom/methanation-</u> <u>catalyst-price.html</u>, (accessed 11/12/2019).
- 5. M. Pérez-Fortes, J. C. Schöneberger, A. Boulamanti, G. Harrison and E. Tzimas, *Int. J. of Hydr. Ener.* 2016, **41**, 16444-16462.
- 6. U.S. Energy Information Administration: Electricity Data, https://www.eia.gov/electricity/data.php, (accessed 11/12/2019).
- 7. R. G. Grim, Z. Huang, M. T. Guarnieri, J. R. Ferrell, L. Tao and J. A. Schaidle, *Ener. & Environ. Sci.*, 2020, **13**, 472-494.
- U.S. Environmental Protection Agency: An Overview of Renewable Natural Gas from Biogas, 2020.

https://www.epa.gov/sites/production/files/202007/documents/Imop_rng_document.pdf, (accessed 03/10/2021).

- NREL, Current Central Hydrogen Production from Polymer Electrolyte Membrane Electrolysis (2019) vesion 3.2018, <u>https://www.nrel.gov/hydrogen/h2a-production-models.html</u>, (accessed 03/10/2021).
- 10. A. T. Mayyas, M. F. Ruth, B. S. Pivovar, G. Bender and K. B. Wipke, National Renewable Energy Lab, Golden, CO (United States), 2019, <u>https://www.nrel.gov/docs/fy19osti/72740.pdf</u>, (accessed 03/10/2021).
- 11. NREL, Future Central Hydrogen Production from PEM Electrolysis (2019) version 3.2018, https://www.nrel.gov/hydrogen/h2a-production-models.html, (accessed 03/10/2021).
- M. F. Ruth, P. Jadun, N. Gilroy, E. Connelly, R. Boardman, A. Simon, A. Elgowainy and J. Zuboy, National Renewable Energy Lab (NREL), Golden, CO (United States), 2020, <u>https://www.osti.gov/biblio/1677471</u>, (accessed 03/10/2021).
- 13. NREL, Current Central Hydrogen Production from Solid Oxide Electrolysis version 3.2018, <u>https://www.nrel.gov/hydrogen/h2a-production-case-studies.html</u>, (accessed 03/10/2021).
- 14. NREL, Future Central Hydrogen Production from Solid Oxide Electrolysis version 3.2018, <u>https://www.nrel.gov/hydrogen/h2a-production-case-studies.html</u>, (accessed 03/10/2021).
- D. Steward, T. Ramsden and J. Zuboy, H2A Central Production Model Version 3 User Guide (Draft), April 2012, <u>https://apps1.hydrogen.energy.gov/cfm/h2a_active_folder/h2a_production/03P_H2A_Central_Hydrogen_Production_Model_User_Guide_Version_3_draft.pdf</u>, (accessed, 03/10/2021).
- B. James, J. Moton and W. J. E. Colella, Strategic Analysis, 2013, Guidance for Filling Out a Detailed H2A Production Case Study, <u>https://www.energy.gov/sites/prod/files/2014/03/f12/webinarslides_h2a_production_analysis_070913.pdf</u>, (accessed, 03/10/2021).
- D. Humbird, R. Davis, L. Tao, C. Kinchin, D. Hsu, A. Aden, P. Schoen, J. Lukas, B. Olthof and M. Worley, National Renewable Energy Laboratory (NREL), Golden, CO., 2011, <u>https://www.nrel.gov/docs/fy11osti/47764.pdf</u>, (accessed, 03/10/2021).

- A. Dutta, M. Talmadge, J. Hensley, M. Worley, D. Dudgeon, D. Barton, P. Groendijk, D. Ferrari, B. Stears and E. M. Searcy, National Renewable Energy Laboratory (NREL), Golden, CO., 2011, https://www.nrel.gov/docs/fy11osti/51400.pdf, (accessed, 03/10/2021).
- 19. J. M. Spurgeon and B. Kumar, *Ener. & Environ. Sci.*, 2018, **11**, 1536-1551.
- 20. X. Li, P. Anderson, H.-R. M. Jhong, M. Paster, J. F. Stubbins and P. J. Kenis, *Energy & Fuels*, 2016, **30**, 5980-5989.
- 21. A. J. Martin, G. O. Larrazábal and J. Pérez-Ramírez, *Green Chem.*, 2015, **17**, 5114-5130.
- 22. M. Jouny, W. W. Luc and F. Jiao, Ind. & Eng. Chem. Res., 2018, 57, 6, 2165–2177.
- 23. M. Carmo, D. L. Fritz, J. Mergel and D. Stolten, Int. J. of Hydr. Ener., 2013, 38, 4901-4934.
- 24. R. I. Masel, Z. Liu, H. Yang, J. J. Kaczur, D. Carrillo, S. Ren, D. Salvatore and C. P. Berlinguette, *Nature Nanotech.*, 2021, 1-11.
- 25. T. Li, E. W. Lees, M. Goldman, D. A. Salvatore, D. M. Weekes and C. P. Berlinguette, *Joule*, 2019, 3, 1487-1497.
- 26. A. J. Welch, E. Dunn, J. S. DuChene and H. A. Atwater, *ACS Energy Lett.* 2020, *5*, *3*, 940–945.
- 27. H. Shimada, T. Yamaguchi, H. Kishimoto, H. Sumi, Y. Yamaguchi, K. Nomura and Y. Fujishiro, *Nature Comm.*, 2019, 10, 1-10.
- 28. F. Liew, M. E. Martin, R. C. Tappel, B. D. Heijstra, C. Mihalcea and M. Köpke, *Front. in Microbio.*, 2016, 7, 694.
- 29. M. R. Martin, J. J. Fornero, R. Stark, L. Mets and L. T. Angenent, Archaea, 2013, 2013.