Supplementary Information

Atomically dispersed nonmagnetic electron traps improve oxygen reduction

activity of perovskite oxides

Zechao Zhuang,^a Yong Li,^b Yihang Li,^c Jiazhao Huang,^d Bin Wei,^e Rong Sun,^e Yujing Ren,^f Jie Ding,^f Jiexin Zhu,^g Zhiquan Lang,^h Lyudmila V. Moskaleva,^b Chuanxin He,^c Yu Wang,ⁱ Zhongchang Wang,^e Dingsheng Wang^{*a} and Yadong Li^a

^aDepartment of Chemistry, Tsinghua University, Beijing, P. R. China

^bInstitute of Applied and Physical Chemistry and Center for Environmental Research and Sustainable

Technology, University of Bremen, Bremen, Germany

^cCollege of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, P. R. China

^dState Key Laboratory of Material Processing and Die & Mould Technology, School of Materials

Science and Engineering, Huazhong University of Science and Technology, Wuhan, P. R. China

eInternational Iberian Nanotechnology Laboratory (INL), Braga, Portugal

^fState Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, P. R. China.

^gState Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, P. R. China

^hCenter for Marine Materials Corrosion and Protection, College of Materials, Xiamen University, Xiamen, P. R. China

ⁱShanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, P. R. China

*E-mail: wangdingsheng@mail.tsinghua.edu.cn

Figure S1. XRD patterns fitted with Rietveld simulation of LCMO (a), $Mo_1/LCMO-0.02$ (b), and $Mo_1/LCMO-0.06$ (c).

Figure S2. Crystal structures of $Mo_1/LCMO-0.02$ (a) and $Mo_1/LCMO-0.06$ (b).

Figure S3. SEM images and EDS mapping of LCMO (**a**, **b**), Mo₁/LCMO-0.02 (**c**, **d**), and Mo₁/LCMO-0.06 (**e**, **f**). Scale bars are 1 μ m.

Figure S4. HAADF-STEM images for Mo₁/LCMO-0.06. Scale bars of **a**, **b**, and **c** are 100, 2, and 1 nm, respectively.

Figure S5. HAADF-STEM images for LCMO. Inset of **c** shows the corresponding fast Fourier transform pattern. Scale bars of **a**, **b**, and **c** are 50, 2, and 2 nm, respectively.

Figure S6. **a**, Atomic-resolution HAADF-STEM image obtained along the [101] zone axis of $Mo_1/LCMO$. Inset shows the corresponding fast Fourier transform patterns. White circles mark single Mo atoms. Scale bar is 2 nm. **b**, Enlarged view of the regions 1–5 marked white in **a** and intensity profile analysis according to the corresponding atomic model of $Mo_1/LCMO$ surface in Fig. 1(c).

Figure S7. XPS spectra of Co 2p (a) and Mn 3s (b) of LCMO and Mo₁/LCMO.

Figure S8. Optimized geometry of bare LCMO (a) and $Mo_1/LCMO-0.06$ (b) (001) surface. Gray balls represent Mo atoms.

Figure S9. Spin density and spin-spin alignment of ferromagnetic (a, c) and antiferromagnetic configurations (b, d) considered for LCMO. Purple and magenta isosurfaces represent alpha and beta spin densities, respectively. Up and down arrows represent alpha spins and beta spins. The ferromagnetic state has a much lower energy than antiferromagnetic one by 1.17 eV.

Figure S10. Mo⁶⁺-mediated electron trapping at Mn e_g orbitals, inducing valence changes and triaxial MnO₆ octahedra expansion.

Figure S11. Tafel plots (**a**) and comparison of kinetic current densities at 0.80 and 0.85 V vs. RHE (**b**) of LCMO and Mo₁/LCMO.

Figure S12. Koutecký–Levich plots of LCMO and Mo₁/LCMO. Compared to the RRDE results in **Fig. 3(d)**, the *n* obtained by Koutecký–Levich plots is very close for Mo₁/LCMO-0.06, namely ~4, but those for LCMO and Mo₁/LCMO-0.02 are slightly smaller. Note that applications of Koutecký–Levich equation have some prerequisites, where the partial order of reaction in respect to oxygen should be equal to one. That of Pt catalysts often exhibits one in alkaline media such that this method is highly applicable to Pt,^{1,2} while for oxides, its utility is controversial. Besides, as shown in **Fig. 3(a)**, both LCMO and Mo₁/LCMO-0.02 suffer from the internal diffusion limitations from outermost electrocatalyst layer to electrochemically active sites, therefore the calculation of their *n* values by Koutecký–Levich equation would be affected.³ Here these results can only be used as reference.

Figure S13. Current–voltage polarization curves and the corresponding power densities of SOFCs with LCMO (a) and Mo₁/LCMO-0.02 (b) cathodes at 600–800 °C using humidified H₂ as fuel and ambient air as oxidant.

Figure S14. Current–voltage polarization curves and the corresponding power densities of two additional SOFCs with $Mo_1/LCMO-0.06$ cathode at 600–800 °C using humidified H_2 as fuel and ambient air as oxidant.

Figure S15. EIS plots (a, c, e) and DRT curves (b, d, f) of symmetric cells at 700 °C.

Figure S16. Fits of the DRT curves of symmetric cells at 700 °C. P1, P2, and P3 can be ascribed to the contributions from surface oxygen exchange/oxygen dissociation, electron transport, and oxygen transport, respectively.

Figure S17. Total DOS, and PDOS onto Mn, and Co 3d states for Mo₁/LCMO-0.06. Computed *d*-band centers of Mn and Co 3d are at -1.95 and -2.34 eV respectively.

Figure S18. PDOS of O 2p and Mn 3d states before (**a**) and after O₂ chemisorption (**b**) onto the active surface Mn site.

Figure S19. Schematic representation of the orbital interactions (a) between O $2p\pi^*$ orbital and Mn $3^{d_{xz}}$ or $3^{d_{yz}}$ or $3^{d_{z^2}}$ orbitals (b).

Figure S20. Orbital energy-dependent overlap (**a**) and spatial electron spin density (**b**) of adsorbed O_2 on Mn site with a spin population of 0.96, implying that one electron transfers from Mn to the O_2 molecule.

Figure S21. a, Electrical double layer model comprises three layers of water molecules, one positively charged K^+ cation, and a negatively charged perovskite surface. **b**, Charge density difference. Purple and magenta isosurfaces represent negative charges localized mainly on the perovskite surface and positive charges in water layers and K^+ . **c**, Schematic representation of the electrical double layer interface.

Figure S22. Optimized geometry of perovskite surfaces with adsorbed OO* (**a**), HOO* (**b**), O* (**c**), and HO* intermediates (**d**), of which the surface at open circuit adsorbs HO*.

Figure S23. Hydroxyl migration toward anode under an applied electric potential.

Figure S24. Possible ORR mechanisms on catalytically active Mn^{3+} site. The ORR proceeds via four-electron steps: 1, surface hydroxide displacement; 2, surface peroxide formation; 3, surface oxide formation; 4, surface hydroxide regeneration. Mechanism in (**a**) proceeds via conventional stepwise reduction (four single-electron transfers), forming $[Mn^{3+}-OOH]^-$ in **2** and $[Mn^{4+}=O]^-$ in **3**. On the considerations of the difficulty in breaking a $Mn^{4+}=O$ double bond, another competitive mechanism in (**b**) is possible via intermittent reduction (two single-electron transfers and one double-electron transfer), where reductive cleavage of $Mn^{4+}=O$ bond requires two electrons and one proton leading to hydroxide regeneration in **4**.

	La ₂ CoMnO ₆	$La_2(CoMn)_{0.99}Mo_{0.02}O_6$	La2(CoMn)0.97Mo0.06O6	
Space group	$P2_{1}/n$	$P2_{1}/n$	$P2_{1}/n$	
<i>a</i> /Å	5.5129(1)	5.5140(1)	5.5151(1)	
b /Å	5.4620(2)	5.4630(2)	5.4650(1)	
c /Å	7.7602(1)	7.7684(2)	7.7724(2)	
eta /°	90.03(1)	90.03(1)	90.03(1)	
$\mathrm{La}\left(x,y,z\right)$	0.9894(2), 0.0257(2), 0.2390(1)	0.9895(1), 0.0256(2), 0.2390(4)	0.9892(2), 0.0262(3), 0.2392(1)	
Occ., B /Å ²	1, 1.22(2)	1, 1.98(3)	1, 1.93(2)	
$\operatorname{Co}(x, y, z)$	0, 0.5, 0	0, 0.5, 0	0, 0.5, 0	
Occ., B /Å ²	1, 1.67(1)	0.99, 1.73(2)	0.97, 2.01(1)	
Mn(x, y, z)	0.5, 0, 0	0.5, 0, 0	0.5, 0, 0	
Occ., B /Å ²	1, 1.03(2)	0.99, 2.52(1)	0.97, 2.91(3)	
Mo1 (x, y, z)	-	0, 0.5, 0	0, 0.5, 0	
Occ., B /Å ²	-	0.01, 1.08(2)	0.03, 1.86(2)	
Mo2 (x, y, z)	-	0.5, 0, 0	0.5, 0, 0	
Occ., B /Å ²	-	0.01, 1.59(2)	0.03, 2.04(2)	
O1 (x, y, z)	0.0553(2), 0.4934(1), 0.2544(1)	0.0567(1), 0.4964(3), 0.2547(2)	0.0612(2), 0.4997(2), 0.2528(3)	
Occ., B /Å ²	1, 2.02(3)	1, 1.39(1)	1, 1.05(2)	
O2 (x, y, z)	0.7127(2), 0.2709(3), 0.0219(3)	0.7130(2), 0.2713(1), 0.0262(5)	0.7135(1), 0.2727(3), 0.0327(2)	
Occ., B /Å ²	1, 3.78(2)	1, 1.78(1)	1, 4.96(4)	
O3 (x, y, z)	0.7442(2), 0.2857(2), 0.4660(2)	0.7440(1), 0.2849(3), 0.4626(4)	0.7439(2), 0.2839(1), 0.4593(3)	
Occ., B /Å ²	1, 1.45(2)	1, 1.35(1)	1, 1.11(2)	
$R_{ m wp}$	2.12	2.40	2.29	
χ^2	1.38	1.42	1.54	

Table S1. Phase identification and structural parameters summary from Rietveld refinement of XRD patterns.

	La ₂ CoMnO ₆	$La_2(CoMn)_{0.99}Mo_{0.02}O_6$	La2(CoMn)0.97Mo0.06O6
Co-O1	1.9977(2)	2.0028(3)	1.9938(2)
Co-O2	2.0258(1)	2.0267(2)	2.0261(1)
Co-O3	2.0778(1)	2.0778(1)	2.0776(2)
Mn-O1	1.9307(3)	1.9317(2)	1.9507(1)
Mn–O2	1.8955(2)	1.9018(1)	1.9161(2)
Mn–O3	1.8516(1)	1.8595(2)	1.8681(2)

Table S2. Co–O and Mn–O bond distances from structure analysis results in Table S1 (Å).

	La ₂ CoMnO ₆	$La_2(CoMn)_{0.99}Mo_{0.02}O_6$	La2(CoMn)0.97Mo0.06O6
Co-O1-Mn	162.02	161.66	160.28
Co-O2-Mn	163.39	162.15	159.95
Co-O3-Mn	161.82	160.57	159.37

 Table S3. Co-O and Mn-O angles from structure analysis results in Table S1 (°).

	BET surface area (m ² g ^{-1})		
La ₂ CoMnO ₆	1.30		
La ₂ (CoMn) _{0.99} Mo _{0.02} O ₆	1.35		
La ₂ (CoMn) _{0.97} Mo _{0.06} O ₆	1.25		

 Table S4. Brunauer–Emmett–Teller (BET) surface areas of perovskite oxides.

Catalysts	Potential (V vs. RHE) @25 μ A cm _{ox} ⁻²	References
Mo ₁ /LCMO	0.99	This wotk
$LaMnO_{3+\delta}$	0.92	Nat. Chem. 2011, 3, 546
LaNiO ₃	0.92	Nat. Chem. 2011, 3, 546
$La_{0.5}Ca_{0.5}MnO_3$	0.89	Nat. Chem. 2011, 3, 546
MnCo ₂ O ₄	0.89	Adv. Mater. 2017, 29, 1606800
LaCoO ₃	0.86	Nat. Chem. 2011, 3, 546
Mn _{2.5} Co _{0.5} O ₄	0.84	Adv. Mater. 2017, 29, 1606800
Mn ₂ CoO ₄	0.84	Adv. Mater. 2017, 29, 1606800
LaMnO ₃	0.85	Nat. Chem. 2011, 3, 546
LaMn _{0.5} Ni _{0.5} O ₃	0.82	Nat. Chem. 2011, 3, 546
$LaMn_{0.5}Cu_{0.5}O_3$	0.80	Nat. Chem. 2011, 3, 546
$La_4Ni_3O_7$	0.80	Nat. Chem. 2011, 3, 546
NiCo ₂ O ₄	0.80	Adv. Mater. 2017, 29, 1606800
Mn ₃ O ₄	0.79	Adv. Mater. 2017, 29, 1606800
LiMn ₂ O ₄	0.78	Adv. Mater. 2017, 29, 1606800
$Li_{0.74}Mn_2O_4$	0.76	Adv. Mater. 2017, 29, 1606800
$La_{0.5}Ca_{0.5}CoO_{3-\delta}$	0.75	Nat. Chem. 2011, 3, 546
MnFe ₂ O ₄	0.75	Adv. Mater. 2017, 29, 1606800
ZnCo ₂ O ₄	0.74	Adv. Mater. 2017, 29, 1606800
La ₂ NiO ₄	0.73	Nat. Chem. 2011, 3, 546
Co ₃ O ₄	0.73	Adv. Mater. 2017, 29, 1606800
La _{0.5} Ca _{0.5} FeO ₃	0.71	Nat. Chem. 2011, 3, 546
$La_{0.75}Ca_{0.25}FeO_3$	0.70	Nat. Chem. 2011, 3, 546
CoFe ₂ O ₄	0.70	Adv. Mater. 2017, 29, 1606800
NiFe ₂ O ₄	0.70	Adv. Mater. 2017, 29, 1606800
LaCrO ₃	0.69	Nat. Chem. 2011, 3, 546

Table S5. Comparison of intrinsic ORR activities for different oxide catalysts according to theevaluation method proposed by Suntivich *et al.*⁴

	Resistivity ($\mu\Omega$ cm)	
CaMnO ₃	6.3×10^{3}	
$CaMn_{0.95}Mo_{0.05}O_{3}$	$4.8 imes10^1$	
SrMnO ₃	$1.1 imes 10^4$	
SrMn _{0.95} Mo _{0.05} O ₃	$1.9 imes10^2$	
LaNiO ₃	$2.4 imes 10^1$	
LaNi _{0.95} Mo _{0.05} O ₃	1.8	
La ₂ NiMnO ₆	$2.1 imes 10^7$	
La2(NiMn)0.97Mo0.06O6	$5.7 imes 10^5$	

Table S6. Electrical resistivity for perovskite oxides at room temperature.

Cathode catalysts	Electrolyte Anode	Test conditions	Power density	References
Mo ₁ /LCMO	GDC YSZ Ni-YSZ	80 mL min ⁻¹ H ₂ ; ambient air	880	This wotk
Nd _{0.5} Sr _{0.5} CoO ₃	GDC YSZ Ni-YSZ	80 mL min ⁻¹ H ₂ ; ambient air	800	<i>Energy and AI</i> 2020, <i>2</i> , 100027
$Sr_2Fe_{1.5}Mo_{0.5}O_6$	LSGM GDC Ni-GDC	80 mL min ⁻¹ H ₂ ; ambient air	418	J. Mater. Chem. A 2020, 8, 14091
$\begin{array}{c} La_{1.7}Bi_{0.2}Sr_{0.1}Cu\\ O_{4}\end{array}$	SDC YSZ Ni-YSZ	50 mL min ⁻¹ H ₂ ; ambient air	630	ACS Appl. Mater. Interface 2019, 11, 21593
LaSrCoTiO ₅	LSGM SDC Ni-SDC	100 mL min ⁻¹ H ₂ ; ambient air	776	Int. J. Hydrogen Energy 2016, 41, 21439
Nd_2NiO_4	YSZ Ni-YSZ	100 mL min ⁻¹ H ₂ ; 100 mL min ⁻¹ 20%O ₂ +80%N ₂	1300	J. Mater. Chem. A 2014, 2, 9764
$La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_{3}$	GDC YSZ Ni-YSZ	80 mL min ⁻¹ H ₂ ; ambient air	401	J. Power Sources 2014, 268, 634
$La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_{3}$	GDC YSZ Ni-YSZ	80 mL min ⁻¹ H ₂ ; ambient air	695	<i>Ceram. Int.</i> 2015, <i>41</i> , 7651
$\begin{array}{c} La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}\\ {}_{8}O_{3}\end{array}$	GDC YSZ Ni-YSZ	H ₂ ; unknown	780	Appl. Catalysis B: Environ. 2020, 268, 118413
$\begin{array}{c} La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.}\\ {}_{8}O_{3}\end{array}$	GDC YSZ Ni-YSZ	200 mL min ⁻¹ H ₂ ; 200 mL min ⁻¹ air	1220	Energy Environ. Sci. 2012, 5, 7066
La _{0.6} Sr _{0.4} FeO ₃	YSZ Ni-YSZ	$\begin{array}{l} 50 \text{ mL min}^{-1} \text{ H}_2; \\ 50 \text{ mL min}^{-1} \text{ air} \end{array}$	506	Appl. Energy 2019, 241, 1
$\frac{NdBa_{0.5}Ca_{0.5}Co_{1.5}}{Fe_{0.5}O_{5}}$	GDC YSZ Ni-YSZ	100 mL min ⁻¹ H ₂ ; ambient air	941	J. Energy Chem. 2020, 43, 108
$La_{0.8}Sr_{0.2}MnO_3$	YSZ Ni-YSZ	100 mL min ⁻¹ H ₂ ; ambient air	470	J Mater Chem A 2018, 6, 2721
$La_{0.8}Sr_{0.2}MnO_3$	YSZ Ni-YSZ	30 mL min ⁻¹ H ₂ ; ambient air	580	Nat. Commun. 2019, 10, 1497.
$La_{0.8}Sr_{0.2}MnO_3$	YSZ Ni-YSZ	30 mL min ⁻¹ H ₂ ; 50 mL min ⁻¹ air	980	Energy Environ. Sci. 2018, 11, 2390
$(La_{0.8}Sr_{0.2})_{0.95}Mn$ O ₃	YSZ Ni-YSZ	30 mL min ⁻¹ H ₂ ; ambient air	780	J. Power Sources 2015, 274, 1114

Table S7. Comparison of SOFC performance (@800 °C, mW cm⁻²) between our cathode catalysts and the state-of-the-art catalysts reported in literatures.

Table S8. Fitting results of the DRT curves of symmetric cells composed of LCMO cathodes andYSZ electrolyte at 700 °C.

Cathode	$\frac{\text{ASR}}{(\Omega \text{ cm}^2)}$	Peak1	$\frac{R1}{(\Omega \text{ cm}^2)}$	Peak2	$\frac{R2}{(\Omega \text{ cm}^2)}$	Peak3	$\frac{R3}{(\Omega \text{ cm}^2)}$
LCMO	17.49	0.1132	1.97988	0.53583	9.37159	0.35097	6.13853
La2(CoMn)0.99Mo0.02O6	11.23	0.10334	1.16053	0.6042	6.78521	0.29245	3.28426
La2(CoMn)0.97Mo0.06O6	9.60	0.10394	0.99781	0.62004	5.95238	0.27602	2.64981

Reference

- 1 A. Damjanovic, A. Dey and J. O. Bockris, *Electrochim. Acta*, 1966, 11, 791.
- 2 A. R. Zeradjanin, ChemSusChem, 2018, 11, 1278.
- 3 S. T. Dix, S. Lu and S. Linic, ACS Catal., 2020, 10, 10735.
- 4 J. Suntivich, H. A. Gasteiger, N. Yabuuchi, H. Nakanishi, J. B. Goodenough and Y. Shao-Horn, *Nat. Chem.*, 2011, **3**, 546–550.