Electronic Supplementary Material (ESI) for Environmental Science: Processes & Impacts. This journal is © The Royal Society of Chemistry 2020

Physico-chemical factors controlling the speciation of

phosphorus in English and Welshrivers

Rupert Goddard¹, Michael J. Gardner², Thomas H. Hutchinson¹, Paul Lunt¹, Holly B.C. Pearson¹, Alan Tappin¹, H. Kate Schofield¹, Tarryn Attfield¹, Paul Worsfold¹ & Sean Comber^{1*}.

¹ University of Plymouth, Drakes Circus, Plymouth, Devon, PL4 8AA, UK
²Atkins Ltd, The Hub, 500 Park Avenue, Almondsbury, Bristol, BS32 4RZ, UK
*corresponding author: sean.comber@plymouth.ac.uk

Contents

Supplementary information	Page 4
S1 Abbreviations used within the paper	Page 4
S2 Calculation of EQS	Page 5
S3 Molybdenum blue analysis methodology for SRP and TRP	Page 6
S4 Methodology for TP and TSP analysis	Page 7
S5 Descriptive catchment details	Page 8
S5.1 River Erewash	Page 8
S5.2 River Mease	Page 9
S5.3 River Ouzel	Page 11
S5.4 River Arun/Rother	Page 12
S5.5 River Cefni	Page 15

S5.6 River Teifi	Page 16
S 5.7 River Wylye	Page 17
S 5.8 River Kennet	Page 19
S5.9 River Taw	Page 20
S5.10 East Looe	Page 21
S5.11 River Inny	Page 23
S5.12 River Blackwater	Page 24
S5.13 Sedgemoor catchment	Page 25

Figures	Page 26
Fig S1 Operationally defined aquatic P fractions	Page 26
Fig S2.1 River Erewash map of catchment and sampling points	Page 27
Fig S2.2 River Mease map of catchment and sampling points	Page 27
Fig S2.3 River Ouzel map of catchment and sampling points	Page 28
Fig S2.4 River Arun/Rother map of catchment and sampling points	Page 28
Fig S2.5 River Cefni map of catchment and sampling points	Page 29
Fig S2.6 River Teifi map of catchment and sampling points	Page 29
Fig S2.7 River Wylye map of catchment and sampling points	Page 30
Fig S2.8 River Kennet map of catchment and sampling points	Page 30
Fig S2.9a River Taw map of catchment and sampling points	Page 31

Fig S2.9b River Taw map of catchment and sampling points used in

objective 2 study Page 31
Fig S2.10 East Looe map of catchment and sampling points Page 32
Fig S2.11 River Inny map of catchment and sampling points Page 32
Fig S2.12 River Blackwater map of catchment and sampling points Page 33
Fig S2.13 Sedgemoor map of catchment and sampling points Page 33
Fig S3 Cumulative frequency chart for soluble reactive phosphorus: total
reactive phosphorus and soluble reactive phosphorus: total phosphorus
ratios based on samples collected from sites in England and Wales
(2016-2018)

Tables	Page	35	;
			·

Table S1 Phosphorus, iron and suspended solids data for twelve of t	he
---	----

catchments studiedPa	ige	3	5
----------------------	-----	---	---

Plates

Plate S1 Ochreous discharge into river Rother	Page 39
---	---------

ReferencesPag	е	3	9
---------------	---	---	---

Electronic Supporting Information

S1 Abbreviations used within the paper

Abbreviation	Definition
EU	European Union
WFD	Water Framework Directive
GES	Good Ecological Status
RP	Reactive phosphorus
Р	Phosphorus
FRP	Filtrable Reactive phosphorus
DRP	Dissolved reactive phosphorus
MRP	Molybdate reactive phosphorus
TRP	Total reactive phosphorus
PP	Particulate phosphorus
Fe	Iron
Al	Aluminium
WwTW	Waste water treatment works
Са	Calcium
SS	Suspended solids
DWF	Dry weather flow
TSP	Total soluble phosphorus
HCI	Hydrochloric acid
S.g	Specific gravity
CRM	Certified Reference Material

ICP-MS	Inductively Coupled Plasma
	Mass Spectrometer
SUP	Soluble unreactive phosphorus
MLR	Multiple linear regression
EPC ₀	Equilibrium phosphorus concentration

S2 Calculation of the EQS

Calculation of the EQS for each class (High/Good, Good/Moderate. Moderate/Poor and Poor/Bad) is made using the following equations and expressed as µg /L reactive phosphorus:

a) High/Good Standard = $10^{((1.0497 \times \log_{10} (0.702)+1.066) \times (\log_{10} (reference Phosphorus) - \log_{10}(3,500)) + \log_{10}(3,500))$

b) Good/Moderate Standard = $10^{((1.0497 \times \log_{10} (0.532)+1.066) \times (\log_{10} (reference Phosphorus) - \log_{10}(3,500)) + \log_{10}(3,500))$

c) Moderate/Poor Standard = $10^{((1.0497 \times \log_{10} (0.356)+1.066) \times (\log_{10} (reference Phosphorus) - \log_{10}(3,500)) + \log_{10}(3,500))$

d) Poor/Bad Standard = $10^{((1.0497 \times \log_{10} (0.166) + 1.066) \times (\log_{10} (reference Phosphorus) - \log_{10}(3,500)) + \log_{10}(3,500))$

where the value for reference phosphorus is calculated by the equation:

Reference phosphorus = $10^{(0.454 (log_{10}alk) - 0.0018 (altitude) + 0.476)}$

S3 Molybdenum blue analysis for SRP and TRP

The following reagents were made up for the molybdenum blue analysis.

1) 25% Sulphuric acid: 250 ml of concentrated sulphuric acid added to 750 ml of high purity water, allowed to cool then made up to 1 litre with further high purity water.

2) Ascorbic acid: 2.5 g of ascorbic acid, $C_6H_8O_6$, dissolved in 12.5 ml of high purity water. 12.5 ml of diluted sulphuric acid (25%) solution (reagent 1) added and mixed well. This solution was made up before each analysis or stored in an amber lab glass bottle in a refrigerator, to be used within a week of preparation.

3) Mixed Reagent: 12.5 g of ammonium heptamolybdate tetrahydrate, (NH₄)₆Mo₇O₂₄.4H₂O in 125 ml dissolved high purity water. 0.5 g of potassium antimony tartrate, K(SbO)C₄H₄O₆ (with/without ½ H₂O) dissolved in 20 ml high purity water. Molybdate solution added to 350 ml of dilute sulphuric acid solution (reagent 1) and stirred continuously. Tartrate solution added and mixed well. The reagent was stored in a lab glass bottle and was stable for several months.

Method:

- I. Add 0.25 ml of ascorbic acid to a 12.5 ml sample.
- II. Add 0.25 ml of the mixed reagent to the solution.
- III. Mix and leave for 10 minutes.
- IV. Measure within 30 minutes by pouring the sample into 4 cm cuvette and placing in Cecil CE1010 colorimeter at 710 nm.

S4 Methodology for TP and TSP analysis

A standard solution of phosphorus, PlasmaCAL P standard of $10040+/-50 \mu g$ P mL⁻¹, lot S170220019 (= 10,000 mg P L⁻¹) together with a multi element standard solution by Labkings (LK) of 100 mg L⁻¹ were used to make standards for calibration.

100 mg P L⁻¹ stock solution was produced by taking 0.25 ml of P standard (10,000 mg P L⁻¹) and made up to 25 ml with 10% HN0₃. From this and the LK multi-element 100 mg L⁻¹ stock, a 1 mg P L ⁻¹ and LK stock made. These two stocks were used to produce the following concentration standards: Standard 1: 10 μ g L⁻¹, Standard 2: 40 μ g L⁻¹, Standard 3: 100 μ g L⁻¹, Standard 4: 200 μ g L⁻¹, Standard 5: 300 μ g L⁻¹.

Samples were spiked with 100 μ l of Iridium and Indium for use as an internal standard to give a final concentration of 10 μ g Ir / Id L⁻¹. ESH certified reference material was measured.

Each 25 ml volumetric flask of standard was spiked with 250 μl of 1 mg lr/ld L⁻ ¹ Iridium/Indium internal standard to give a final internal standard concentration in standards and samples of 10 μg lr/ld L⁻¹.

S5 Descriptive catchment details

S5.1 Erewash

The Erewash is a WwTW effluent dominated catchment (Fig S2.1) with an estimated 64% effluent under average flow conditions. The 8 main WwTW discharging to the river with a total population served of almost 250,000 are all dosing for P removal to 2 mg P L⁻¹. CIP catchment data confirms this with mean TP concentrations of between 670 and 1640 μ g P L⁻¹.

Proportions of SRP to TP range from means of 60 to 85%, which are at the higher end of the SRP:TP ratio for WwTw dosing for P removal. Given the altitude and alkalinity of the Erewash, good status under the WFD is calculated to vary between 55 μ g P L⁻¹ at the headwaters up to 81 μ g P L⁻¹ near its confluence with the Trent.

Under high flow conditions as sampled in November 2016, concentrations were lower reflecting greater dilution of the effluent with runoff from the catchment. River levels at the gauging station were over two times higher than during the summer sampling survey. It had rained heavily the night before and although flows had peaked, there was still obvious signs of significantly higher flows than in the summer. Phosphate speciation varied from the summer sampling with a lower proportion of SRP of TRP averaging 71% across the catchment, compared with 95% in the summer. There is also a steady increase in TP and SRP (with proportions of SRP remaining relatively constant) down the catchment (unlike the similar levels throughout in summer) as the effluent from the larger WwTW discharges becomes more influential. Higher proportions of particulate phosphorus and soluble unreactive

phosphorus suggest inputs to the river associated with the higher suspended solids concentration of typically up to 20 mg L⁻¹ across the catchment.

During the summer low flow (close to baseflow according to gauging station data), no sites were classed as good. Near the source was classified as moderate, then after the first WwTw effluent discharge at Kirky in Ashfield, concentrations rose to greater than 1400 μ g P L⁻¹ (bad quality) then decreased back to around 800 μ g P L⁻¹ (poor) to its confluence with the Trent. The P speciation is dominated by SRP suggesting that other inputs other than wastewater (typically 60 to 85% SRP according to CIP2 data) are likely to comprise SRP. The residual P was particulate P associated with the small amount of suspended solids present in the river.

These concentrations represent a worst case P picture as river levels were low and WwTW effluent discharge is relatively consistent with measured concentrations in the range of 600 to 800 μ g P L⁻¹, closely aligned with approximate dilution of over 64% effluent containing ~1 mg P L⁻¹.

S5.2 River Mease

In terms of available dilution, the Mease sits at the other end of the spectrum to the less populated wetter catchments in the west of England (Fig S2.2) and Wales; overall it has only 3.7 L s⁻¹ flow for every km² of the catchment (compared with 18.2 for the Teifi), consequently the average proportion of effluent contribution to river flow is 21%, but will be much higher during summer low flows in the river. The Mease is characterised as a lowland clay

river flowing east to west from just east of Measham to the Trent at Croxall All significant WwTW within the catchment dose for P reduction. Other pressures on the water quality are agriculture which appears quite mixed, with horticulture, intensive farming of livestock and arable cereal farming prevalent.

The catchment was sampled twice in the summer (July and August) at very similar low flow conditions. The lowland, high alkalinity typology means that WFD good status for P ranges between a narrow range of 60 to 79 μ g P L⁻¹. Lowest concentrations were observed near its source (Site 1) and Hooborough Brook downstream of Donisthorpe WwTW (Site 6) which were all at 64 µg P L⁻¹ or less for SRP, equating to good status on both sampling occasions for site 6 and high and moderate for site 1, although the moderate status was only 4 µg-P/l above the good boundary. The rest of the main river channel (Sites 1, 2, 3, 4, 5, 7, 11) were all of moderate status with the exception of Site 3 which was poor on both occasions and was close to the source on one of the feeder streams of very low flow within an area of intensive agriculture and downstream of Norton Juxta Twycross WwTW (albeit dosing for P reduction to 2 mg /L TP). Sites 8, 9 and 10 were upstream, effluent from Chilcote rotating biological contactor and downstream on a small tributary of the Mease around mid catchment. The RBC effluent contained very high concentrations of SRP (10 and 5 mg P L⁻¹) on the two occasions, which obviously influenced downstream concentrations.

Phosphorus speciation in the catchment was unsurprisingly very similar on both occasions, dominated by SRP, nearing 100% of the contribution on many occasions. Concentrations of dissolved iron were generally low

throughout the catchment with means of 32 and 60 μ g P L⁻¹ for the two occasions.

S5.3 River Ouzel

The Ouzel is a small river rising in the Chilterns (Fig S2.3) and flowing 20 miles north to the Ouse at Newport Pagnell. The river Ouzel, has similar typology to the Mease, with only slightly higher flow per km² (4.2 compared with 3.7 L s km² ⁻¹) reflecting lower rainfall in the east of England. Again, effluent contributions to river flow was higher owing to less available dilution (27%) with a number of moderately sized WwTW including Leighton Buzzard and Dunstable, both dosing for P reduction.

The lowland topography and high alkalinity mean the good/moderate boundary under the WFD ranges from 63 to 76 µg P L⁻¹.

Site 1 close to the source was categorised as high status on both occasions, but the river then flows immediately into an area of intensive agriculture and centres of population. Highest concentrations of were observed on both sampling occasions at site 3, downstream of Dunstable WwTW over 1 mg P L⁻¹ P reflecting very low dilution of an effluent discharge near the headwaters of a river. The river stays at poor status all the way down to site 9 as concentrations slowly decrease as a result of increasing dilution before concentrations drop to below 337 μ g P L⁻¹ (moderate status) near to the confluence with the Ouse.

Phosphorus speciation is dominated by SRP with a small percentage of particulate P probably associated with the suspended solids present (up to 13 mg P L⁻¹). Dissolved Fe concentrations were generally low (means of 37 and 49 μ g L⁻¹ Fe) and appeared not to overly influence the proportion of SRP present.

S5.4 River Arun/Rother

The Rother and Arun catchments (Fig S2.4) cover a significant area of Sussex north of the South Downs. The catchment is relatively low lying, hard water typology dominated by a combination of arable and livestock farming with significant fertiliser use and small market towns interspersed down the entire catchment including Petersfield, Horsham, Midhurst, Pulborough, Petworth and Arundel. Approximately 80% of the population's wastewater is treated for P removal, with Horsham (on the Arun) comprising 46% of the catchment's population dosing to 1000 μ g P L⁻¹. A total of 37 significant WwTW discharge to the river, with the largest works (10 WwTW) dosing for P removal to either 1000 or 2000 μ g P L⁻¹ as TP.

The water quality rarely meets good status using the reived EQS for P under the WFD (63 to 82 μ g P L⁻¹ between top and bottom of catchment). Immediately from near the source the water quality is under pressure from agricultural runoff from extensive horticulture (orchards) in the upper Rother catchment and this is reflected in the elevated TP levels in the first sample. The next 3 sites downstream in summer were of good status after what

appears to be dilution by cleaner tributaries entering upstream and downstream of Petersfield with site 3 below Petersfield (2nd largest town in the catchment ~19K PE and dosing to meet 2000 µg P L⁻¹ permit) still retaining good status. Further down the catchment towards the confluence with the Arun at Pulborough water quality deteriorates to only moderate status with TP almost 100 µg P L⁻¹. The Arun is dominated by inputs from Horsham WwTW (dosing to meet a 1000 μ g P L⁻¹ P permit). The upper catchment is flat with the river exhibiting low, sluggish flows in summer. The two samples taken downstream of Horsham WwTW (site 6) and before the confluence with the Rother (site 7) and WwTW were of poor status with TP levels rising to 220 µg P L⁻¹. Sites 8, 9 and 10 downstream on the Arun/Rother confluence stabilised and began to drop probably owing to dilution by drainage from wetlands along the tidally influenced part of the river. P speciation showed an interesting pattern with a significant fraction of particulate and soluble unreactive P present, attributed to high iron concentrations associated with a greensand belt in the South Downs chalk geology. This was evident in one sample (Site 4X, Plate S1) taken from a small ochreous discharge into the Rother at site 4. The particulate P was therefore likely to be non-filterable iron phosphate colloidal material of particle sizes > $0.4 \mu m$.

The soluble unreactive P would represent the likely presence of organo-P or polymeric phosphate complexes not reactive to the molybdenum tests.

The winter samples taken in November were under relatively low flow conditions, and showed some contrasting results. Again the Rother was contaminated at source, but TP concentrations decreased downstream and remained at good status to the Arun confluence. The Arun was again

significantly more contaminated and additional samples were taken at close to Horsham WwTW and at Billingshurst to better characterise the river. In all cases TP > 200 μ g P L⁻¹ rising to 500 μ g P L⁻¹ at the Rother confluence. The almost doubling in concentrations possibly reflects the low flows and variations in inputs from the agricultural sources present. As with the summer sampling campaign, a significant proportion of the TP present was not soluble, with up to 75% of the P present in the particulate and soluble unreactive phases, particularly in the Rother where iron concentrations were at their highest. The Arun, recorded some particulate P, albeit generally less than the Rother with highest concentrations downstream of Horsham WwTW (site 10) possibly related to the dosing occurring at the works generating and discharging colloidal P, which is both diluted and precipitated from solution further downstream. Iron concentrations at site 10 were also highest for the Arun samples supporting this hypothesis. Soluble unreactive P is still present at all but site 1, although at slightly lower concentrations than observed in summer. For the winter sampling site '3x' was a tributary of the Rother adjacent to site 3 which was included as an additional sample owing to it looking 'cleaner'; conductivity and suspended solids were lower but the TP concentration and speciation was similar to the main channel. There was no ochreous discharge from near site 4, which may have reflected the low flows at the time, but cannot be readily explained.

S5.5 River Cefni

The Cefni is a small low lying relatively soft water river on Anglesey (Fig S2.5). With the exception of the WwTW at Llangefni, it is a relatively rural catchment, with rough pasture and small scale arable crops being grown. There appeared to be little evidence of widespread fertiliser use or intensive agriculture.

Samples were taken in a one-off sampling survey in July 2016, under low flow conditions with suspended solids less than 10 mg L⁻¹ at all sites. All samples exhibited very low levels of SRP, being classified as either high or good status. The effluent from the BNR was measured at only 17 μ g P L⁻¹ as SRP (105 μ g P L⁻¹ as TP). The BNR, although a significant flow into what is a small river, has no impact on the overall concentration or speciation. In fact, concentrations in the effluent are of a similar magnitude to upstream concentration.

The phosphorus speciation, however, revealed a different pattern with significant soluble unreactive P present as well as some particulate, or at least, non filterable (>0.4 μ m) P. SRP across the catchment contributed between approximately 10% and 50% of the total P concentration. The low suspended solids suggested that there may be other physico-chemical factors influencing the P speciation such as dissolved Fe which again was measureable at between 90 and 438 μ g Fe L⁻¹ across the catchment.

The relatively high alkalinity and low altitude means that good status for reactive P ranges from 63 to 85 μ g P L⁻¹. The catchment was chosen in part

owing to the presence of the Biological Nutrient Removal WwTW at Llangefni at the lower end of the catchment.

S5.6 River Teifi

The Teifi catchment (Fig S2.6) was one of the largest sampled and is located in the west of Wales stretching from the Cambrian mountains of mid Wales 73 miles to the sea at Cardigan. It is a soft water, upland catchment (the source is at 455 m) with little population and rural low intensity, hill farming of sheep. As a result P sources are limited and only at the bottom of the catchment in towns such as Lampeter, Newcastle Emlyn, Llandysul and Llanybydder are there any significant wastewater discharges, although it should be noted that these WwTW are also dosing for P removal. The catchment is also subject to significant rainfall and so exhibits the highest flow per unit area of any of the catchments sampled. Overall, these factors contribute to ensure P levels are low in the catchment.

Sampling was undertaken in the summer and although dry on the day, it had been raining for two days previously and river levels were elevated above typical summer values.

There was obvious colouration in the water from runoff from peaty land, which was accounted for as part of the colorimetric P determinations. Suspended solids slowly increased down the catchment from 7 to 17 mg L⁻¹. The upland, low alkalinity water means that the standards for good quality for reactive P are very low, ranging from 13 to 42 μ g P L⁻¹ from the top to the bottom of the

catchment. Concentrations of SRP at very low at the top of the catchment <10 μ g P L⁻¹ (high quality) and slowly increase down river and population centres are encountered. However, good status is maintained for all bar one site (site 9) where it 'fails' good status by only 2 μ g P L⁻¹. The catchment therefore exhibits good water quality with only minimal anthropogenic pressures.

The P speciation again shows some interesting trends, with SRP being only between <1% and 38% of the TP concentration which ranges from 50 to 100 μ g P L⁻¹ between the top and bottom of the catchment. Similar to the Cefni and other catchments with significant Fe concentrations measured in the water, there are significant amounts of soluble unreactive P present and a small proportion of particulate P. Concentrations of dissolved Fe are elevated with levels reaching the highest observed for the 12 different catchments sampled, ranging from 250 to 650 μ g Fe L⁻¹ mid catchment, reflecting a low point in % SRP of TP ratios.

S 5.7 River Wylye

The river Wylye is located within the Hampshire Avon catchment (Fig S2.7) and is a high alkalinity, low land chalk stream rising on White Sheet Downs before flowing into the Nadder at Wilton, then the Avon just downstream in Salisbury. The catchment is generally rural with significant arable cereal crops being grown as well as water cress in the upper catchment. Warminster WwTW is the only significant source of effluent, with the works dosing to an average of less than 1000 μ g P L⁻¹. Warminster barracks just downstream also contributes a certain load of P, but is not controlled by any permits.

Although the high alkalinity, lowland waters mean that the EQS for good status is relatively high (between 66 and 80 μ g P L⁻¹), the river stills fails to meet this target from the top to the bottom of the catchment, with levels of SRP increasing to almost 200 μ g P L⁻¹ mid catchment, downstream of Warminster, just falling into poor status from moderate. It should be noted that upstream concentrations are failing the EQS on account of agricultural inputs and possibly contributions from septic tanks; and also that sampling occurred during a summer dry spell, with flows matching typical long term low flows, as a result the dilution available for the effluent within the river were at their lowest.

P speciation is dominated by SRP, with only small quantities of particulate P present in the samples. Warminster WwTW effluent P concentrations reflected the degree of dosing and filtration with levels post second dosing of Fe into the trickling filter works effluent after sand filtration having only 200 μ g P L⁻¹ TP. The filtration of particulate material also means that the observed concentrations within the catchment of between 100 and 200 μ g P L⁻¹ TP, dominated by SRP are very similar to those reported for another UKWIR project during 2010 and 2011. This suggests that the catchment conditions have changed little in the intervening period. Dissolved concentrations of Fe are very low (10 to 50 μ g Fe L⁻¹) which might reflect the predominance of SRP in the catchment.

S.5.8 River Kennet

The river Kennet, like the Wylye is a lowland chalk stream, within the Thames catchment rising in Wilshire near Silbury hill and joining the Thames in Reading (Fig S2.8). The upper catchment is rural arable land dominated by cereal crops, with increasing populations down the catchment at towns such as Marlborough, Hungerford, Newbury and Reading. The high population of Reading (>250,000) discharging into the Kennet less than 1 km from its confluence with the Thames, means that the calculated percentage effluent of average flow within the catchment is slightly misleading. All of the main WwTW within the catchment are dosing for P removal to 1000 or 2000 μ g P L⁻

The river level on the day of sampling was only marginally above typical summer low flows. Consequently WwTW contributions would be at their highest. Suspended solids were very low (<8 mg L⁻¹) and concentrations of SRP did not quite meet good status (65 to 85 μ g P L⁻¹) at the top of the catchment influenced by farming and where there was very little flow, and then again within the urban environment at the bottom of the catchment below Reading WwTW.

Similar to the Wylye the P speciation was dominated by SRP, with dissolved Fe very low, ranging from 8 to 30 μ g Fe L⁻¹.

S 5.9 River Taw

The Taw catchment (Fig S2.9) extends from Dartmoor to Barnstaple in N Devon. It is a large, mostly rural catchment, with a notable industrial discharge in the mid to upper catchment at North Tawton where a dairy discharges its effluent into the river just upstream of N. Tawton WwTW. The Taw catchment has the 3rd highest flow to unit area of the 12 catchments sampled and has only a mean contribution of WwTW effluent of 2%.

The lower alkalinity and upland area means good status for P ranges from only 17 µg P L⁻¹ near the source to 56 µg P L⁻¹ mid catchment. Owing to the size of the catchment, only the top half of the catchment was sampled. Site 1 was classified as high status for both the summer and winter sampling which is not surprising as it was located near to the source, right on the edge of Dartmoor above any influences from either agriculture of WwTW inputs. For the summer sampling campaign during typically low flows and low suspended solids conditions (<7 mg L⁻¹ throughout the catchment), water quality deteriorated immediately the river encounters a combination of increasing human population and agriculture (a combination of arable and livestock). Sites 2 and 3 upstream of N Tawton were considered moderate status, but downstream of the dairy and WwTW water quality was only categorised at poor, before recovering to moderate at Taw Bridge (Site 7). Site 8 on the Yeo, just upstream of the confluence with the Taw exhibited higher P levels and influenced the final Taw sample at Chenson, pushing it back down into 'poor' status.

The winter samples were collected after a significant rain event, categorised as typically high flows; as a consequence, inputs of P appear to be diluted and as a result SRP concentrations are lower. SRP levels only reach a maximum of 58 μ g P L⁻¹ at Chenson, downstream of the Yeo confluence where levels were higher at 75 μ g P L⁻¹. The river water quality was therefore considered as high or good above and below North Tawton until the confluence with the Yeo.

Phosphorus speciation was also markedly different. The summer samples were dominated by low suspended solids and high proportions of SRP. The winter samples contained much higher proportions of soluble unreactive P in particular and some particulate P, with SRP never contributing more than 50% of the total P concentration. Because of the higher flows, suspended solid concentrations were significantly higher (up to 24 mg L⁻¹) suggesting possible washout of complex phosphates and particle associated P. Iron concentrations may have also influenced the P speciation because concentrations in the summer samples were much lower (28 to 194, with a mean of 82 μ g Fe L⁻¹) compared with the winter samples (56 to 215 with a mean of 159 μ g Fe L⁻¹).

S5.10 East Looe

The East Looe catchment (Fig S2.10) was the smallest of all the catchments sampled (one 20th the size of the Kennet). Its location in Cornwall in the west of England, subject to higher rainfall, meant it had the highest flow to unit are

ratio of all the English catchments sampled and was second only to the Teifi. There is only one significant WwTW discharge from Lodge Hill, which serves Liskeard and doses aluminium for P reduction. There is little intensive agriculture and the catchment is predominantly rural, with unimproved upland pastures and a small amount of arable farming. From Sites 8 to 10, there was some evidence of forestry and recent logging operations.

The higher altitude and lower alkalinity meant good status for P ranged from 21 to 59 μ g P L⁻¹. The upper catchment receives inputs from four small feeder streams, which were barely a trickle during the summer survey.

The winter samples were taken after significant rain and flows were therefore noticeably higher. Site 1 had an obvious ochreous input leaching into the stream denoting the presence of iron. Although there are no obvious signs of mines in the area, that part of Cornwall is generally a metalliferous region.

For the summer samples, of the four feeder streams one (Site 4) was classified as high status, sites 2 and 3 moderate and site 1 good. The site upstream of Liskeard WwTW was categorised as good, as was the downstream site. The use of aluminium dosing for P removal appears to be highly efficient and SRP in the effluent was only ~100 μ g P L⁻¹ (approximately half that of TP). The rest of the sites downstream including a small stream draining from Liskeard town (Site 11) were all at good status.

For the winter sampling campaign although flows were higher, this was not reflected in any significant increase in suspended solids <5 mg L⁻¹) possibly reflecting the lack of intensive farming in the catchment. Consequently concentrations of SRP and the WFD status was almost identical (only Site 2

had changed from moderate to good and site 7 from good to moderate (although in actuality concentrations for summer vs winter went from 48 to 52 μ g P L⁻¹, set against good status of 50 μ g P L⁻¹).

The P speciation for both sampling occasions were also very similar, with SRP comprising 20% to 71% in the summer and 22% to 47% in the winter. As for other catchments where the proportions of SRP were low, dissolved Fe concentrations were slightly elevated (10 to 90, with a mean of 41 μ g Fe L⁻¹ in the summer and 20 to 84, with a mean of 53 μ g Fe L⁻¹ in the winter)

S5.11 River Inny

The Inny is a small head water of the river Tamar (Fig S2.11), entering the Tamar around 45 km from the source. Its location on the edge of Bodmin moor, Cornwall in the west of England, makes it subject to higher rainfall, so like East Looe river, it had a high flow to unit area ratio. There is only one significant WwTW in the catchment which discharges from a creamery at Davidstow. There is little intensive agriculture and the catchment is predominantly rural, with unimproved upland pastures and a small amount of arable farming.

Summer samples were in the range 17 μ g P L⁻¹ as SRP at the Trib 1 to 174 μ g P L⁻¹ as SRP downstream of the creamery WwTW outfall. Suspended solids measured 0 – 9 mg L⁻¹ across the sample sites.

Winter samples were in the range 6 μ g P L⁻¹ as SRP at Trib 1 to 53 μ g P L⁻¹ immediately downstream of the creamery WwTW outfall. Proportions of SRP

were higher in the summer samples than the winter samples. The summer saw very low flows and much lower proportion of SUP than during winter.

S5.12 River Blackwater

The river Blackwater (Fig S2.12) is an urbanised river, rising in near Aldershot in Hampshire and flowing through a number of Surrey towns (Tongham, Ash, Farnborough, Camberley etc, before joining the Loddon, a tributary of the Thames, at Swallowfield. High population density means there is significant wastewater treatment works effluent discharged along its length. Ten sites along the river were sampled across seasons. Only the sample taken near the source to the first of the urbanised areas (samples 1 to 4) were relatively uncontaminated. Sites 5 to 10 were heavily influenced by wastewater discharges and were invariably above the threshold of good status, whether determined as SRP or TRP. Summer concentrations were consistent and significantly higher than winter levels owing to low flows in the summer leading to SRP being calculated as at least good (sites 1 to 4) and moderate at best (sites 5 to 10). In the summer TRP was at best moderate from sites 1 to 4 and poor for sites 5 to10. Increased dilution from rainwater in the winter served to reduce phosphate levels and so TRP was at least good in the upper catchment (sites 1 to 4) and moderates for sites 5 to 10. Commensurately, for SRP at least good status was achieved for all sites, with all but 2 being classified as high status.

S5.13 Sedgemoor catchment

The West Sedgemoor (Fig S2.13) catchment is located within south Somerset, in the southwest of England. It is a rural agricultural catchment of flood plain grazing with ownership spread between local farmers, Natural England and the Royal Society for the Protection of Birds (RSPB). The site is a designated site of special scientific interest (SSSI) owing to its diverse flora and rich invertebrate species and forms part of Somerset Levels and Moors Ramsar site number 914.

Average rainfall is around 833 mm (2000 – 2008 annual mean) and the site receives run off from a small catchment of around 41 km². Further water inputs are derived from managed rhynes bringing in water from the river Parrett to control local water levels and introduce water to enhance the area for overwintering wildfowl.

The West Sedgemoor Main Drain and feed waters from the river Parrett are classified as having poor status for orthophosphate as P under the Water Framework Directive (2000/60/EC) (2).

16 routine monitoring sites were selected, in agreement with Natural England, and the local Internal Drainage Board ecologist and sampled fortnightly between August 2015 and June 2016.

SRP concentrations ranged 45 to 292 μ g P L⁻¹, whilst RP (unfiltered) ranged 40 to 330 μ g P L⁻¹. Data from this catchment was used for objective 2.

Fig S1: Operationally defined aquatic P fractions ⁽¹⁾

Fig S2.1 River Erewash map of catchment and sampling points.

Fig S2.2 River Mease map of catchment and sampling points.

Fig S2.3 River Ouzel map of catchment and sampling points.

Fig S2.4 River Arun/Rother map of catchment and sampling points.

Fig S2.5 River Cefni map of catchment and sampling points.

Fig S2.6 River Teifi map of catchment and sampling points.

Fig S2.7 River Wylye map of catchment and sampling points.

Fig S2.8 River Kennet map of catchment and sampling points.

Fig S2.9a River Taw map of catchment and sampling points.

Fig S2.9b River Taw map of catchment and sampling points used in objective 2 study.

Fig S2.10 Map of East Looe catchment and sampling points.

Fig S2.11 River Inny map of catchment and sampling points.

Fig S2.12 River Blackwater map of catchment and sampling points.

Fig S2.13 Sedgemoor catchment with sampling points.

Fig S3 Cumulative frequency chart for soluble reactive phosphorus: total reactive phosphorus and soluble reactive phosphorus: total phosphorus ratios based on samples collected from sites in England and Wales (2016-2018).

Table S1. Phosphorus, iron and suspended solids data for twelve of the catchments studied.

Sample	Catchment	SRP (µg P L ⁻¹)	TSP (µg P L ⁻¹)	TRP (µg P L ⁻¹)	TP (µg P L ⁻¹)	PP (µg P L ⁻¹)
S1.A2.SRP1	Arun	112	117	124	112	<1
S2.A.SRP1	Arun	61	87	143	143	56
S2.A2.SRP1	Arun	36	62	100	108	46
S3.A.SRP1	Arun	67	75	126	123	48
S3.A2.SRP1	Arun	36	52	83	112	60
S3.X.SRP1	Arun	36	65	83	110	45
S4.A.SRP1	Arun	55	71	96	97	26
S4.A2.SRP1	Arun	30	57	59	81	24
S4.X.SRP1	Arun	67	84	126	128	44
S5.A.SRP1	Arun	96	96	131	127	31
S5.A2.SRP1	Arun	71	86	106	112	26
S6.A.SRP1	Arun	173	169	208	193	24
S6.A2.SRP1	Arun	448	428	459	465	37
S7.A.SRP1	Arun	220	205	273	222	17
S8.A.SRP1	Arun	173	156	243	205	49
S8.A2.SRP1	Arun	253	227	312	275	48
S9.A.SRP1	Arun	137	125	267	223	97
S10.A.SRP1	Arun	114	120	208	170	49
S10.A2.SRP1	Arun	200	287	259	335	47
BL1S	Blackwater	16	5	63	34	29
BL1W	Blackwater	8	5	17	9	4
BL2S	Blackwater	51	59	180	273	213
BL2W	Blackwater	10	7	21	47	40
BL3S	Blackwater	51	83	129	230	147
BL3W	Blackwater	38	56	45	101	45
BL4S	Blackwater	51	90	133	171	81
BI 4W	Blackwater	24	32	35	88	56
BI 5S	Blackwater	114	157	209	332	176
BL5W/	Blackwater	48	77	158	202	125
PLAS	Blackwater	40	147	251	202	120
BL6W	Blackwater	99 21	147	201	1/2	109
BLOW BL7S	Blackwater	203	300	313	615	306
DL73	Blackwater	203	309	100	015	300
	Blackwater	12	23	109	110	92
DL00	Blackwater	120	100	207	400	200
DLOVV	Diackwaler	14	21	119	140	110
BL95	Blackwater	135	225	318	525	300
BL9W	Blackwater	26	44	118	167	123
BL105	Blackwater	89	178	322	305	180
BL10W	Blackwater	30	56	11	145	88
31.C.3RP1	Cellil	32	94	01	124	30
52.C.5RP1	Cemi	43	96	67	112	16
53.C.SRP1	Cemi	32	87	43	101	14
54.C.SRP1	Cemi	30	81	49	105	24
S6.C.SRP1	Cetni	37	67	73	132	65
S7.C.SRP1	Cefni	79	95	90	170	75
S8.C.SRP1	Cetni	37	108	67	124	16
S9.C.SRP1	Cetni	8	92	26	105	13
S1.C.SRP2	Cefni	35	93	55	131	37
S1.E.SRP1	Erewash	74	97	86	98	1
S1.E.SRP2	Erewash	51	121	/8	127	<1
S2.E.SRP1	Erewash	1458	1381	1546	1606	225
S2.E.SRP2	Erewash	134	181	178	217	<1
S3.E.SRP2	Erewash	139	189	195	251	<1
S4.E.SRP2	Erewash	139	192	212	267	<1
S5.E.SRP2	Erewash	123	189	195	239	<1
S6.E.SRP2	Erewash	295	295	378	363	<1
S7.E.SRP2	Erewash	256	305	373	390	<1
S8.E.SRP2	Erewash	273	283	317	340	<1
S9.E.SRP2	Erewash	212	287	323	351	<1
S10.E.SRP2	Erewash	256	326	362	398	<1
7TP	Inny	27	72	42	107	35
12TP	Inny	15	21	21	29	8
7T2	Inny	27	107	31	44	<1
12T2	Inny	16	49	26	65	16
7US	Inny	44	193	53	158	<1
12US	Inny	12	44	21	67	23
7DS	Inny	174	244	202	297	53
12DS	Inny	53	179	68	189	10
7T1	Inny	17	174	18	87	<1
12T1	Inny	6	34	10	35	1
7TB	Inny	173	192	188	220	28
12TB	Inny	48	117	55	134	17
7StC	Inny	49	33	55	44	11
12StC	Inny	27	18	37	11	<1
72BI	Inny	47	33	50	44	11
122BI	Inný	19	18	30	11	<1
						1

Sample	Catchment	SRP (µg P L⁻¹)	TSP (µg P L ⁻¹)	TRP (µg P L ⁻¹)	TP (µg P L⁻¹)	PP (µg P L ⁻¹)
SX.K.SRP1	Kennet	76	76	77	78	2
S4.K.SRP1	Kennet	64	74	67	78	4
S5.K.SRP1	Kennet	60	64	63	82	18
50.K.SRP1	Kennet	07 81	70	08 82	82	13
S8 K SRP1	Kennet	86	82	86	95	13
S9.K.SRP1	Kennet	123	117	134	130	13
S10.K.SRP1	Kennet	134	127	140	144	17
S1.L1.SRP1	Looe	26	58	41	76	18
S1.L2.SRP1	Looe	29	98	35	94	18
S2.L1.SRP1	Looe	28	57	29	58	1
S2.L2.SRP1	Looe	18	87	25	85	1
S3.L1.SRP1	Looe	36	67	39	70	3
S3.L2.SRP1	Looe	48	104	74	127	3
S4.L1.SRP1	Looe	10	49	13	51	2
S5 1 SPP1	Looe	24	57	27	90	5
S512 SRP1	Looe	28	90	41	98	5
S7.L1.SRP1	Looe	48	76	53	84	9
S7.L2.SRP1	Looe	52	102	85	127	9
S8.L1.SRP1	Looe	39	68	45	70	2
S8.L2.SRP1	Looe	48	107	83	130	2
S9.L1.SRP1	Looe	45	73	47	73	<1
S9.L2.SRP1	Looe	54	111	68	115	<1
S10.L1.SRP1	Looe	47	69	48	75	5
STULZ.SKP1	LOOE	48 52	101	65 52	130 72	5
S11.L1.SKP1	Looe	22 46	/δ 107	53 49	13	<1
S1.M SRP1	Mease		71	112	81	10
S1.M.SRP2	Mease	64	109	88	135	26
S2.M.SRP1	Mease	106	109	118	113	4
S2.M.SRP2	Mease	117	129	129	157	28
S4.M.SRP1	Mease	141	133	159	149	16
S4.M.SRP2	Mease	164	160	182	186	26
S5.M.SRP2	Mease	164	177	176	186	9
S6.M.SRP1	Mease	47	70	53	73	2
S6.M.SRP2	Mease	64	97	76	123	26
S7.IVI.SRP1	Mease	155	141	100	208	21
S11 M SRP2	Mease	193	217	205	200	<1
S1.O.SRP1	Ouzel	9	53	15	56	3
S1.O.SRP2	Ouzel	31	56	43	55	<1
S2.O.SRP1	Ouzel	41	68	51	88	19
S2.O.SRP2	Ouzel	108	111	126	125	13
S4.O.SRP2	Ouzel	892	864	951	904	40
S5.O.SRP2	Ouzel	716	678	804	720	41
S6.0.SRP1	Ouzei	250	228	357	305	76
56.0.5RP2	Ouzel	200	512	057	000	94
S8 0 SRP1	Ouzel	188	194	236	238	27
S9.0.SRP1	Ouzel	162	161	199	181	20
S10.O.SRP1	Ouzel	157	159	188	180	21
S1.TA.SRP1	Taw	3	46	9	50	4
S1.TA.SRP2	Taw	5	79	5	91	<1
S2.TA.SRP1	Taw	68	96	74	99	3
S2.TA.SRP2	Taw	8	97	11	100	<1
S3.TA.SRP1	Taw	14	93	80	104	11
S4 TA SRP2	Taw	280	3/3	280	346	<1
S5.TA SRP1	Taw	97	114	103	117	3
S5.TA.SRP2	Taw	22	99	22	106	<1
S6.TA.SRP1	Taw	127	131	133	140	9
S6.TA.SRP2	Taw	22	116	28	121	<1
S7.TA.SRP1	Taw	133	130	145	146	16
S7.TA.SRP2	Taw	28	115	34	130	0
S8.TA.SRP2	Taw	75	163	111	196	0
S9.TA.SRP1	Taw	127	140	150	158	18
SIO TA SEP2	Taw	174	148	105	101	<1
S10. TA SRP2	Taw	58	157	93	181	<1
S1.TE.SRP1	Teifi	0	44	3	48	5
S2.TE.SRP1	Teifi	4	48	7	55	7
S3.TE.SRP1	Teifi	13	65	19	67	2
S4.TE.SRP1	Teifi	17	65	24	82	17
S5.TE.SRP1	Teifi	9	56	10	63	7
S6.TE.SRP1	Teifi	2	62	6	68	6
S7.TE.SRP1	l eifi	26	80	34	91	11
SO. IE. SKPI	Teili	32	ŏ∠ Ω1	43 /18	94 103	13
S10 TE SRP1	Teifi	39	80	40 65	103	21
S4,W.SRP1	Wvlve	98	93	102	106	13
S9.W.SRP1	Wylye	82	85	83	83	<1
S10.W.SRP1	Wylye	83	82	84	85	3

Sample	Catch ment	Fe tot (µg P L ⁻¹)	Fe diss (µg P L ⁻¹)	TSS (mg L ⁻¹)	SRP:TP	SRP:TP	SRP:TRP	SRP:TRP
S1.A2.SRP1	Arun	105	53	10	1.00	100%	0.91	91%
S2 A SRP1	Arun	1634	452	7	0.43	43%	0.42	42%
S2 A2 SP P1	Arun	1264	321	10	0.40	33%	0.36	36%
S2.A2.ORT 1	Arun	700	125	6	0.55	5.1%	0.50	52%
33.A.3RP1	Arun	709	125	6	0.54	34%	0.53	53%
\$3.A2.SRP1	Arun	833	225	4	0.32	32%	0.43	43%
S3.X.SRP1	Arun	824	194	5	0.32	32%	0.43	43%
S4.A.SRP1	Arun	520	118	5	0.56	56%	0.57	57%
S4.A2.SRP1	Arun	518	221	6	0.37	37%	0.50	50%
S4.X.SRP1	Arun	1193	585	15	0.52	52%	0.53	53%
S5 A SRP1	Arun	493	108	7	0.76	76%	0.73	73%
S5 A2 SP P1	Arup	447	161	1	0.63	63%	0.67	67%
00.A2.0RT 1	Arun	447	174	4	0.00	00%	0.07	07 /0
S6.A.SRP1	Arun	101	174	1	0.89	89%	0.83	83%
S6.A2.SRP1	Arun	139	100	10	0.96	96%	0.97	97%
S7.A.SRP1	Arun	210	154	7	0.99	99%	0.81	81%
S8.A.SRP1	Arun	133	61	10	0.84	84%	0.71	71%
S8.A2.SRP1	Arun	491	114	8	0.92	92%	0.81	81%
S9 A SRP1	Δrun	249	31	22	0.62	62%	0.51	51%
S10 A SPP1	Arup	171	32	17	0.67	67%	0.55	55%
310.A.3KF1	Alun	171	32	17	0.07	07 %	0.55	33%
S10.A2.SRP1	Arun	604	387	3	0.60	60%	0.77	11%
BL1S	Blackwater	#na	71	9	0.48	48%	0.26	26%
BL1W	Blackwater	#na	71	3	0.88	88%	0.47	47%
BL2S	Blackwater	#na	30	28	0.19	19%	0.28	28%
BL2W	Blackwater	#na	12	8	0.21	21%	0.47	47%
BI 3S	Blackwater	#pa	20	18	0.22	22%	0.39	39%
BL 21/1/	Blackwater	#ro	14	11	0.27	370/	0.95	85%
DL3W	Blockwater	#11d	14	10	0.37	37%	0.00	00%
BL4S	Blackwater	#na	41	19	0.30	30%	0.38	38%
BL4W	Blackwater	#na	28	8	0.27	27%	0.68	68%
BL5S	Blackwater	#na	29	17	0.34	34%	0.54	54%
BL5W	Blackwater	#na	72	6	0.24	24%	0.31	31%
BL6S	Blackwater	#na	60	12	0.29	29%	0.39	39%
BL 6W	Blackwater	#na	84	6	0.15	15%	0.19	19%
DL 79	Blackwater	#pp	30	11	0.10	220/	0.15	659/
BL/3	Diackwater	#fia	30	11	0.33	33%	0.65	03%
BL7W	Blackwater	#na	57	10	0.11	11%	0.11	11%
BL8S	Blackwater	#na	39	13	0.26	26%	0.45	45%
BL8W	Blackwater	#na	53	9	0.10	10%	0.12	12%
BL9S	Blackwater	#na	52	10	0.26	26%	0.42	42%
BL9W	Blackwater	#na	65	6	0.16	16%	0.22	22%
PI 109	Plackwater	#pp	41	21	0.24	24.9/	0.29	200/
BL 103	Diackwater	#11d	41	21	0.24	24 /0	0.20	20 /0
BLIOW	Blackwater	#na	60	8	0.24	24%	0.46	46%
S1.C.SRP1	Cetni	824	438	6	0.25	25%	0.52	52%
S2.C.SRP1	Cefni	449	361	6	0.39	39%	0.65	65%
S3.C.SRP1	Cefni	229	119	10	0.31	31%	0.73	73%
S4.C.SRP1	Cefni	173	158	5	0.33	33%	0.70	70%
S6 C SRP1	Cefni	146	144	7	0.28	28%	0.51	51%
S7 C SPP1	Cefni	181	86	2	0.46	46%	0.87	87%
07.0.0KT 1	Cefni	101	141	2	0.40	40 /6	0.07	67 /0 EC9/
58.C.SRP1	Cerni	356	141	9	0.30	30%	0.56	56%
\$9.C.SRP1	Cefni	268	92	5	0.08	8%	0.31	31%
S1.C.SRP2	Cefni	85	<1	6	0.27	27%	0.64	64%
S1.E.SRP1	Erewash	171	20	5	0.76	76%	0.86	86%
S1.E.SRP2	Erewash	299	23	4	0.40	40%	0.65	65%
S2.E.SRP1	Erewash	401	114	6	0.91	91%	0.94	94%
S2 E SRP2	Frewash	458	103	Q	0.62	62%	0.75	75%
S3 E SP D2	Frewash	512	85	11	0.56	56%	0.70	72%
	Erowash	512	00	10	0.50	50%	0.12	669/
04.E.ORP2	Liewash	340	33	10	0.52	52%	0.00	00%
55.E.SRP2	Erewash	1/8	124	16	0.51	51%	0.63	63%
S6.E.SRP2	Erewash	618	168	15	0.81	81%	0.78	78%
S7.E.SRP2	Erewash	750	145	17	0.66	66%	0.69	69%
S8.E.SRP2	Erewash	759	155	22	0.80	80%	0.86	86%
S9.E.SRP2	Erewash	793	157	19	0.60	60%	0.66	66%
S10.E.SRP2	Erewash	808	153	21	0.64	64%	0.71	71%
7TD	Inny	608	20	52	0.25	25%	0.64	64%
4070	lori	454	45	UZ.	0.20	£0 /0	0.04	759/
121P	inny	151	15	<1	0.53	53%	0.75	/5%
7T2	Inny	197	72	7	0.61	61%	0.87	87%
12T2	Inny	284	122	3	0.25	25%	0.61	61%
7US	Inny	326	143	5	0.28	28%	0.83	83%
12US	Inny	230	57	<1	0.18	18%	0.59	59%
70.9	Inny	331	81	4	0.59	59%	0.86	86%
1209	lony	3/5	70	-7	0.00	200/	0.30	78%
1203	inny	040	10	4	0.20	20%	0.70	10%
/11	inny	202	82	3U	0.20	20%	0.94	94%
12T1	Inny	187	42	7	0.16	16%	0.54	54%
7TB	Inny	216	64	2	0.79	79%	0.92	92%
12TB	Inny	263	52	3	0.36	36%	0.86	86%
7StC	Innv	111	38	6	#na	#na	0.89	89%
12StC	Inny	448	48	4	#na	#na	0.72	72%
7001	Incy	166	57	Ê	#00	#ro	0.04	0/10/
1201	i i i i i i i i i i i i i i i i i i i	100	57	0	#11a	#11a	0.94	3470
122BI	Innv	394	45	5	#na	#na	0.64	64%

Sample	Catchment	Fe tot (µg P L ⁻¹)	Fe diss (µg P L ⁻¹)	TSS (mg L ⁻¹)	SRP:TP	SRP:TP	SRP:TRP	SRP:TRP
SX.K.SRP1	Kennet	15	8	5	0.97	97%	0.98	98%
S4.K.SRP1	Kennet	22	14	3	0.82	82%	0.95	95%
S5.K.SRP1	Kennet	56	20	8	0.73	73%	0.96	96%
S6.K.SRP1	Kennet	78	22	/	0.82	82%	0.98	98%
S7.K.SRP1	Kennet	92	28	8	0.86	86%	0.99	99%
SO K SPD1	Konnot	103	20	1	0.91	91%	1.00	01%
S10 K SRP1	Kennet	90	29	5	0.94	94 //	0.91	96%
S1 1 SRP1	Looe	125	36	2	0.34	34%	0.64	64%
S1.L2.SRP1	Looe	210	84	1	0.31	31%	0.83	83%
S2.L1.SRP1	Looe	22	10	3	0.48	48%	0.96	96%
S2.L2.SRP1	Looe	125	20	1	0.22	22%	0.75	75%
S3.L1.SRP1	Looe	156	37	2	0.51	51%	0.93	93%
S3.L2.SRP1	Looe	378	62	5	0.37	37%	0.65	65%
S4.L1.SRP1	Looe	151	89	<1	0.20	20%	0.75	75%
S4.L2.SRP1	Looe	178	72	<1	0.11	11%	0.65	65%
S5.L1.SRP1	Looe	115	64	1	0.39	39%	0.90	90%
S5.L2.SRP1	Looe	312	62	4	0.28	28%	0.68	68%
S7.L1.SRP1	Looe	87	46	<1	0.57	57%	0.90	90%
S7.L2.SRP1	Looe	263	53	<1	0.41	41%	0.61	61%
58.L1.SRP1	Looe	87	40	1	0.56	56%	0.88	88%
S0.L2.SKF1	Looe	84	37	2	0.37	62%	0.58	95%
S912 SRP1	Looe	259	52	1	0.02	47%	0.33	79%
S10.L1.SRP1	Lone	61	39	<1	0.63	63%	0,97	97%
S10.L2.SRP1	Looe	250	51	1	0.37	37%	0.73	73%
S11.L1.SRP1	Looe	62	11	2	0.71	71%	0.98	98%
S11.L2.SRP1	Looe	89	17	1	0.41	41%	0.95	95%
S1.M.SRP1	Mease	436	33	24	0.37	37%	0.26	26%
S1.M.SRP2	Mease	898	66	26	0.48	48%	0.73	73%
S2.M.SRP1	Mease	105	40	5	0.94	94%	0.90	90%
S2.M.SRP2	Mease	211	82	3	0.74	74%	0.91	91%
S4.M.SRP1	Mease	93	31	5	0.95	95%	0.89	89%
S4.M.SRP2	Mease	171	43	8	0.88	88%	0.90	90%
S5.M.SRP2	Mease	159	64	7	0.88	88%	0.93	93%
S6.M.SRP1	Mease	84	34	2	0.65	65%	0.89	89%
50.WI.SRP2	Mease	244	29	0	0.52	52%	0.04	04%
S7 M SPP2	Mease	165	70	7	0.99	99 /0 85%	0.93	93 %
S11 M SRP2	Mease	221	46	4	0.03	93%	0.94	94%
S1.0.SRP1	Ouzel	35	7	2	0.17	17%	0.64	64%
S1.0.SRP2	Ouzel	79	14	12	0.57	57%	0.73	73%
S2.O.SRP1	Ouzel	109	11	2	0.47	47%	0.80	80%
S2.O.SRP2	Ouzel	71	15	9	0.87	87%	0.86	86%
S4.O.SRP2	Ouzel	133	68	10	0.99	99%	0.94	94%
S5.O.SRP2	Ouzel	139	41	13	0.99	99%	0.89	89%
S6.O.SRP1	Ouzel	379	29	3	0.82	82%	0.70	70%
S6.O.SRP2	Ouzel	511	100	12	0.99	99%	0.91	91%
\$7.0.SRP1	Ouzel	68	20	7	0.88	88%	0.78	78%
58.0.5RP1	Ouzei	59	4/	6	0.86	86%	0.80	80%
59.0.5RP1	Ouzel	190	33	1	0.89	09%	0.81	01%
S1 TA SRP1	Taw	61	47	2	0.07	7%	0.36	36%
S1.TA.SRP2	Taw	158	109	<1	0.05	5%	1.00	100%
S2.TA.SRP1	Taw	75	61	2	0.69	69%	0.92	92%
S2.TA.SRP2	Taw	117	191	3	0.08	8%	0.73	73%
S3.TA.SRP1	Taw	94	67	2	0.71	71%	0.93	93%
S3.TA.SRP2	Taw	291	161	8	0.10	10%	0.65	65%
S4.TA.SRP2	Taw	132	56	5	0.81	81%	1.00	100%
S5.TA.SRP1	Taw	101	66	3	0.83	83%	0.94	94%
S5.TA.SRP2	Taw	269	171	8	0.21	21%	1.00	100%
S6.TA.SRP1	Taw	110	75	3	0.91	91%	0.96	96%
S6.TA.SRP2	Taw	257	148	5	0.19	19%	0.79	79%
S7.TA.SRP1	Taw	140	/1	5	0.91	91%	0.92	92%
ST.TA.SKP2	Taw	3/1	147	8	0.22	22%	0.83	83%
SO TA SP D1	Taw	094	200	24	0.30	30%	0.00	84%
S9 TA SRP2	Taw	698	215	18	0.00	42%	0.04	72%
S10.TA SRP1	Taw	165	86	6	0.94	94%	0.94	94%
S10.TA.SRP2	Taw	721	184	22	0.32	32%	0.62	62%
S1.TE.SRP1	Teifi	353	259	7	0.00	0%	0.02	2%
S2.TE.SRP1	Teifi	501	270	6	0.08	8%	0.60	60%
S3.TE.SRP1	Teifi	916	646	8	0.19	19%	0.69	69%
S4.TE.SRP1	Teifi	907	604	9	0.21	21%	0.73	73%
S5.TE.SRP1	Teifi	729	604	11	0.14	14%	0.86	86%
S6.TE.SRP1	Teifi	836	498	12	0.03	3%	0.32	32%
S7.TE.SRP1	Teifi	683	501	14	0.28	28%	0.77	77%
S8.TE.SRP1	Teifi	952	482	14	0.34	34%	0.75	75%
S9.TE.SRP1	Teifi	450	444	17	0.36	36%	0.76	76%
S10.1E.SRP1	I eifi	926	352	15	0.38	38%	0.60	60%
S4.W.SRP1	wylye	27	14	4	0.92	92%	0.96	96%
59.W.SRP1	vvylye	21	15	5	0.99	99%	0.99	99%
310.W.SKP1	vvyiye	20	14	3	0.98	90%	0.99	99%

Plates

Plate S1 Ochreous discharge into river Rother.

References

- Worsfold P, Gimbert L, Mankasingh U, Omaka O, Hanrahan G, Gardolinski P, et al. Sampling, sample treatment and quality assurance issues for the determination of phosphorus species in natural waters and soils. *Talanta*.
 [Online] 2005;66(2): 273–293. Available from: doi:10.1016/j.talanta.2004.09.006
- 2. Natural England. Somerset Levels and Moors SSSIs Diffuse Water Pollution plan. 2015.