Electronic Supplementary Material (ESI) for Environmental Science: Processes & Impacts. This journal is © The Royal Society of Chemistry 2020

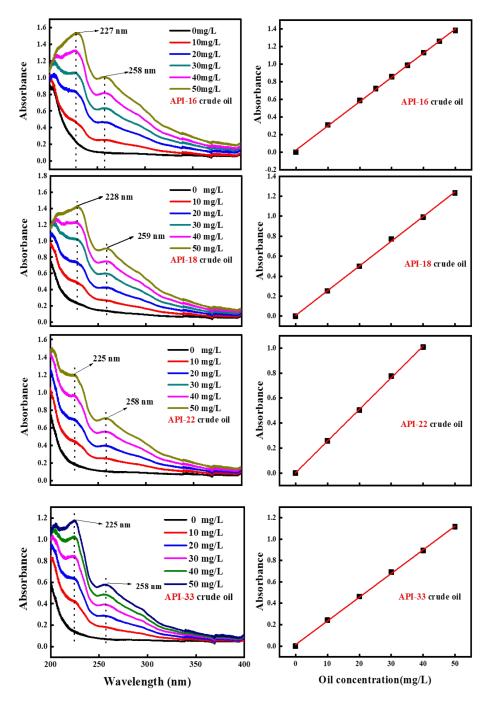
1

Supporting Information

2 The determination of standard curve

³ Doing full wavelength scanning of solvent and sample, and the maximum peak ⁴ was selected besides the solvent peak, and mark the wavelength corresponding ⁵ maximum peak as λ_{max} . The oil solution with known concentration (0, 10, 20, 30, 40, ⁶ 50 mg/L) was prepared and the absorbance of those solution was determined at λ_{max} ⁷ and a standard curve of the absorbance corresponding to the oil concentration was ⁸ made.

9



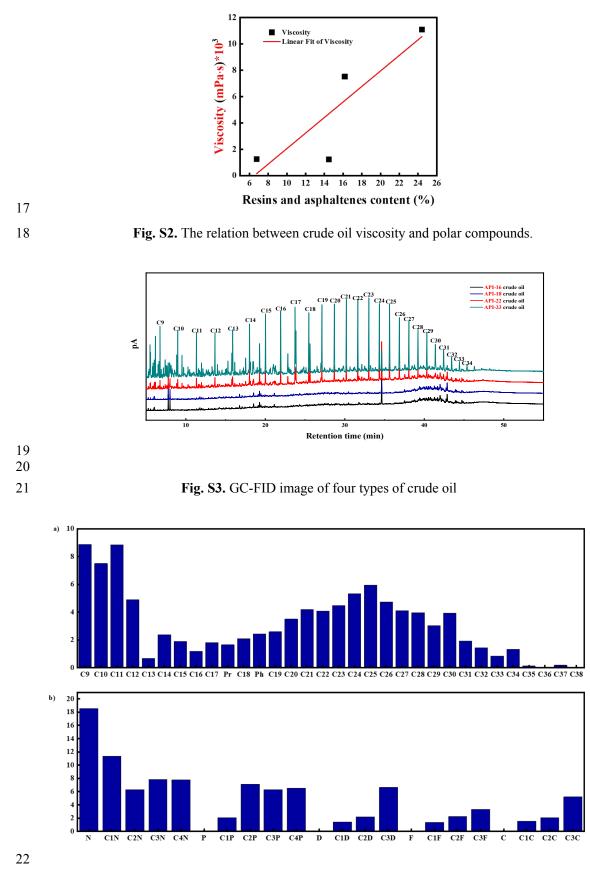


Fig. S1. Full-wavelength scanning picture and standard curves of four crude oil

12 SLY:
$$Y=0.027X+0.024$$
 ($R^2=0.9991$); S(1)

13 SJH:
$$Y=0.025X+0.0064$$
 ($R^2=0.9991$); S(2)

14 YYS: *Y*=0.025*X*+0.0022 (*R*²=0.9994); S(3)

23 Fig. S4. a) The water phase percentage of total *n*-alkanes ranging from C9-C38 in relation to API-

22-OPAs				
b) The water phase percentage of five targeted PAHs and their alkylated homologues				
relation to API-22-OPAs				

28		Table S1: Particulate matters information summary					
	Name	Size(µm)	Zeta potential(mV)	Classification	Percentage	Contact angle(°)	
ĺ	Kaolin	1-6	-22.7	-	-		
	Natural sectiment	30.8-38.5	-18.3	30.8 μm 34.2 μm 36.2 μm 38.5 μm	1:1:1:1	15	
	Sand	154-212	too large to measure	154 μm 160 μm 180 μm 212 μm	1:1:1:1	too large to measure	
29 30	63						
30 31		Table S2. Characteristics of the chemical dispersant, Tween 80					

-	Tuble 52. Characteristics of the chemical dispersant, Tween of				
	Indices	Characteristics			
	Appearance	Amber, viscous liquid			
	рН	5-7			
	Flash point	>110°C			
	Viscosity (under 25°C)	400-600 mPa•s			
	Hydrophile-Lipophile balance number	15.0			
	Half lethal concentration in mice	7.5 mL/kg			
2					

$$33 \quad TPH(\%) = Coil - OPAs \times V / Coil / Vadd \times 100\% \qquad S(5)$$

34 where $C_{oil-OPAs}$ was oil concentration in OPAs, mg/L; C_{oil} was the initial oil 35 concentration, mg/L; *V* was volume of extraction liquid, mL; *F* was dilute factor; V_{add}

36 was 50 mL.