Modelling scenarios of environmental recovery after implementation of controls on emissions of persistent organic pollutants

S. D. W. Comber¹, M. J. Gardner², C. Constantino², S. Firth², A. Hargreaves² and R Davies²

¹ Plymouth University, B531, Portland Square, Drake Circus, Plymouth, Devon, PL4 8AA UK

² Oasis Business Park Eynsham Oxford OX29 4AH United Kingdom. Tel: +44 1865 882828; email: sean.comber@plymouth.ac.uk

Table S1 Substances – an approximate initial prioritisation for searching for source data

Substance	Notes as guidance in prioritising data searches					
Cubotaneo						
a) Data likely to be available in a suitable form and of appropriate quality	The main focus for data gathering. No requirement to devote too much effort on concentrations from effluents. Surface water values might be useful as check on calculation outputs					
ТВТ	Much data likely to be available – possible issue with focus on contaminated sites					
methyl-mercury	Data for mercury are available –estimation of likely proportion of me-Hg required					
PCBs (126,118)	Data for all commonly determined or total PCBs useful – not these congeners only					
HBCDD	Sewage the major source – half-life moderate					
Cypermethrin	Sewage the major source – half-life short					
PFOS	Likely requirement to consider sources generally					
PFOA	Likely requirement to consider sources generally					
Benzo(a)pyrene	Need estimates of non-sewage sources for load inputs					
Fluoranthene	Need estimates of non-sewage sources for load inputs					
DEHP	Fate with respect to sediment crucial – need Kp values as priority – might put in category c)					
 b) Data not likely to be so readily available 	Need to look carefully, but not to the detriment of progress on category a) substances – will take forward if suitable data are there					
НСВ	Historic contaminant – less likely to have up to date information – possible issue with historic data quality – focus on contaminated sites					
HCBD	Historic contaminant – less likely to have up to date information – possible issue with historic data quality – focus on contaminated sites					
НСН	Historic contaminant – less likely to have up to date information – possible issue with historic data quality – focus on contaminated sites					
Pentachloro-benzene (PeCB)	Never routinely monitored in UK?					
Dioxins & dioxin-like compounds	Do not expect much of the essential information necessarily to be available – possibly more of an overview needed – could be category c)					
Heptachlor/H-epoxide	Do not expect much of the essential information necessarily to be available – possibly more of an overview needed					
Quinoxyfen	Data?					
c) Not suited to this approach? / likely no worthwhile data?						
Lead	Infinitely persistent hence no mechanism for reduction in concentration other than by dilution or translocation (which are not part of the project)					
Cadmium	Infinitely persistent hence no mechanism for reduction in concentration other than by dilution or translocation					
Chloroalkanes (SCCPs)	Definition of the determinand is based on methodology that might be better defined – hence likely high uncertainty in data quality and what data might mean					
Anthracene	Is there a compliance issue?					
Dicofol	Not a persistent pollutant					

Table S2 Key inputs and notes

Input	Units	Notes
initial sediment concentration	µg/kg	Can be set at the likely equilibrium value based on previous inputs – or at any other starting value.
initial rate of addition	µg/kg/year	Requires derivation based on concentrations-in/loads-from input sources and the size of the "sediment target" (see Table S2 below)
reduced rate of addition	percentage of initial input per year	Reduction in input as a percentage of initial input per year - based on the "measures" taken to reduce inputs
Biota-Sediment Concentration Factor (BSCF) to biota	n/a	Biota-Sediment Concentration Factor – the ratio of concentration in biota to that in sediment ¹ . From literature – though care needed in assessment of relevance and credibility
half-life (t ½) in sediment	years	From literature – though care needed in assessment of relevance and credibility
Water/sediment partition coefficient, kp	l/kg	Used to estimate the proportion of inputs that are associated-with/accumulated-in sediment – should be relevant to the type of suspended particulate material envisaged Likely to require derivation from a number of different inputs – k(ow) k(oc) various k(spm) values

¹ BSCF - also known as a BSAF Biota Sediment Accumulation Factor

Table S3 Data for input and to support the input values – for derivation purposes

Input	Units	Notes
Input concentration – point source	µg/l	We stipulate that the point source is a sewage effluent discharges
		Note influence of local sources – how relevant and representative is the reported value? Is monitoring related to "unusual" pollution?
Input load to sediment – non- point source	µg/yr	An estimate of generic non-point sources to input rate – to be added to the point source-derived input rate
Half-life (t ½) of substance in sediment	years	A range of reported values in likely – why is this?
BSCF to biota	n/a	Biota-sediment concentration factor – the ratio of concentration in biota to that in sediment
		From literature – though care needed in assessment of relevance and credibility
Various measures of partitioning kp values	l/kg	Expressed on various ways and (possibly) translatable to a generic kp.
		The key challenge here is to understand what is being quoted
Sediment concentration value	µg/kg	As check on plausibility of initial value in above table
		Note influence of local sources – how relevant and representative is the reported value? Is monitoring related to "unusual" pollution?
Mass of sediment target	kg	Plausible value derived from notional point source (sewage works) inputs and in-river dilution
		So NOT required from literature

S1 Review of available data

Table S3 provides some preliminary guidance on the approach to a search for literature data. The search prioritised key substances for which the publication of sufficient data of a suitable quality would make it possible to progress to the stage of estimating the likely decline in contaminant concentrations. The first stage was to divide the substances of interest into three categories:

- a) Those that are of primary interest in that they are regulated under the Water Framework Directive and have been identified as likely to be associated with EQS non-compliance;
- b) Those of secondary interest by reason of likely lack of suitable data;
- c) Those of questionable suitability for the chosen approach and therefore least likely to be taken forward.

The next stage prior to the estimation of changes in contaminant concentrations is to assess the suitability of the data obtained. Reasons for discounting the use of data include:

- Clear focus of the monitoring on polluted sites that are irrelevant to the generic risk assessment aims of the project;
- Lack of relevance to UK conditions;
- Likely data quality issues, often linked to historically high limits of analytical detection;
- Poor comparability amongst different estimated values.

In particular, the relative uncertainty between different categories of inputs can be very different as well as difficult to comprehend. For instance, reported values for BSCF can be highly variable according to the type of biota concerned and the exposure concentration and time. It is virtually impossible to infer the BSCF for other conditions from one reported value other than possibly the relative differences between substances.

Similarly, partition coefficients, expressed on a logarithmic scale (always difficult to envisage), can be given as k-octanol-water or k-organic carbon or true partition coefficient in a particular sediment concerned. Generally, the first in the list is the highest value and the last the lowest. Assumptions about the sorptive power of octanol and organic carbon and the carbon content of sediment can provide a "translation" between these values – but it has to be borne in mind that these involve generalising assumptions. Half-life values too can be influenced greatly by the conditions under which and the concentrations at which they are determined. This tends to lead to the observed wide range of reported values and calls into question their ready transferability to different situations.

In summary, the above discussion emphasises the caveat that this approach to estimating the possible decline in contaminant concentrations is not an attempt to model environmental conditions at a particular site. Rather, it is a way of comparing the likely effects of different controls on contamination on the likely rate of environmental recovery in response to measures to reduce the inputs of trace substances.

Table S4Data from the literature

Substanc	Input	Value(s)	Units	Descriptive	Environmen	Location	Details/N	Reference
е					l t		otes	
	Concentration (Point Source)	0.47	ng/L	Mean	Estuarine	3 WWTWs, Amour estuary, (SW) France	<i>n</i> = 9	1
	In-River Concentration	<50 – 960 288 – 1150 96 – 479	ng/L (as Sn)	Range	Riverine	Arosa Rias, Spain Muros Rias, Spain Corcubion Rias, Spain	n = ? n = ? n = ?	2
		0.5 – 425		Range	Riverine	Qiangtang, Huangpu and Yellow River, China	n = 32	3
		1.13 – 21.13		Range	Riverine	Tagus estuary, Portugal	n = 15	
		<3.1 – 29		Range	Riverine	Various rivers, Portugal	n = 46	
		<3.0 – 44.8 <3.0 – 71.2		Range Range	Riverine	River Deben, England Rover Orwell, England	n = 6 n = 11	
TOT		0.2 mean d.s 0.12median d/s					n=172	4
ТВТ	Half – Life in Sediment	578	Days		Canal	Forth and Cylde Canal (Glasgow, UK)	Sediment extracted and spiked with TBT.	5
	BSCF to Biota Clam (Ruditapes philippinarum)	67.3 85.6 196.4 81.6 100.5 8.1 346.7 67.8		Mean	Estuarine Coastal	Site 1, Guaidianna estuary, (SW) Spain Site 2 Site 3 Site 8, Huelva, (SW) Spain Site 9, Bay of Cadiz, (SW) Spain Site 10 Site 11 Site 13, Bay of Algeciras, (SW) Spain	28 days exposure to contaminate d sediments.	6
	Partitioning Values	3.9 – 4.9 3.64	log K _{ow} log K _d	Mean	Canal	Forth and Cylde Canal (Glasgow, UK)		7

Substanc	Input	Value(s)	Units	Descriptive	Environmen	Location	Details/N	Reference
е					t		otes	
	Sediment Concentration	1.5 (0.1 – 8.6)	ppb	Mean (Range)	Estuarine	Tolka estuary (Dublin, Ireland)		8
	1ng/g =1 ppb = 2.43 ug/kg TBT Tool predicits 0.15 ug/kg as TBT This is	153 (10) 573 (22) 340 (11) 171 (8) 81 (5) 57 (7) 48 (7) 390 (12) 17 (2) 258 (11)	ng Sn/g dw	Mean (SD)		Site 1, Guaidianna estuary, (SW) Spain Site 2 Site 3 Site 4, Huelva, (SW) Spain Site 5 Site 8 Site 9, Bay of Cadiz, (SW) Spain Site 11, Port of Babarte Site 13, Bay of Algeciras, (SW) Spain Site 14	n = 14. Surface sediment.	6
	Concentration (Point Source) WWTP Primary effluent WWTP Secondary effluent WWTP Final effluent	1.92 ± 0.90 2.76 ± 1.96 1.53 ± 0.93	ng/L	Mean ± SD	Effluent	Syracuse, New York, USA	n = 12 n = 12 n = 12	9
Methyl-	In-River Concentration	0.191 0.102 -0.33 -0.15 -0.18	ng/L	Median	Riverine	Colusa Basin Drain, CA, USA Mid-Sacramento River, CA, USA Sacramento Slough, CA, USA Sacramento River at Verona, CA, USA Sacramento River at Freeport, CA, USA		11
Mercury	Half – Life in Sediment	1.4 (0.2)	Hours	Mean (SD)	Estuarine	Saltmarsh, Portugal		11
Mercury	BSCF to Biota <i>Phytoplankton</i> pH < 4.0 pH 4.0 – 7.0 pH ~ 7.0 <i>Zooplankton</i> pH < 4.0 pH 4.0 – 7.0 pH ~ 7.0 <i>Benthic</i>	53.00 ± 51.4 125.68 ± 165.9 105.86 ± 126.9		Mean ± SD	Riverine	Rio Madeira, Brazilian Amazon	n = 54 n = 144 n = 162 n = 54 n = 144 n = 162	12
	<i>macroinvertebrates</i> pH < 4.0						n = 54 n = 144 n = 162	

Substanc e	Input	Value(s)	Units	Descriptive	Environmen t	Location	Details/N otes	Reference
	pH ~ 7.0 <i>Invertebrate –</i> <i>detritivore</i> Headwater stream Mid-order stream <i>Invertebrate – predator</i> Headwater stream Mid-order stream <i>Fish – forage</i> Headwater stream Mid-order stream <i>Fish – predator</i> Headwater stream	200 36.9 770 95 1140 342 2125 513		Mean	Riverine	New York, USA	n = 5 n = 11 n = 5 n = 2 n = 5 n = 25 n = 15 n = 15	
	Mid-order stream Partitioning Values	<2.53 – 4.15 6.46	log K _d	Median	Riverine	OR, WI, FL, USA E Anglia	8 streams across 3 USA states.	13
	Sediment Concentration	19.1 (8.9 – 28.6) 5.7 (2.9 - 10.6) 19.7 (16.9 – 23.5) 12.1 (6.2 – 20.5) 18.4 (15.7 – 21.9) 0.27 0.36	μg/kg ng/g	Mean (Range) Mean	Lacustrine Riverine Lacustrine Riverine Lacustrine Riverine	Surlingham Broad (Norfolk, UK) Adjacent River Site (Norfolk, UK) Rockland Broad (Norfolk, UK) Adjacent River Site (Norfolk, UK) Wheatfen Broad (Norfolk, UK)	n = 8. Surficial sediment (0-2 cm) concentration s.	15
		0.52 2.84				Putah Creek, CA Cottonwood Creek, CA Colusa Basin Drain Sacramento Slough, CA	Sediment collected by selecting a 100-m reach of river and collecting material from sediment	10

Substanc e	Input	Value(s)	Units	Descriptive	Environmen t	Location	Details/N otes	Reference
							deposition zones.	
PCBs [number]	Concentration (Point Source)	[101] 397 (326) [105] 63 (60) [118] 229 (252) [128] 25 (50) [138] 357 (205) [153] 164 (39) [170] 37 (45) [180] 155 (87) [183] 21 (33)	pg/L	Mean (SD)	Effluent	MUC WWTP, Quebec, Canada	n = 6. The MUC wastewater treatment plant typically treats an average effluent flow of 19.8 m ³ /s.	16
	In-River Concentration	[total] 123 (51) [U/S] [total] 221 (60) [Outfall] [total] 189 (94) [0.3km D/S] [total] 171 (107) [4km D/S] [total] 161 (70) [8.5km D/S]	pg/L	Mean (SD) [Location or distance from WWTWs discharge]	Riverine	St Lawrence River, Quebec, Canada		16
	Half – Life Water; Sediment	[28] 1,450; 26,000 [52] 30,000; 87,600 [77] 30,000; 87,600 [101] 60,000; 87,600 [105] 60,000; 87,600 [118] 60,000; 60,000 [126] 60,000; 87,600 [138] 120,000; 165,000 [153] 120,000; 165,000 [169] 120,000; 165,000 [180] 240,000; 333,000	Hours		Maritime	Baltic Sea		17
	BSCF to Biota Eel; Pike	[28/31] 0.16; 1.98 [52] 3.92; 2.54 [99/113] 1.44; 3.77 [101/90] 1.49; 2.92 [105] 2.55; 7.16 [118] 2.16; 4.77 [138/164] 4.61; 7.38		Mean	Riverine	River Severn at Stourport-on- Severn, Worcestershire, UK	n = 5.	18

Substanc	Input	Value(s)	Units	Descriptive	Environmen	Location	Details/N	Reference
е					t		otes	
		[153] 10.1; 9.84 [180] 1.93; 12.2						
	White Sucker Sculpins	[total] 11 [total] 5.7 [total] 5.7 [total] 4.4 [total] 3.3 [total] 2.4 [total] 2.0 [total] 1.8 [total] 1.8 [total] 1.1 [total] 2.1 [total] 2.1 - 3.3		Mean	Riverine	Conestoga River, PA, USA Quinebaug River, MA, USA Codorus Creek, PA, USA Lind Coulee Nr. Moses Lake, WA, USA East Branch Housatonic, MA, USA Quinnipac River, CT, USA Winchester Wasteway, WA, USA Mattabasset River, CT, USA		19
	Bivalve (Corbicula manilensis)					Qunittapahilla Creek, PA, USA Salt Creek, IN, USA White River, IN, USA		
	Partitioning Values	[28] 5.31 [31] 5.31 [52] 5.91 [77] 5.75 [83] 6.04 [87] 6.07 [95] 6.16 [101] 6.14 [136] 6.42 [138] 6.49 [153] 6.57	log K _{oc}	Mean	Riverine	Hudson River, USA	Theoretical values of log K_{oc} .	20
	Sediment Concentration	[28/31] 620 [52] 200 [99/113] 140 [101/90] 320 [105] 110 [118] 220 [138/164] 170 [153] 83 [180] 160	ng/kg dw	Mean	Riverine	River Severn at Stourport-on- Severn (Worcestershire, UK)	Samples taken to a depth of 5 cm along a 200 m stretch of river.	18
		[28] 2.51 (0-10cm) 2.65 (10-20cm) 5.65 (20-30cm)	µg/kg	Mean (Depth)	Estuarine	Site M34, Mersey (Inner) Estuary, UK		21

Substanc	Input	Value(s)	Units	Descriptive	Environmen	Location	Details/N	Reference
е	-			-	t		otes	
		8.31 (30-40cm)						
		12.2 (40-50cm)					Two sites	
		11.7 (50-60cm)					chosen to	
		1.63 (60-70cm)					report here	
		<0.1 (70-80cm)					as full	
		<0.1 (80-90cm)					sediment	
							profile was	
		3.35 (0-10cm)				Site M165, Mersey (Inner)	analysed.	
		3.21 (10-20cm)				Estuary, UK	Reference	
		2.95 (20-30cm)				Estuary, OK	also contains	
		2.96 (30-40cm)					further sites	
		3.15 (40-50cm)					with various	
		1.59 (50-60cm)					depths	
		3.61 (60-70cm)					measured.	
		3.01 (00-70011)					Sampling	
		[60]						
		[52]					was carried	
		2.07 (0-10cm)				Site M34, Mersey (Inner)	out from May	
		1.46 (10-20cm)				Estuary, UK	2000 to	
		2.91 (20-30cm)					November	
		4.86 (30-40cm)					2002.	
		4.98 (40-50cm)						
		6.04 (50-60cm)						
		1.29 (60-70cm)						
		<0.1 (70-80cm)						
		<0.1 (80-90cm)						
		1.3 (0-10cm)						
		1.26 (10-20cm)						
		1.29 (20-30cm)				Site M165, Mersey (Inner)		
		1.57 (30-40cm)				Estuary, UK		
		1.7 (40-50cm)				,		
		1.03 (50-60cm)						
		1.55 (60-70cm)						
		[101]						
		2.39 (0-10cm)						
		2.17 (10-20cm)						
		4.29 (20-30cm)				Site M34, Mersey (Inner)		
		5.38 (30-40cm)				Estuary, UK		
		5.90 (40-50cm)						
		7.67 (50-60cm)						
		0.45 (60-70cm)						
		<0.1 (70-80cm)						

Substanc	Input	Value(s)	Units	Descriptive	Environmen	Location	Details/N	Reference
е					t		otes	
		<0.1 (80-90cm)						
		, , ,						
		2.16 (0-10cm)						
		2.04 (10-20cm)						
		2.13 (20-30cm)						
		2.65 (30-40cm)						
		2.33 (40-50cm)				Site M165, Mersey (Inner)		
		1.24 (50-60cm)				Estuary, UK		
		2.67 (60-70cm)				Eddaly, Ort		
		2.07 (00 70011)						
		[118]						
		1.83 (0-10cm)						
		0.30 (10-20cm)						
		<0.15 (20-30cm)						
		3.71 (30-40cm)						
		4.84 (40-50cm)				Site M34, Mersey (Inner)		
		7.27 (50-60cm)				Estuary, UK		
		<0.15 (60-70cm)				Lotdary, OK		
		<0.15 (00-700m)						
		<0.15 (70-80cm)						
		<0.15 (80-90cm)						
		2.15 (0-10cm)						
		1.84 (10-20cm)						
		1.71 (20-30cm)						
		2.19 (30-40cm)						
		2.01 (40-50cm)						
		1.21 (50-60cm)						
		2.03 (60-70cm)				Site M165, Mersey (Inner)		
		2.03 (00-70011)				Estuary, UK		
		[153]						
		1.30 (0-10cm)						
		1.56 (10-20cm)						
		2.89 (20-30cm)						
		2.89 (20-30cm) 2.52 (30-40cm)						
		3.62 (40-50cm)						
		1.80 (50-60cm)						
		0.38 (60-70cm)				Site M34, Mersey (Inner)		
		<0.15 (70-80cm)				Estuary, UK		
		<0.15 (80-90cm)						
		1.83 (0-10cm)						
		1.70 (10-20cm)						
		1.86 (20-30cm)						
		1.00 (20-30011)						

Substanc	Input	Value(s)	Units	Descriptive	Environmen	Location	Details/N	Reference
е					t		otes	
		1.96 (30-40cm)						
		1.81 (40-50cm)						
		1.06 (50-60cm)						
		1.90 (60-70cm)						
		[138]				Site M165, Mersey (Inner)		
		2.23 (0-10cm)				Estuary, UK		
		2.36 (10-20cm)				y , -		
		4.24 (20-30cm)						
		3.19 (30-40cm)						
		5.25 (40-50cm)						
		6.85 (50-60cm)						
		0.54 (60-70cm)						
		<0.15 (70-80cm)						
		<0.15 (70-000m)				Site M34, Mersey (Inner)		
						Estuary, UK		
		2.46 (0-10cm)				Estuary, OK		
		2.53 (10-20cm)						
		2.35 (20-30cm)						
		2.74 (30-40cm)						
		2.69 (40-50cm)						
		1.73 (50-60cm)						
		2.28 (60-70cm)						
		54.003						
		[180]						
		0.84 (0-10cm)						
		1.20 (10-20cm)				Site M165, Mersey (Inner)		
		2.22 (20-30cm)				Estuary, UK		
		<0.20 (30-40cm)						
		3.07 (40-50cm)						
		3.68 (50-60cm)						
		<0.2 (60-70cm)						
		<0.2 (70-80cm)						
		<0.2 (80-90cm)						
		1.19 (0-10cm)				Site M34, Mersey (Inner)		
		1.33 (10-20cm)				Estuary, UK		
		0.99 (20-30cm)						
		1.40 (30-40cm)						
		1.38 (40-50cm)						
		0.79 (50-60cm)						
		1.45 (60-70cm)						

Substanc e	Input	Value(s)	Units	Descriptive	Environmen t	Location	Details/N otes	Reference
						Site M165, Mersey (Inner) Estuary, UK		
HBCDD	Concentration (Point Source)	<3.9 4.9 (7.6)	µg/kg	Mean (SD)		SE England Netherlands	<i>n</i> = 5.	22
	In-River Concentration	2.64E-04 (query these) 9.55E-04 5.61E-04 2.29E-04 1.40E-03	μg/L	Mean Mean Mean Mean Mean	Riverine	River Arun, England River Erewash, England River Ouzel, England River Team, England River Alt, England	N = 1 N = 12 N = 15 N = 9 N = 17	4
		0.0027 (0.0030) d/s 0.0016		Mean (SD)		Rivers England	N=172	
	Half – Life in Sediment Aerobic	101 66	Days					23
	Anaerobic BSCF to Biota Bleak Barbel	0.10 - 0.68 0.10 - 1.44 0.23 - 1.23 0.14 - 0.47		Range	Riverine	Cinca River, Spain		24
	Partitioning Values	7.74 6.72		log K _{ow} log K _{oc}			Values modelled with EPI suite (US EPA)	25
	Sediment Concentration	60 (223) 10 (25) 3.3 (5.2) 199 (364)	µg/kg	Mean (SD)	Riverine Estuarine Estuarine + Riverine	Scheldt Basin, Netherlands Western Scheldt, Netherlands Dublin Bay, Ireland 6 England Rivers	<i>n</i> = 19.	22

Substanc e	Input	Value(s)	Units	Descriptive	Environmen t	Location	Details/N otes	Reference
		Nd - 514	ng/g	Range	Riverine	Cinca River, Spain	Samples collected up and downstream of industrialized town draining to the river.	26
Cyper- -methrin	Concentration (Point Source)	269.1 568.7 79.16	ng/L	Mean	Effluent	El Gallo WWTWs, Mexico El Naranjo WWTWs, Mexico El Sauzal WWTWs, Mexico	24hr composite samples.	27
		0.3 (0.9)			Effluent			
		0.14 (0.31) mean (sd) 0.064 median			River d/s			
	In-River Concentration	5.8 - 30.4 [2008] 0.73 – 57.2 [2009]	ng/L	Range [Year]	Riverine	Ebro Delta River, (NE) Spain	n = 12.	28
	Half – Life in Sediment Hydrolysis	6-20	days	Range	Estuarine + Coastal	Punta Banda Estuary and Todos Santos Bay, Mexico		27
	Aerobic	1.9 – 619 6 - 20	days	Range	Riverine	Ebro Delta River, (NE) Spain		28
	BSCF to Biota Daphina magna	0.31 (0.28-0.34) [1] 0.14 (0.12-0.16) [3] 0.08 (0.06-0.10)		Mean (95% CL) [OC content %]	Natural Sediments	Mississippi, Florissant, Duluth, USA		29
	Chironomus tentans	[13] 0.63 (0.5-0.76) [1] 0.19 (0.17-0.21) [3] 0.08 (0.06-0.10) [13]						

Substanc	Input	Value(s)	Units	Descriptive	Environmen	Location	Details/N	Reference
е					l t		otes	
	Partitioning Values	2,360 [1] 15,700 [3] 23,600 [13] 238,000 (16) [1] 502,000 (5) [3] 177,000 (13) [13]	Mean	K _d s [OC content %] K _{oc} (CoV) [OC content %]	Natural Sediments	Mississippi, Florissant, Duluth, USA		29
		5 – 6.3	Range	log K _{oc}	Riverine	Ebro Delta River, (NE) Spain		28)
	Sediment Concentration	0.24 (0.30) 0.46 (1.47)	ng g/dw	Mean (SD)	Estuarine Coastal	Punta Banda Estuary, Mexico Todos Santos Bay, Mexico	n = 19. Top 2cm sediment.	27
		8.3 – 71.9 (Jun 2009) 0.13 – 2.92 (Oct 2009)	ng/g	Range [Date]	Riverine	Ebro Delta River, (NE) Spain	n = 13. n = 8.	28
PFOS	Concentration (Point Source)	5.5 (0.6) 4.7 (0.8) 2.5 (0.7) 5.8 (0.5) 82.2 (6.5) 2.1 (0.4) < 0.06 < 0.06 0.5 (0.1) 45 [Apr 2005] 140 [Jul 2005] 31 [Mar 2006] 30 [13 Jul 2005] 12 [27 Jul 2005] 12	ng/L	Mean (SD) Mean [Date]	Effluent	WWTW a, River Elbe, Germany WWTW b, River Elbe, Germany WWTW c, River Elbe, Germany WWTW d, River Elbe, Germany WWTW e, River Elbe, Germany WWTW f, River Elbe, Germany WWTW h, River Elbe, Germany WWTW h, River Elbe, Germany WWTW i, River Elbe, Germany WWTW a, Bayreuth, Germany WWTW b, Bayreuth, Germany		30 31
						WWTW b, Bayreuth, Germany WWTW c, Bayreuth, Germany		

Substanc	Input	Value(s)	Units	Descriptive	Environmen	Location	Details/N	Reference
е					l t		otes	
	In-River Concentration	$\begin{array}{c} 1.2 \ (0.2) \\ 2.1 \ (0.03) \\ 1.9 \ (0.04) \\ 2.2 \ (0.1) \\ 2 \ (0.1) \\ 2.9 \ (0.3) \\ 1.5 \ (0.7) \\ 0.6 \ (0.1) \\ 0.5 \ (0.3) \\ 1.6 \ (1.1) \\ 2.1 \ (0.2) \\ 2 \ (0.1) \\ 1.6 \ (0.0003) \\ 1.2 \ (0.03) \\ 1 \ (0.2) \end{array}$	ng/L	Mean (SD)	Riverine Estuarine	Site 1, River Elbe, Germany Site 2, River Elbe, Germany Site 3, River Elbe, Germany Site 3, River Elbe, Germany Site 5, River Elbe, Germany Site 6, River Elbe, Germany Site 7, River Elbe, Germany Site 8, River Elbe, Germany Site 9, River Elbe, Germany Site 10, River Elbe, Germany Site 11, River Elbe, Germany Site 12, River Elbe, Germany Site 13, River Elbe, Germany Site 14, River Elbe, Germany Site 15, River Elbe, Germany		30
		1.7 (0.3) [1km U/S] 16 (0.3) [0.1km D/S) 14 (0.5) [0.5km D/S] 11 (0.2) [1km D/S]		Mean (SD) [Distance from WWTWs discharge)	Riverine	Rotor Main river, Bayreuth, Germany	n = 3.	32
				Mean (SD)				
1		17.4 (2.2)			Riverine		<i>n</i> = 3	33
		6.6 (9.2) mean (Sd) 4.0 median			River d/s	Orge River, Paris, France	n-172	4
	Half – Life in Sediment	> 41 (in water)	Years				Could not find half-life in sediment	34
1	BSCF to Biota							
	European Chub: Plasma Liver Gills	1.5 (0.1) 0.6 (0.2) 0.3 (0.1) 0.2 (0.1)		Mean (SD)	Riverine	Orge River, Paris, France	n = 3.	33
	Gonads Muscle	-0.3 (0.2)						

Substanc e	Input	Value(s)	Units	Descriptive	Environmen t	Location	Details/N otes	Reference
-	Partitioning Values	7.42 2.8	Mean	log K _d log K _{oc}	Riverine	Lake Michigan, USA		35
		2.4 (0.2) 3.7 (0.2)	Mean (SD)	log K _d log K _{oc}	Riverine	Orge River, Paris, France		33
	Sediment Concentration	105 (85) [0.1km U/S] 280 (120) [0.05km D/S] 250 (150) [0.5km D/S] 200 (90) [1km D/S]	Ng/kg dw	Mean (SD) [Distance from WWTWs discharge]	Riverine	Rotor Main river, Bayreuth, Germany	n = 3.	32
		4.3 (0.3)		Mean (SD)	Riverine	Orge River, Paris, France	n = 3. Surface sediment, 0- 2cm.	
	Concentration (Point Source)	239 235 663 697 165 67	ng/L	Mean	Effluent	New York State, USA	Measured in effluent waters of 2 activated sludge WWTW plants.	36
		12-185	ng/L	Range	Effluent	California, USA	Measured in	37
		0.40–926 145	ng/L ng/L	Range Mean	Effluent	Germany	reclaimed wastewater from 4 WWTW plants.	38
							Measured in landfill effluent (n = 20)	
11	In-River Concentration	30.7 10.6 10.5 7.4 5.7	ng/L	Median	Riverine	Japan England (London) Sri Lanka China Turkey	n = 233 n = 13 n = 6 n = 13 n = 2	40

Substanc e	Input	Value(s)	Units	Descriptive	Environmen t	Location	Details/N otes	Reference
e		5.6 4.8 3.8 2.3 1.2 0.7				Singapore Malaysia Laos Thailand Ireland Vietnam	n = 49 n = 63 n = 1 n = 125 n= 1 n = 15	
		23	ng/L	Mean	Riverine	River Thames, England		41
		100	ng/L	Average	Riverine	River Wyre, England		42
		4.9 (4.6) mean (Sd) 3.6 median			River d/s		N=172	4
	Half – Life in Sediment	No measurable half-lives available			Freshwater and Estuarine		Due to the high persistence of PFOA, no half-lives in sediment are available.	43
	BSCF to Biota Freshwater oligochaete, <i>Lumbriculus variegatus</i>	33 ± 12 95 ± 12 94 ± 12		Measured value ± SD Measured value ± SD Measured value ± SD	Riverine	California, USA	Lipid- normalised BSAF value (estimated). Lipid- normalised measured values after 56 days for 2 sediment samples taken downstream of 2 different WWTW.	44
	Partitioning Values	2.3 – 2.6		Log k _{oc} (Range)			Values determined experimental ly in water	45
		2.69		Log k _{ow}			containing suspended	46

Substanc e	Input	Value(s)	Units	Descriptive	Environmen t	Location	Details/N otes	Reference
							solids	
		0.5		рКа			Calculated using Advanced Chemistry Developmen t (ACD/Labs) Software at pH 7 and 25°c	43
							Values determined experimental ly in water	
	Sediment Concentration	1.48	µg/kg dw	Mean	Riverine	Danube River, Austria	Samples taken from Danube river	47
		27 70 85 50	ng/kg dw	Mean	Riverine	Roter Main River, Germany Taken at locations relative to a WWTP China, Japan, Austria,	banks 0.1 km upstream 0.05 km	31
		0.3 5	ng/g	Median Mean	Various	Germany, USA	downstream 0.5 km downstream 1 km downstream	48
Benzo (a)	Concentration (Point Source)	0.0066	µg/L	95%ile of average	Effluent	UK	n = 74 n = 162 WWTW final	49
pyrene	In-River Concentration	4.79E-03 0.023 0.017 0.012 0.036	µg/L	Average	Riverine	River Arun, England River Erewash, England River Ouzel, England River Team, England River Alt, England	effluent $n = 18$ $n = 11$ $n = 17$ $n = 11$ $n = 21$	4
		0.016 (0.015) mean (Sd) 0.012 median			River d/s			

Substanc	Input	Value(s)	Units	Descriptive	Environmen	Location	Details/N	Reference
е					t		otes	
	Half – Life in Sediment	17,000	Hours	Estimated	Lacustrine	Quebec, Canada		50
	BSCF to Biota							
	Freshwater tubificid	1.33 ± 0.06		Mean ± SD	Riverine	California, USA	n = 3	51
	oligochaete (Ilyodrilus	1.34 ± 0.11					n = 3	
	templetoni)							
	Partitioning Values	6.24		Log k _{oc} (Avg.)				52
		6.04		Log k _{ow}				
	Sediment							53
	Concentration							
	Depth of sample (cm):	107	µg/kg dw	Measured	Estuarine	Mersey Estuary, NW England		
	50–60	86.7		concentration				
	60–70	138						
	70–80	80.8						
	50–60	76.3						
	60–70	218						
	90–100	315						
	0-10	201						
	10-20	144						
	20-30	301						
	40–50	289						
	50–60 60–70	251 227						
	60–70 70–80	332						
	90–100	368						
	90–100 0–10	348						
	10–20	440						
	20–30	350						
	30-40	363						
	40–50	332						
	50–60							
Fluroanth	Concentration (Point							
ene	Source)	0.0067	µg/L	Median	Effluent	Lake Champlain Basin, USA	n = 6	54
	WWTW Effluent	0.1		Maximum				
		0.071	µg/L	Median			n = 5	
	Urban Stream	0.16		Maximum				
	Stormflow							
		0.067 – 0.082	µg/L	Range			n = 2	
	CSO							
	In-River Concentration	14 - 240	ng/L	Range	Riverine	Humber Estuary, UK	Range	55

Substanc e	Input	Value(s)	Units	Descriptive	Environmen t	Location	Details/N otes	Reference
		0.1 ± 0.16	µg/L	Mean ± SD	Various	Europe	across 6 rivers	
		22.1 4.07	ng/L	Mean	Riverine	USA Elizabeth River	Dissolved fraction	56
		0.858 0.711				York River	Dissolved fraction	57
		0.032 (0.037) mean sd 0.025 median			River d/s		Particulate Fraction Dissolved fraction Particulate Fraction	4
	Half – Life in Sediment	1.14	Years		Estuarine	Tamar Estuary, UK		58
	Depth of sample (m): 0 10 50 100 150	95.5 100 112 125 136	Days		Marine	Gulf of Mexico	Determined experimental ly at 25°C	59
	BSCF to Biota Freshwater Amphipod (<i>Diporeia</i> sp.) Sediment concentration (nmol/g dw): 0.1 688	0.107 0.424		Mean	Lacustrine	Lake Michigan, USA	n = 3	60
	Freshwater Amphipod (Hyalella asteca) Sediment concentration (nmol/g dw): 0.1 136	0.045 0.236					n = 3	
	Benthic copepod				Estuarine	Louisiana, USA		61

Substanc	Input	Value(s)	Units	Descriptive	Environmen	Location	Details/N	Reference
е					t		otes	
	(S. knabeni) Sediment concentration (nmol/g dw): 25 2000	0.57 ± 0.28 0.80 ± 0.22		Mean ± SD			n = 4	
	Benthic copepod (Coullana sp.) Sediment concentration (nmol/g dw): 25 2000	0.22 ± 0.05 0.49 ± 0.06					n = 3	
	Partitioning Values	5.23		Log k _{ow} (Mean)	Experimental	Experimental value from slow- stirring in distilled water at 25°C	n = 6	62
		5.16 4.58		Log k _{ow} (Mean) Log k _{oc}		Reported value from literature Humber Estuary, UK		55
-	Sediment Concentration	388 ± 408	ng/g dw	Mean ± SD	Estuarine	Humber Estuary, UK	n = 32	55
DEHP	Concentration (Point Source) Sewage Treatment Effluent	1.9	µg/L	Average	Effluent	Manchester, UK	n = ?	63
	In-River Concentration	0.693 0.183 0.125 0.138 0.294	µg/L		Riverine	River Mersey, England	n = 1 n = 1 n = 1 n = 1 n = 1	64
		0.4 1.6	µg/L	Average Average	Riverine	River Irwell, Manchester, UK River Etherow, Manchester, UK	n = ? n = ?	63
		2.27 0.33 – 97.8 27.9	µg/L	Median Range Median	Surface Water Riverine	Germany	n = 115 n = ?	65
		9.3	µg/L	Average	Riverine	River Rhine, Germany Taiwan	n = 14	66
	Half – Life in Sediment	14.8	Days	Average	Riverine			67

Substanc e	Input	Value(s)	Units	Descriptive	Environmen t	Location	Details/N otes	Reference
•	BSCF to Biota				Riverine	Taiwan		68
	Fish (Liza subviridis .)	13.8–40.9		Range			n = 2	
	(Oreochromis miloticus niloticus)	2.4–28.5		Range			n = 3	
	(Acanthopagrus schlegel)	0.1		Average			n = 1	
	(Zacco platypus)	0.9		Average			n = 1	
	Partitioning Values	7.5	Log k _{ow}			Recommended value determined in review of several experimentally derived values.	n = 13	69
	Sediment Concentration	1.220 1.199	µg/g dw		Riverine	River Speke, England River Runcorn, England	n = 6 n = 6	64
		0.70 0.21 – 8.44	mg/kg dw	Median Range	Riverine	Brandenburg and Berlin, Germany	n = 35	65
		4.6 0.5 – 23.9	hð\ð	Average Range	Riverine	Taiwan	n = 6	66
НСВ	Concentration (Point Source) WWTP Effluent	3.23 1.65 – 4.51	ng/L	Mean Range	Effluent	Gaobeidan Lake, Beijing, China	n = 6	70
	In-River Concentration	<0.001 – 0.002 <0.001	µg/L	Range Mean	Riverine Estuarine	River Thames, Caversham, England Thames Estuary, Woolwich,	n = 30 n = 76	71
		61.58 53.60 9.23 5.78	ng/L	Mean	Riverine	River Aire, Humber Estuary, England River Calder, Humber Estuary, England River Don, Humber Estuary, England River Trent, Humber Estuary, England	n = 71 n = 69 n = 70 n = 70	72
	Half – Life in Sediment							
	BSCF to Biota							

Substanc e	Input	Value(s)	Units	Descriptive	Environmen t	Location	Details/N otes	Reference
	Partitioning Values	6.0 4.5 – 7.3	Median Range	Log k _p				73
		5.5		Log k _{ow}				
	Sediment Concentration	1.17 1.52 2.27 2.00 2.56 1.87 0.884 0.628 0.746 0.596 0.485 0.527 1.74 2.45 1.82 3.73 1.01 0.557	µg/kg dw		Riverine	Han River, South Korea		74
		0.18 1.3 4.2 1.6	ng/g dw	Mean Mean Mean Mean	Lacustrine	Redón Lake, Pyrenees, Spain Ladove, Tatra Mountains, Poland Starolesnianske Pleso, Tatra Mountains, Poland Dugli Staw, Tatra Mountains, Poland	Mean across sediment core. <i>n</i> = 7 <i>n</i> = 5	75
HCBD	Concentration (Point Source) Sewage Treatment Effluent							
	In-River Concentration	<0.003 <0.003	µg/L	Mean	Riverine Estuarine	River Thames, Caversham, England Thames Estuary, Woolwich, England	n = 30 n = 76	71
	Half – Life in Sediment	125- 191	Days					76
	BSCF to Biota							

Substanc e	Input	Value(s)	Units	Descriptive	Environmen t	Location	Details/N otes	Reference
	Partitioning Values	3.7 – 4.9		Log k _{ow}				77
		4.90		Log k _{oc}				78
		4.9 3.8 – 6.7	Median Range	Log k _p				73
		4.8		Log k _{ow}				
	Sediment Concentration	7.3 6.11 – 8.71	Mean Range	µg/kg dw	Riverine	Ebro River Basin, NE Spain	Surface sediments. n = 2	79
НСН	Concentration (Point Source) WWTP Effluent	18.0 13.2 – 26.7	ng/L	Mean Range	Effluent	Gaobeidan Lake, Beijing, China	n = 6	70
	In-River Concentration	6.93 4.41 0.81 22.94 6.4 9.45 10.26 11.33 5.28 11.69	ng/L		Riverine	Yu Rivulet, Fujian Province, China Quiulu Rivulet, Fujian Province, China Quiulu Rivulet, Fujian Province, China Hanjiang River, Fujian Province, China Hanjiang River, Fujian Province, China Yu Rivulet, Fujian Province,	High Tide	80
	γ-HCH	0.017 0.06 – 0.032 0.037 0.005 – 0.136	µg/L	Mean Range Mean Range	Riverine	China Quiulu Rivulet, Fujian Province, China Quiulu Rivulet, Fujian Province, China Hanjiang River, Fujian Province, China Hanjiang River, Fujian Province, China River Lee, England Tributaries of the River Lee,	HCH (gamma)	81
	Half – Life in Sediment	90	Days			England	Calculated	76

Substanc e	Input	Value(s)	Units	Descriptive	Environmen t	Location	Details/N otes	Reference
		0.9 to 12.6	Years	Range		Amituk Lake, Cornwallis Island, Arctic	value	
	BSCF to Biota							
	Partitioning Values α-HCH β-HCH γ-HCH	8.63 x 10 ³ 8.22 x 10 ³ 6.79 x 10 ³		K _{ow}			Final adjusted values at 25°C	82
	α -HCH calculated experimental β -HCH calculated experimental γ -HCH calculated experimental	5920 9800 11160 9380 4400 8160		Kow			23 0	83
	Sediment Concentration	0.1-16.7 0.2-101 0.14-1.12 0.1-2.0 0.25-6.0 3.7-13 1.2-33.7 0.02-4.55 0.086-0.33 0.85-7.87 0.008-0.02 0.11-0.40	ng/g dw	Range	Coastal Estuarine Coastal Coastal Estuarine Coastal Coastal Coastal Coastal Coastal Coastal Coastal Coastal	Hong Kong, PRC Chinese river/estuaries Xiamen Harbour, PRC Manukkau Harbour, New Zealand Alexandria Harbour, Egypt Juilong river estuary, PRC Northern coast, Vietnam Ulsan Bay, Korea West coast of Sri Lanka Arabian Sea, India Eastern coast of India Northeastern coast of India	n = 10	84
		1.26 1.02 – 1.48	ng/g dw	Mean Range	Lacustrine	Gaobeidan Lake, Beijing, China	n = 6	

Transport of nonpolar organic compounds from surface water to groundwater. Laboratory sorption studies.(85)

Point						
source Conce		as default (me-Hg] assumed the same as [Hg-dissolved] good				
ntratio n	Me-Hg	agreement between UK and US (Gbondo-Tugbawa et al. (2010)) data for effluents				
	PCBs	data for Quebec WwTW (Phram and Proulx (1997)) for congener 118				
	1 003	Meharg et al. (1998) Aire and Calder (contaminated at 0.05 ug/l, Trent				
	НСВ	and Don (not contaminated) at 0.01 ug/l				
	HCBD	Jürgens et al. (2013)				
	НСН	Snook et al (2004)				
t1/2						
	ТВТ	Sakultantimetha et al. (2011) seems a little long re the 80 days I have seen elsewhere				
	Me-Hg	Cesario et al. (2017) looks like a ridiculous value				
	PCB(118)	Sinkkonen and Paasivirta (2000)				
	HBCDD	Davis et al. (2006)				
	cypermethrin	Hernandez-Guzman et al. (2017) 6-20 days				
	PFOS	nd 41 yr in water				
	PFOA	nd				
	Benzo(a)pyrene	Mackay and Hickie (1999)				
	Fluoranthene	Readman et al. (1987)				
	DEHP	Chao et al. (2007)				
	НСВ	nd				
	HCBD	Onogbosele et al. (2014) Cranfield				
	НСН	Onogbosele et al. (2014) range 1-12				
BSCF		Variability on organisms can be a source of uncertainty if the species of interest is very different from that tested				
	ТВТ	Garg et al. (2009) variable between 8 and 50 but sediments contaminated so chose 10				
	Me-Hg	Vieira et al. (2018) quite variable				
	PCB (118)	Harrad and Smith (1997) Severn 2.2-4.8 chose 3 ell pike				
	HBCDD	Van Beusekom et al. (2006) around 1				
	cypermethrin	Labadie and Chevreuil (2011) chironomids				
	PFOS	Labadie and Chevreuil (2011) chubb around 1 to plasma				
	PFOA	Higgins et al. (2007) lumbriculus lipid normalised? – Need to back calculates to whole organism – assuming lumbriculus is 5% lipid the published BSCF of 33 becomes 1.65				
	Benzo(a)pyrene	Lu et al. (2009) oligochaete				
	Fluoranthene	Driscoll et al. (1997) amphipods				
	dehp	Huang et al. (2008) very variably this value for minnow other ranges 10- 30				
	НСВ	nd				
	HCBD	nd				
	НСН	nd				
Кр		Note log kp values might be log kow or log koc, in which case they require adjustment to a nominal Kp				

2 Table S5. Notes on data sources

Conce ntratio nas default (me-Hg] assumed the same as [Hg-dissolved] good agreement between UK and US (Gbondo-Tugbawa et al. (2010)) data for effluentsMe-HgBangkedphol et al. (2009) proper logkp 3.64 Reviews of Environmental Contamination and Toxicology 166 edited by George W. Ware vol 166 p 1048 J Meador Predictign the fate and effects of tributyltin in marine ssytems logkoc 4.7Marvin-Dipasquale et al. (2009) 2.5-4 proper - v low re mercury a value of log kp of 6.46 has been used from: Moriarty F. and French M.C. (1977) Mercury in waterways that drain into the Wash, in Eastern England. Water Research, 11, 367-372.PCBsButcher et al. (1998)HBCDDGustavsson et al. (2013) modelled kocCypermethrinEA WFD dossier Science Report: SC040038/SR7 SNIFFER log koc 5.5 Maund et al. (2002) dependent on OC this for 3%Labadie and Chevreuil (2011) proper kd 2.4 koc 3.7. EA RA gives koc as 2.6PFOSas 2.6PFOAECHA (2013) log kow EA RA gives koc as 2.85Benzo(a)pyreneLatimer and Zhen (2003) kowFluorantheneMaagd et al. (1997) log kowDEHPStaples et al. (1997) log kowHCBOliver and Kaiser (1986) range 4.5-7.3 Lerche et al. (2002) Taylor et al. (2003) Oliver and Kaiser (1986) range narrow	Point source		
Bangkedphol et al. (2009) proper logkp 3.64 Reviews of Environmental Contamination and Toxicology 166 edited by George W. Ware vol 166 p 1048 J Meador Predictign the fate and effects of tributyltin in marine ssytems logkoc 4.7 Marvin-Dipasquale et al. (2009) 2.5-4 proper - v low re mercury a value of log kp of 6.46 has been used from: Moriarty F. and French M.C. (1977) Mercury in waterways that drain into Me-Hg HBCDD Gustavsson et al. (2013) modelled koc Cypermethrin EA WFD dossier Science Report: SC040038/SR7 SNIFFER log koc 5.5 Maund et al. (2002) dependent on OC this for 3% Labadie and Chevreuil (2011) proper kd 2.4 koc 3.7. EA RA gives koc as 2.85 Benzo(a)pyrene Latimer and Zhen (2003) kow Fluoranthene Maagd et al. (1998) log kow DEHP Staples et al. (1997) log kow HCB Oliver and Kaiser (1986) range 4.5-7.3 Lerche et al. (2002) Taylor et al. (2003) Oliver and Kaiser (1986) range narrow	Conce ntratio	Me Ha	agreement between UK and US (Gbondo-Tugbawa et al. (2010)) data for
TBTGeorge W. Ware vol 166 p 1048 J Meador Predictign the fate and effects of tributyltin in marine ssytems logkoc 4.7Marvin-Dipasquale et al. (2009) 2.5-4 proper - v low re mercury a value of log kp of 6.46 has been used from: Moriarty F. and French M.C. (1977) Mercury in waterways that drain into 			Bangkedphol et al. (2009) proper logkp 3.64
TBTof tributyltin in marine ssytems logkoc 4.7Marvin-Dipasquale et al. (2009) 2.5-4 proper - v low re mercury a value of log kp of 6.46 has been used from: Moriarty F. and French M.C. (1977) Mercury in waterways that drain into the Wash, in Eastern England. Water Research, 11, 367-372.PCBsButcher et al. (1998)HBCDDGustavsson et al. (2013) modelled kocCypermethrinEA WFD dossier Science Report: SC040038/SR7 SNIFFER log koc 5.5 Maund et al. (2002) dependent on OC this for 3%Labadie and Chevreuil (2011) proper kd 2.4 koc 3.7. EA RA gives koc as 2.6PFOSECHA (2013) log kow EA RA gives koc as 2.85Benzo(a)pyreneLatimer and Zhen (2003) kowFluorantheneMaagd et al. (1998) log kowDEHPStaples et al. (1997) log kowHCBOliver and Kaiser (1986) range 4.5-7.3HCBDnarrow			
a value of log kp of 6.46 has been used from: Moriarty F. and French M.C. (1977) Mercury in waterways that drain into the Wash, in Eastern England. Water Research, 11, 367-372.PCBsButcher et al. (1998)HBCDDGustavsson et al. (2013) modelled kocCypermethrinEA WFD dossier Science Report: SC040038/SR7 SNIFFER log koc 5.5 Maund et al. (2002) dependent on OC this for 3%Labadie and Chevreuil (2011) proper kd 2.4 koc 3.7. EA RA gives koc as 2.6PFOSECHA (2013) log kow EA RA gives koc as 2.85Benzo(a)pyreneLatimer and Zhen (2003) kowFluorantheneMaagd et al. (1998) log kowDEHPStaples et al. (1997) log kowHCBOliver and Kaiser (1986) range 4.5-7.3HCBDnarrow		ТВТ	
Moriarty F. and French M.C. (1977) Mercury in waterways that drain into the Wash, in Eastern England. Water Research, 11, 367-372.PCBsButcher et al. (1998)HBCDDGustavsson et al. (2013) modelled kocCypermethrinEA WFD dossier Science Report: SC040038/SR7 SNIFFER log koc 5.5 Maund et al. (2002) dependent on OC this for 3%Labadie and Chevreuil (2011) proper kd 2.4 koc 3.7. EA RA gives koc as 2.6PFOSECHA (2013) log kow EA RA gives koc as 2.85Benzo(a)pyreneLatimer and Zhen (2003) kowFluorantheneMaagd et al. (1998) log kowDEHPStaples et al. (1997) log kowHCBOliver and Kaiser (1986) range 4.5-7.3HCBDIntervent and the fact the article and the fact the			
Me-Hgthe Wash, in Eastern England. Water Research, 11, 367-372.PCBsButcher et al. (1998)HBCDDGustavsson et al. (2013) modelled kocCypermethrinEA WFD dossier Science Report: SC040038/SR7 SNIFFER log koc 5.5 Maund et al. (2002) dependent on OC this for 3%Labadie and Chevreuil (2011) proper kd 2.4 koc 3.7. EA RA gives koc as 2.6PFOSECHA (2013) log kow EA RA gives koc as 2.85Benzo(a)pyreneLatimer and Zhen (2003) kowFluorantheneMaagd et al. (1998) log kowDEHPStaples et al. (1997) log kowHCBOliver and Kaiser (1986) range 4.5-7.3Lerche et al. (2002) Taylor et al. (2003) Oliver and Kaiser (1986) range narrow			
HBCDD Gustavsson et al. (2013) modelled koc Cypermethrin EA WFD dossier Science Report: SC040038/SR7 SNIFFER log koc 5.5 Maund et al. (2002) dependent on OC this for 3% Labadie and Chevreuil (2011) proper kd 2.4 koc 3.7. EA RA gives koc as 2.6 PFOS ECHA (2013) log kow EA RA gives koc as 2.85 Benzo(a)pyrene Latimer and Zhen (2003) kow Fluoranthene Maagd et al. (1998) log kow DEHP Staples et al. (1997) log kow HCB Oliver and Kaiser (1986) range 4.5-7.3 Lerche et al. (2002) Taylor et al. (2003) Oliver and Kaiser (1986) range narrow		Me-Hg	
Cypermethrin EA WFD dossier Science Report: SC040038/SR7 SNIFFER log koc 5.5 Maund et al. (2002) dependent on OC this for 3% Labadie and Chevreuil (2011) proper kd 2.4 koc 3.7. EA RA gives koc as 2.6 PFOS ECHA (2013) log kow EA RA gives koc as 2.85 Benzo(a)pyrene Latimer and Zhen (2003) kow Fluoranthene Maagd et al. (1998) log kow DEHP Staples et al. (1997) log kow HCB Oliver and Kaiser (1986) range 4.5-7.3 HCBD narrow		PCBs	Butcher et al. (1998)
Maund et al. (2002) dependent on OC this for 3%PFOSLabadie and Chevreuil (2011) proper kd 2.4 koc 3.7. EA RA gives koc as 2.6PFOAECHA (2013) log kow EA RA gives koc as 2.85Benzo(a)pyreneLatimer and Zhen (2003) kowFluorantheneMaagd et al. (1998) log kowDEHPStaples et al. (1997) log kowHCBOliver and Kaiser (1986) range 4.5-7.3HCBDnarrow		HBCDD	Gustavsson et al. (2013) modelled koc
PFOS as 2.6 PFOA ECHA (2013) log kow EA RA gives koc as 2.85 Benzo(a)pyrene Latimer and Zhen (2003) kow Fluoranthene Maagd et al. (1998) log kow DEHP Staples et al. (1997) log kow HCB Oliver and Kaiser (1986) range 4.5-7.3 HCBD Lerche et al. (2002) Taylor et al. (2003) Oliver and Kaiser (1986) range		Cypermethrin	
Benzo(a)pyrene Latimer and Zhen (2003) kow Fluoranthene Maagd et al. (1998) log kow DEHP Staples et al. (1997) log kow HCB Oliver and Kaiser (1986) range 4.5-7.3 HCBD Lerche et al. (2002) Taylor et al. (2003) Oliver and Kaiser (1986) range narrow		PFOS	
Fluoranthene Maagd et al. (1998) log kow DEHP Staples et al. (1997) log kow HCB Oliver and Kaiser (1986) range 4.5-7.3 HCBD Lerche et al. (2002) Taylor et al. (2003) Oliver and Kaiser (1986) range narrow		PFOA	ECHA (2013) log kow EA RA gives koc as 2.85
DEHP Staples et al. (1997) log kow HCB Oliver and Kaiser (1986) range 4.5-7.3 HCBD Lerche et al. (2002) Taylor et al. (2003) Oliver and Kaiser (1986) range narrow		Benzo(a)pyrene	Latimer and Zhen (2003) kow
HCB Oliver and Kaiser (1986) range 4.5-7.3 HCBD Lerche et al. (2002) Taylor et al. (2003) Oliver and Kaiser (1986) range narrow		Fluoranthene	Maagd et al. (1998) log kow
Lerche et al. (2002) Taylor et al. (2003) Oliver and Kaiser (1986) range HCBD narrow		DEHP	Staples et al. (1997) log kow
HCBD narrow		НСВ	Oliver and Kaiser (1986) range 4.5-7.3
		HCBD	
		НСН	Xiao et al. (2004) for different conformers log Kow

3

4

5 References

6 1. Cavalheiro J., Zuloaga O., Prieto, A., Preudhomme H., Amouroux D. and Monperrus

M. Occurrence and Fate of Organic and Organometallic Pollutants in Municipal Wastewater
 Treatment Plants and Their Impact on Receiving Waters (Adour Estuary, France). Archives

9 of Environmental Contamination and Toxicology. 2017, 73, 619–630.

Díez S., Lacorte S., Viana P., Barceló D. and Bayona M. Survey of organotin
 compounds in rivers and coastal environments in Portugal 1999–2000. Environmental
 Pollution, 2005, 136(3), 525-536.

Dowson P.H., Bubb J.M. Lester J.N. Organotin distribution in sediments and waters
 of selected east coast estuaries in the UK. Marine Pollution Bulletin, 24(10), 492-498.

UKWIR. UK Water Industry Research, Chemical Investigation Programme. Phase 2.
 2015-202. Tranche 2 dataset.

17 5. Sakultantimetha A., Keenan H.E., Beattie T.K. Bangkedphol S. Cavoura O.

18 Bioremediation of tributyltin contaminated sediment: Degradation enhancement and

improvement of bioavailability to promote treatment processes. Chemosphere, 83(5), 680-686.

Garg A., Antón-Martín R., García-Luque E., Riba I., DelValls T.A. Distribution of
 butyltins (TBT, DBT, MBT) in sediments of Gulf of Cádiz (Spain) and its bioaccumulation in
 the clam Ruditapes philippinarum. Ecotoxicology, 2009, 18, 1029–1035.

Bangkedphol S., Keenan H.E., Davidson C., Sakultantimetha A., Songsasen A. The
 partition behavior of tributyltin and prediction of environmental fate, persistence and toxicity
 in aquatic environments. Chemosphere, 2009, 77(10) 1326-1332.

Buggy C.J., Tobin J.M. Seasonal and spatial distributions of tributyltin in surface
 sediment of the Tolka Estuary, Dublin, Ireland. Environmental Pollution, 2006, 143(2), 294 303.

Gbondo-Tugbawa S.S.,McAlear J.A., Driscoll C.T., Sharpe C.W. Total and methyl
 mercury transformations and mass loadings within a wastewater treatment plant and the
 impact of the effluent discharge to an alkaline hypereutrophic lake. Water Research, 2020,
 44(9), 2863-2875.

10. Domagalski J. Mercury and methylmercury in water and sediment of the Sacramento
 River Basin, California. Applied Geochemistry, 2001, 16(15), 1677-1691.

11. Cesárioa R., Hintelmann H., Mendes R., Eckey K., Dimock B., Araújo B., Mota AM,
Canário J., Evaluation of mercury methylation and methylmercury demethylation rates in
vegetated and non-vegetated saltmarsh sediments from two Portuguese estuaries.
Environmental Pollution, 2017, 226, 297-307.

40 12. Vieira M., Bernardi J.V.E., Dórea J.G., Rocha B.C.P., Ribeiro R., Zara L.F.

Distribution and availability of mercury and methylmercury in different waters from the Rio
Madeira Basin, Amazon. Environmental Pollution, 2018, 235, 771-779.

13. DiPasquale M.M., Lutz M.A., Brigham M.E., Krabbenhoft D.P., Aiken G.R., Orem
W.H., Hall B.D. Mercury Cycling in Stream Ecosystems. 2. Benthic Methylmercury
Production and Bed Sediment-Pore Water Partitioning. Environmental Pollution, 2018, 235,
771-779.

47 14. Moriarty F. and French M.C. Mercury in waterways that drain into the Wash, in48 Eastern England. Water Research, 1977, 11, 367-372.

49 15. Croston N.J., Bubb J.M., Lester J.N. Spatial distribution and seasonal changes in
50 methylmercury concentrations in shallow lakes. Hydrobiologia, 1996, 321, 35–45.

16. Pham T.T., Proulx S. PCBs and PAHs in the Montreal Urban Community (Quebec,
Canada) wastewater treatment plant and in the effluent plume in the St Lawrence River.
Water Research, 1997, 31(8), 1887-1896.

54 17. Sinkkonen S., Paasivirta J. Degradation half-life times of PCDDs, PCDFs and PCBs 55 for environmental fate modelling. Chemosphere, 2000, 40, 943-949.

18. Harrad S.J. and Smith D.J.T. Bioaccumulation Factors (BAFs) and Biota to Sediment
Accumulation Factors (BSAFs) for PCBs in pike and eels. Environmental Science and
Pollution Research, 1997, 4, 189–193.

Wong C.S., Capel P.D., Nowell L.H. National-Scale, Field-Based Evaluation of the
Biota-Sediment Accumulation Factor Model. Environ. Sci. Technol. 2001, 35, 9, 1709–1715.

Butcher J.B., Garvey E.A., BiermanJr V.J. Equilibrium partitioning of PCB congeners
in the water column: Field measurements from the Hudson River. Chemosphere, 1998,
36(15), 3149-3166.

Vane C.H., Harrison I., Kim A.W. Polycyclic aromatic hydrocarbons (PAHs) and
polychlorinated biphenyls (PCBs) in sediments from the Mersey Estuary, U.K. Science of
The Total Environment, 2007, 374, 112-126

Morris S., Allchin C.R., Zegers B.N., Haftka J.J.H., Boon J.P., Belpaire C., Leonards
P.E.G., van Leeuwen S.P.J., de Boer J. Distribution and Fate of HBCD and TBBPA
Brominated Flame Retardants in North Sea Estuaries and Aquatic Food Webs. Environ. Sci.
Technol. 2004, 38(21), 5497–5504.

Davis J.W., Gonsior S.J., Markham D.A., Friederich U., Hunziker R.W., Ariano J.M.
Biodegradation and Product Identification of [14C]Hexabromocyclododecane in Wastewater
Sludge and Freshwater Aquatic Sediment. Environ. Sci. Technol. 2006, 40(17), 5395–5401.

van Beusekom O.C., Eljarrat E., Barceló D., Koelmans A.A. Dynamic modeling of
food-chain accumulation of brominated flame retardants in fish from the Ebro River Basin,
Spain. Environmental Toxicology and Chemistry. 2009, 25(10), 2553-2560.

77 25. Gustavsson J. et al. Omanalys av flamskyddsmedel i svenska vattendrag. 2013.
78 Available at: <u>https://pub.epsilon.slu.se/13578/1/gustavsson_j_etal_160817.pdf</u>.

Eljarrat E., de la Cal A., Raldúa D., Barcelo D. Brominated flame retardants in
Alburnus alburnus from Cinca River Basin (Spain). Environmental Pollution, 2005, 133(3),
501-8.

82 27. Hernández-Guzmán F.A., Macías-Zamora J.V., Ramírez-Álvarez N., Alvarez-Aguilar
83 A., Hernández C.Q., Fonseca A.P. Treated wastewater effluent as a source of pyrethroids
84 and fipronil at Todos Santos Bay, Mexico: Its impact on sediments and organisms.
85 Environmental Toxicology and Chemistry, 2017, 36(11), 3057-3064.

86 28. Feo M.L., Ginebreda A., Eljarrat E., Barceló D. Presence of pyrethroid pesticides in
87 water and sediments of Ebro River Delta. Journal of Hydrology, 393, 156-162.

Maund S.J., Hamer M.J., Lane M.C.G., Farrelly E., Rapley J.H., Goggin U.M., Gentle
W.E. Partitioning, bioavailability, and toxicity of the pyrethroid insecticide cypermethrin in
sediments. Environmental Toxicology and Chemistry, 2002, 21(1), 9-15.

30. Ahrens L., Felizeter S., Sturm R., Xie Z., Ebinghaus R. Polyfluorinated compounds in
waste water treatment plant effluents and surface waters along the River Elbe, Germany.
Marine Pollution Bulletin, 2009, 58(9), 1326-1333.

Becker A.M., Gerstmann S., Frank H. Perfluorooctane surfactants in waste waters,
the major source of river pollution. Chemosphere, 2008, 72(1), 115-121.

32. Becker A.M., Gerstmann S., Frank H. Perfluorooctanoic acid and perfluorooctane
sulfonate in the sediment of the Roter Main river, Bayreuth, Germany. Environmental
Pollution, 2008, 156(3), 818-820.

33. Labadie P., Chevreuil M. Partitioning behaviour of perfluorinated alkyl contaminants
between water, sediment and fish in the Orge River (nearby Paris, France). Environmental
Pollution, 2011, 159(2), 391-397.

102 34. Hekster, F.M., De Voogt, P., Pijnenburg, A.M.C.M., Laane, R.W.P.M.

103 Perfluoroalkylated substances: Aquatic environmental assessment. TU Delft, 2007, 1st July.

35. Johnson R.L., Anschutz A.J., Smolen J. The Adsorption of Perfluorooctane Sulfonate
onto Sand, Clay, and Iron Oxide Surfaces. Journal of Chemical & Engineering Data, 2007,
52(4), 345-360.

107 36. Sinclair E., Mayack D.T., Roblee K., Yamashita N., Kannan K. Occurrence of 108 perfluoroalkyl surfactants in water, fish, and birds from New York State. Arch Environ 109 Contam Toxicol., 2006, 50(3), 398-410.

110 37. Plumlee M.H., Larabee J., Reinhard M. Perfluorochemicals in water reuse.111 Chemosphere, 2008, 72(10), 1541-1547.

112 38. Busch J., Ahrens R., Sturm R., Ebinghaus R. Polyfluoroalkyl compounds in landfill 113 leachates. Environmental Pollution, 2020, 158(5), 1467-1471.

Worldwide surveys of perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid(PFOA) in water environment in recent years

40. Kunacheva C., Fujii S., Tanaka S., Shuhei S et al. Worldwide surveys of
perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) in water environment
in recent years. Water Science and Technology, 2022, 66 (12), 2764-2771.

McLachlan M., Holmstrom K.E., Reth M., Berger U. Riverine discharge of
perfluorinated carboxylates from the European continent. Environ. Sci. Technol. 2007, 41,
7260-7265.

42. Loos R., Manfred B., Giovanni G., Locoro G., Rimaviciute E., Contini S., Bidoglio G.
EU-wide survey of polar organic persistent pollutants in European river waters.
Environmental Pollution, 2009, 157(2), 561-568.

43. Vierke L., Staude C., Biegel-Engler A., Drost W., Schulte C. Perfluorooctanoic acid
(PFOA) — main concerns and regulatory developments in Europe from an environmental

127 point of view. Environmental Sciences Europe 2012, 24, 16.

Higgins, C.P., McLeod, P.B., Macmanus-Spencer, L.A., Luthy, R.G., Bioaccumulation
of perfluorochemicals in sediments by the aquatic oligochaete Lumbriculus variegatus.
Environmental Science and Technology, 2007, 41, 4600-4606.

45. Ahrens L., Yeung L.W.Y., Taniyasu S., Lamb P.K.S., Yamashita N. Partitioning of
perfluorooctanoate (PFOA), perfluorooctane sulfonate (PFOS) and perfluorooctane
sulfonamide (PFOSA) between water and sediment. Chemosphere, 2011, 85(5), 731-737.

46. ECHA. Substance Name: Pentadecafluorooctanoic Acid (PFOA). EC Number: 206397-9, CAS Number: 335-67-1. MEMBER STATE committee support document for
identification of pentadecafluorooctanoic acid (PFOA) as a substance of very high concern
because of its CMR and PBT properties.

139 <u>https://echa.europa.eu/documents/10162/8059e342-1092-410f-bd85-80118a5526f5</u>.

140 47. Clara M., Gans O., Weiss S., Sanz-Escribano D., Scharf S., Scheffknecht C.

141 Perfluorinated alkylated substances in the aquatic environment: An Austrian case study.

142 Water Research, 2009, 43(18), 4760-4768.

48. Zareitalabada P., Siemens J., Hamer M., Amelung W. Perfluorooctanoic acid (PFOA)
and perfluorooctanesulfonic acid (PFOS) in surface waters, sediments, soils and wastewater

145 – A review on concentrations and distribution coefficients. Chemosphere, 2013, 91(6), 725146 732.

49. Gardner M., Comber S., Scrimshaw M., Cartmell E., Lester J. and Ellor B. The
significance of hazardous chemicals in wastewater treatment works effluents. Science of the
Total Environment, 2012, 437, 363-372.

150 50. Mackay D., Hickie D. Mass balance model of source apportionment, transport and151 fate of PAHs in Lac Saint Louis, Quebec. Chemosphere, 2000, 41(5), 681-692.

152 51. Lu X., Reible D.D., Fleeger J.W. Bioavailability and assimilation of

sediment-associated benzo[a]pyrene by Ilyodrilus templetoni (oligochaeta). Environmental
Toxicology and Chemistry, 2004, 23(1), 57-64.

155 52. Latimer J.S. and Zheng J. The sources, transport and fate of PAHs in the marine 156 environment. Wiley.

157 53. Vane C.H., Harrison I., Kim A.W. Polycyclic aromatic hydrocarbons (PAHs) and
158 polychlorinated biphenyls (PCBs) in sediments from the Mersey Estuary, U.K. Science of
159 The Total Environment, 2007, 374(1), 112-126.

160 54. Phillips P, Chalmers A. Wastewater effluent, combined sewer overflows and other161 sources of organic compounds to Lake Chaplain. J Am Water Res. Ass. 2009, 45(1) 45-58.

162 55. Zhou J.L., Fileman T.W., House W.H., Long J.L.A., Mantoura R.F.C, Meharg A.A.,

163 Osborn D., Wright J. Fluxes of Organic Contaminants from the River Catchment into,

through and out of the Humber Estuary, UK. Marine Pollution Bulletin, 1999, 37, 330-342.

165 56. Entec European report, 2011, available at:
166 <u>https://circabc.europa.eu/webdav/CircaBC/env/wfd/Library.</u>

167 57. Gustafson K.E., Dickhut R.M. Distribution of polycyclic aromatic hydrocarbons in
168 southern Chesapeake Bay surface water: Evaluation of three methods for determining freely
169 dissolved water concentrations. Environmental Toxicology and Chemistry, 1997, 16(3), 452170 461.

171 58. Readman, J.W., Mantoura R.F.C., Rhead M.M. A record of polycyclic aromatic
172 hydrocarbon (PAH) pollution obtained from accreting sediments of the Tamar Estuary. UK:
173 Evidence for non-equilibrium behaviour of PAH. Sci. Total Environ., 1987, 66, 73-94.

Tansel B., Fuentes C., Sanchez M., Predoi K., Acevedo M. Persistence profile of
polyaromatic hydrocarbons in shallow and deep Gulf waters and sediments: Effect of water
temperature and sediment–water partitioning characteristics. Marine Pollution Bulletin, 2011,
62(12), 2659-2665.

178 60. Driscoll S.K., Harkey G.A., Landrum P.F. Accumulation and toxicokinetics of
179 fluoranthene in sediment bioassays with freshwater amphipods. Environmental Toxicology
180 and Chemistry, 1997, 16(4), 742-753.

181 61. Lutufo G.R. Bioaccumulation of sediment-associated fluoranthene in benthic
182 copepods: uptake, elimination and biotransformation. Aquatic Toxicology, 1998, 44, 1-15.

62. Gert-Jan de Maagd P., ten Hulscher D.E.M., van den Heuvel H., Opperhuizen A.,
Sijm D.T.H.M. Physicochemical properties of polycyclic aromatic hydrocarbons: Aqueous
solubilities, n-octanol/water partition coefficients, and Henry's law constants. Environmental
Toxicology and Chemistry, 1998, 17(2), 251-257.

187 63. Fatoki O.S., Vernon F. Phthalate esters in rivers of the greater Manchester area, U.K.

188 Science of The Total Environment, 19990, 95, 227-232.

189 64. Preston M.R., Al-Omran L.A. Phthalate ester speciation in estuarine water,
190 suspended particulates and sediments. Environmental Pollution, 1989, 62, 183-193.

191 65. Fromme H., Küchler T., Ottoc T., Pilz K., Müller J., Wenzel A. Occurrence of
192 phthalates and bisphenol A and F in the environment. Water Research, 2002, 36(6), 1429193 1438.

194 66. Yuan Y., Liu C., Liao C.S., Chang B.V. Occurrence and microbial degradation of 195 phthalate esters in Taiwan river sediments. Chemosphere, 2002, 49(10), 1295-1299.

196 67. Chao W.L., Cheng C.Y. Effect of introduced phthalate-degrading bacteria on the
197 diversity of indigenous bacterial communities during di-(2-ethylhexyl) phthalate (DEHP)
198 degradation in a soil microcosm. Chemosphere, 2007, 67(3), 482-488.

Huang P.C., Tien C.J., Sun Y.M., Hsieh C.Y., Lee C.C. Occurrence of phthalates in
sediment and biota: Relationship to aquatic factors and the biota-sediment accumulation
factor. Chemosphere, 2008, 73(4), 539-544.

202 69. Staples C.A., Peterson D.R., Parkerton T.F., Adams W.J. The environmental fate of 203 phthalate esters: A literature review. Chemosphere, (35(4), 667-749.

204 70. Li X., Zhang Q., Cao H., Jiang G., Xu, M. Pesticide contamination profiles of water,
205 sediment and aquatic organisms in the effluent of Gaobeidian wastewater treatment plant.
206 Chemosphere, 72(8), 1145-1151.

71. Jürgens M.D., Johnson A., Jones K.C., Hughes D., Lawlor A.J. The presence of EU
priority substances mercury, hexachlorobenzene, hexachlorobutadiene and PBDEs in wild
fish from four English rivers. Science of The Total Environment, 2013, 461-462.

72. Meharg A.A., Wright J, Osborn D. The frequency of Environmental Quality Standard
(EQS) exceedance for chlorinated organic pollutants in rivers of the Humber catchments.
Science of The Total Environment, 1998, 210-211, 219-228.

73. Oliver B.G., Kaiser KL.E. Chlorinated Organics in Nearshore Waters and Tributariesof the St. Clair River. Water Quality Research Journal of Canada, 1986, 21(3), 344-350.

74. Kim K.S., Sang H., Lee C., Kim K.H., Yoon J.H., Kim J.G. Survey on organochlorine
pesticides, PCDD/Fs, dioxin-like PCBs and HCB in sediments from the Han river, Korea.
Chemosphere, 2009, 75(5), 580-587.

75. Grimalt J.O., van Drooge B.L., Ribes A., Vilanova R.M., Fernandez P., Appleby P.
Persistent organochlorine compounds in soils and sediments of European high altitude
mountain lakes. Chemosphere, 2004, 54(10), 1549-1561.

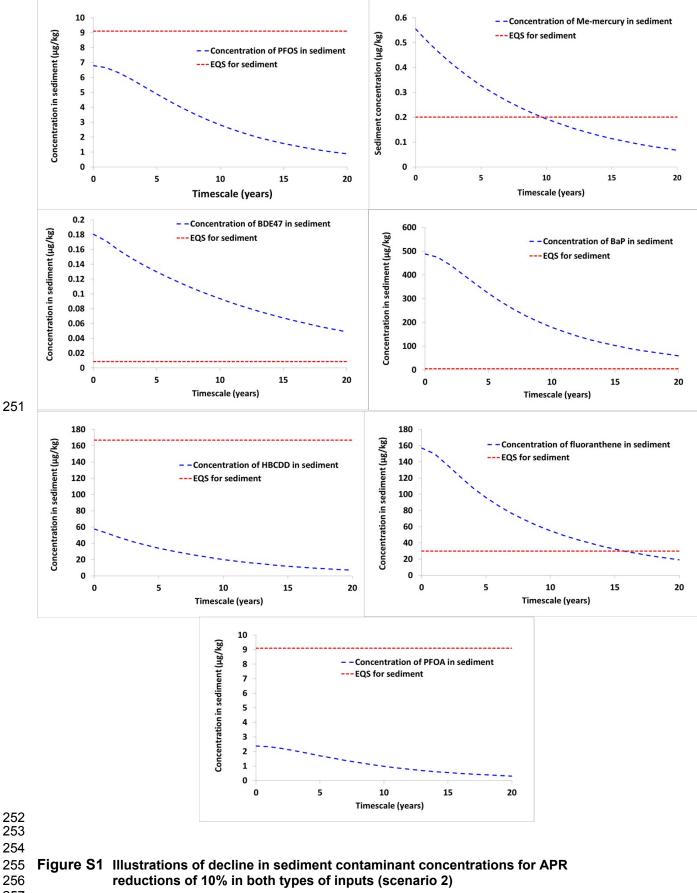
76. Onogbosele C.O., Scrimshaw M.D. Hexabromocyclododecane and
Hexachlorocyclohexane: How Lessons Learnt Have Led to Improved Regulation. Journal
Critical Reviews in Environmental Science and Technology, 2014, 44, 1423-1442.

224 77. Lerche D., van de Plassche E., Schwegler A., Balk F. Selecting chemical substances225 for the UN-ECE POP Protocol. Chemosphere, 2002, 47(6), 617-630.

78. Taylor K.W., Caux P.Y., Moore D.R.J. An Ecological Risk Assessment of
Hexachlorobutadiene. Human and Ecological Risk Assessment: An International Journal,
2003, 9(2), 511-525.

79. Lacorte S., Raldúa D., Martínez E., Navarro E., Diez S., Bayona J.M., Barceló D.
Pilot survey of a broad range of priority pollutants in sediment and fish from the Ebro river
basin (NE Spain). Environmental Pollution, 2006, 140(3), 471-482.

80. Wang Y., Qi S., Xing X., Xu M. Distribution and Ecological Risk Evaluation of
Organochlorine Pesticides in Sediments from Xinghua Bay, China. Journal of Earth Science,
2009, 20(4), 763-770.


81. Snook D and Whitehead P.G. Water quality and ecology of the River Lee: mass
balance and a review of temporal and spatial data. Hydrology and Earth Systems, 2004,
8(4), 636-650.

238 82. Xiao H, Li N, Wania F. Compilation, evaluation, and selection of physical-chemical 239 property data for α -, β -, and γ -hexachlorocyclohexane. J Chem Eng Data., 2004, 49, 173– 240 185.

83. Paschke A., Schüürmann G. Concentration Dependence of the Octanol/Water
Partition Coefficients of the Hexachlorocyclohexane Isomers at 25 °C. Chemical and
Engineering Technology, 2000, 23(8), 666-670.

84. Guzzella L., Roscioli C., Viganò L., Saha M., Sarkar S.K., Bhattacharya A. Evaluation
of the concentration of HCH, DDT, HCB, PCB and PAH in the sediments along the lower
stretch of Hugli estuary, West Bengal, northeast India. Environment International, 2005,
31(4), 523-534.

85. Schwarzenbach R.P., Westall J., Transport of nonpolar organic compounds from
surface water to groundwater. Laboratory sorption studies. Environ. Sci. Technol., 1981, 15
(11), pp 1360–1367.

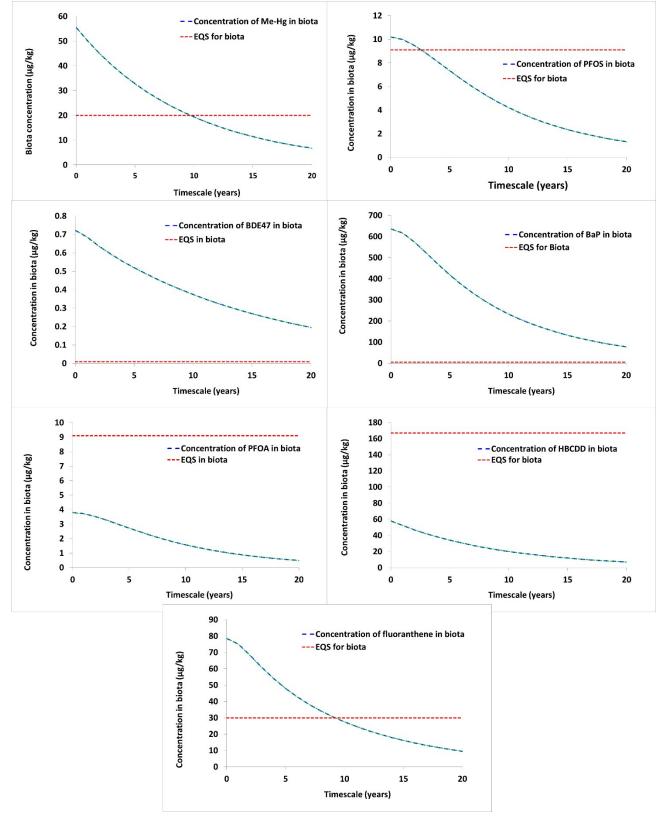


Figure S2 Illustrations of decline in biota contaminant concentrations for APR reductions of 10% in both types of inputs (scenario 2)