Supporting Information:

Reconciling atmospheric water uptake by hydrate forming salts

Bernadette Rosati ^{*a,b}, Andreas Paul^{a,c}, Emil Mark Iversen^a, Andreas Massling^d, and Merete Bilde^{†a}

^aDepartment of Chemistry, Aarhus University, DK-8000 Aarhus C, Denmark.
^bFaculty of Physics, University of Vienna, AT-1090 Vienna, Austria.
^cInstitute of Energy and Climate Research, Forschungszentrum Jülich IEK-8, DE-52425 Jülich, Germany.
^dDepartment of Environmental Science, Aarhus University, DK-4000 Roskilde, Denmark.

^{*}bernadette.rosati@chem.au.dk †bilde@chem.au.dk

- Calculation of sea salt composition and hygroscopicity
- Figure S1: comparison of GF and SS_{crit} between observed and modeled data.
- Hygroscopicity results from HTDMA measurements: GF and κ values from experimental data and modelled values (UManSysProp) carried out for different dry diameters and relative humidities (hydration and dehydration branch) for MgCl₂ and CaCl₂ and their hydrated form.
- Hygroscopicity results from CCNc measurements: supersaturation obtained from CCNc measurements and model output (UManSysProp) for different dry diameters of MgCl₂ and CaCl₂ and their hydrated form.
- Water activity measurements: results from the water activity meter, the ACCENT model and literature of CaCl₂, CaCl₂·4H₂O, MgCl₂ and MgCl₂·6H₂O are shown.

Calculation of sea salt composition and hygroscopicity

The mass fractions of anhydrous species in sea salt were taken from the document on the standard practice for the preparation of substitute ocean water by ASTM International⁽²⁾ and are illustrated in Table S1. We consider however only the four most abundant salts: NaCl, MgCl₂, Na₂SO₄ and CaCl₂. Volume fractions were calculated using the salt masses and densities given in Table 1. For the hydrated salt we assume that MgCl₂ and CaCl₂ were actually present as MgCl₂·6H₂O and CaCl₂·4H₂O. The volume fractions of anhydrous and hydrated compounds are presented in Table 2.

Table S1: Mass concentrations c_m and mass fractions ε_m for (i) anhydrous salts only and (ii) hydrated forms of MgCl₂ and CaCl₂. Values for (i) are given by ASTM International⁽²⁾ while those for (ii) were recalculated including the hydrated forms of MgCl₂ and CaCl₂ by using the values presented in Table 1.

Anhydrous sea salt			Partly hydrated sea salt		
Compound	$c_m [g/dm^3]$	€ _{ma} [%]	Compound	$c_m [g/dm^3]$	ϵ_{mh} [%]
NaCl	24.53	70.1	NaCl	24.53	58.8
MgCl ₂	5.20	14.9	MgCl ₂ ·6H ₂ O	11.18	26.8
Na_2SO_4	4.09	11.7	Na ₂ SO ₄	4.09	9.8
$CaCl_2$	1.16	3.3	$CaCl_2 \cdot 4H_2O$	1.92	4.6
mixture	34.98	100	mixture	41.72	100

Figure S1: Comparison of measured and modelled growth factors as a function of RH (darker colours denote lower RH and lighter colours higher RH) and critical super saturations as a function of dry diameter (darker colours denote smaller diameters and lighter colours larger diameters) for particles generated from aqueous solutions of MgCl₂ and CaCl₂, respectively. The open symbols represent uncorrected data, while the filled symbols are corrected for hydrate contributions. The dashed line represents the 1:1 line.

Hygroscopicity results from HTDMA measurements

Figure S2: GF(80%) values for different dry diameters for particles generated from aqueous solutions of MgCl₂ (left) and CaCl₂ (right) together with results from the UManSysProp model.

Table S2: Dry diameters, measured GF and κ values for hydrated MgCl₂ at RH=80% and modelled data (UManSysProp) for anhydrous MgCl₂. These data are plotted in Fig. S2.

	CE	11105		
D _{set} [nm]	GF	Model GF	κ_{GF}	Model κ_{GF}
40	1.43 ± 0.03	2.21	0.58 ± 0.05	2.71
50	1.46 ± 0.03	2.22	0.60 ± 0.06	2.68
60	1.47 ± 0.03	2.22	0.62 ± 0.06	2.67
70	1.48 ± 0.03	2.23	0.63 ± 0.06	2.66
80	1.49 ± 0.03	2.23	0.63 ± 0.06	2.65
90	1.50 ± 0.03	2.23	0.63 ± 0.06	2.64
100	1.50 ± 0.03	2.23	0.63 ± 0.06	2.63
120	1.51 ± 0.03	2.23	0.64 ± 0.06	2.63
150	1.51 ± 0.03	2.24	0.64 ± 0.06	2.62
200	1.51 ± 0.03	2.24	0.63 ± 0.06	2.61

D _{corr} [nm]	GF	κ_{GF}
27	2.10 ± 0.04	2.46 ± 0.17
34	2.14 ± 0.04	2.52 ± 0.17
41	2.16 ± 0.05	2.55 ± 0.18
48	2.18 ± 0.04	2.57 ± 0.18
55	2.19 ± 0.04	2.57 ± 0.18
62	2.19 ± 0.04	2.58 ± 0.18
68	2.20 ± 0.04	2.58 ± 0.18
82	2.21 ± 0.05	2.59 ± 0.18
102	2.21 ± 0.05	2.58 ± 0.18
136	2.21 ± 0.05	2.53 ± 0.17

Table S3: Recalculated dry diameters, measured GF and κ values for anhydrous MgCl₂ at RH=80%, assuming an initially hexahydrate salt (MgCl₂·6H₂O). These data are plotted in Fig. S2.

Table S4: Recalculated dry diameters, measured GF and κ values for hydrated CaCl₂ at RH=80% (data) and modelled data (UManSysProp) for anhydrous CaCl₂. These data are plotted in Fig. S2.

D _{set} [nm]	GF	Model GF	κ_{GF}	Model κ_{GF}
40	1.63 ± 0.03	2.01	0.86 ± 0.07	1.97
50	1.66 ± 0.03	2.01	0.91 ± 0.07	1.95
60	1.67 ± 0.04	2.02	0.95 ± 0.08	1.94
70	1.68 ± 0.04	2.02	0.96 ± 0.08	1.93
80	1.69 ± 0.04	2.02	0.98 ± 0.08	1.92
90	1.69 ± 0.04	2.03	0.99 ± 0.08	1.92
100	1.70 ± 0.04	2.03	1.01 ± 0.08	1.91
120	1.71 ± 0.04	2.03	1.03 ± 0.08	1.91
150	1.71 ± 0.04	2.03	1.03 ± 0.08	1.90
200	1.71 ± 0.04	2.03	1.03 ± 0.08	1.90

D _{corr} [nm]	GF	κ_{GF}
35	1.88 ± 0.04	1.65 ± 0.12
43	1.91 ± 0.04	1.69 ± 0.13
52	1.93 ± 0.04	1.71 ± 0.13
61	1.94 ± 0.04	1.71 ± 0.13
69	1.95 ± 0.04	1.73 ± 0.13
78	1.95 ± 0.04	1.73 ± 0.13
87	1.96 ± 0.04	1.74 ± 0.13
104	1.97 ± 0.04	1.76 ± 0.13
130	1.98 ± 0.04	1.75 ± 0.13
173	1.97 ± 0.04	1.72 ± 0.13

Table S5: Recalculated dry diameters, measured GF and κ values for anhydrous CaCl₂ at RH=80%, recalculated assuming an initially dihydrated salt (CaCl₂·2H₂O). These data are plotted in Fig. S2.

Table S6: Recalculated dry diameters, measured GF and κ values for anhydrous CaCl₂ at RH=80%, recalculated assuming an initially tetrahydrated salt (CaCl₂·4H₂O). These data are plotted in Fig. S2.

D _{corr} [nm]	GF	κ_{GF}
32	2.03 ± 0.04	2.16 ± 0.15
40	2.06 ± 0.04	2.20 ± 0.16
48	2.08 ± 0.04	2.23 ± 0.16
56	2.09 ± 0.04	2.22 ± 0.16
64	2.11 ± 0.04	2.25 ± 0.16
72	2.11 ± 0.05	2.24 ± 0.16
80	2.12 ± 0.04	2.26 ± 0.16
96	2.13 ± 0.04	2.28 ± 0.16
120	2.13 ± 0.05	2.26 ± 0.16
160	2.13 ± 0.05	2.23 ± 0.16

RH [%]	GF	Model GF	κ_{GF}	Model κ_{GF}
10.04 ± 0.21	1.05 ± 0.02	-	1.55 ± 2.10	-
20.11 ± 0.12	1.10 ± 0.02	-	1.33 ± 1.05	-
30.03 ± 0.14	1.14 ± 0.02	-	1.17 ± 0.69	-
40.04 ± 0.14	1.19 ± 0.02	-	1.04 ± 0.50	-
50.04 ± 0.13	1.24 ± 0.03	1.84	0.93 ± 0.38	5.26
60.04 ± 0.15	1.30 ± 0.03	1.93	0.83 ± 0.29	4.22
70.06 ± 0.19	1.39 ± 0.03	2.06	0.74 ± 0.23	3.37
75.01 ± 0.20	1.44 ± 0.03	2.14	0.69 ± 0.20	2.99
79.99 ± 0.23	1.51 ± 0.03	2.24	0.64 ± 0.18	2.62
84.99 ± 0.21	1.62 ± 0.03	2.37	0.60 ± 0.16	2.27
89.96 ± 0.19	1.79 ± 0.04	2.58	0.56 ± 0.14	1.90

Table S7: Measured GF and κ values for the hydration branch of dried (hydrated) particles from MgCl₂ and modelled data (UManSysProp) for anhydrous MgCl₂ with D_{dry} =200 nm. Data is plotted in Fig. 1a in the main manuscript.

Table S8: Measured GF and κ values for the dehydration branch of dried (hydrated) particles made from MgCl₂ with D_{dry}=200 nm. Data is plotted in Fig. 1a in the main manuscript.

RH [%]	GF	κ_{GF}
9.98 ± 0.07	1.06 ± 0.02	1.81 ± 0.67
19.98 ± 0.06	1.11 ± 0.02	1.43 ± 0.34
24.98 ± 0.08	1.13 ± 0.02	1.32 ± 0.27
29.98 ± 0.09	1.15 ± 0.02	1.22 ± 0.22
34.99 ± 0.07	1.17 ± 0.02	1.15 ± 0.19
39.96 ± 0.09	1.20 ± 0.02	1.09 ± 0.16
49.96 ± 0.09	1.25 ± 0.03	0.98 ± 0.12
59.88 ± 0.14	1.31 ± 0.03	0.87 ± 0.10
69.93 ± 0.07	1.40 ± 0.03	0.76 ± 0.08
79.94 ± 0.12	1.52 ± 0.03	0.66 ± 0.06
89.95 ± 0.23	1.78 ± 0.05	0.54 ± 0.06

RH [%]	GF	Model GF	κ_{GF}	Model κ_{GF}
4.95 ± 0.20	1.04 ± 0.03	_	2.54 ± 1.90	_
10.06 ± 0.25	1.10 ± 0.02	_	3.03 ± 0.82	_
20.02 ± 0.16	1.19 ± 0.02	_	2.78 ± 0.43	_
30.03 ± 0.15	1.26 ± 0.03	_	2.39 ± 0.30	_
40.02 ± 0.12	1.33 ± 0.03	_	2.04 ± 0.22	_
50.38 ± 0.14	1.39 ± 0.03	1.69	1.70 ± 0.17	3.84
60.05 ± 0.16	1.46 ± 0.03	1.77	1.42 ± 0.13	3.06
70.04 ± 0.20	1.55 ± 0.03	1.88	1.18 ± 0.11	3.60
75.00 ± 0.16	1.61 ± 0.03	1.95	1.10 ± 0.09	3.96
80.01 ± 0.19	1.70 ± 0.03	2.03	1.00 ± 0.08	4.45
84.96 ± 0.20	1.81 ± 0.04	2.16	0.91 ± 0.07	5.20
89.94 ± 0.16	1.99 ± 0.04	2.35	0.81 ± 0.06	6.56

Table S9: Measured GF and κ values for the hydration branch of dried (hydrated) particles made from solution of CaCl₂ and modelled data (UManSysProp) for anhydrous CaCl₂ with D_{dry}=200 nm. Data is plotted in Fig. 1c in the main manuscript.

Table S10: Measured GF and κ values for the dehydration branch of dried (hydrated) particles made from CaCl₂ with D_{dry}=200 nm. Data is plotted in Fig. 1c in the main manuscript.

RH [%]	GF	κ_{GF}
4.98 ± 0.06	1.04 ± 0.02	2.51 ± 1.38
9.98 ± 0.05	1.10 ± 0.02	3.00 ± 0.77
19.99 ± 0.04	1.19 ± 0.02	2.76 ± 0.43
24.99 ± 0.06	1.23 ± 0.03	2.55 ± 0.36
29.98 ± 0.06	1.26 ± 0.03	2.40 ± 0.31
34.98 ± 0.07	1.30 ± 0.03	2.24 ± 0.26
39.96 ± 0.08	1.33 ± 0.03	2.06 ± 0.23
49.98 ± 0.05	1.40 ± 0.03	1.76 ± 0.17
59.92 ± 0.10	1.46 ± 0.03	1.45 ± 0.14
69.95 ± 0.04	1.56 ± 0.03	1.22 ± 0.11
79.92 ± 0.12	1.71 ± 0.04	1.04 ± 0.10
90.01 ± 0.23	2.04 ± 0.07	0.87 ± 0.11

Hygroscopicity results from CCNc measurements

Figure S3: Example activation curve of MgCl₂ in the CCNc: the 1-minute averaged data and sigmoidal fit used to retrieve the SS_{crit} are illustrated.

Table S11: Measured MgCl₂ CCNc data corresponding to Fig. S3 together with model data (UManSysProp). D_{set} corresponds to the diameter selected in the DMA, while D_{corr} denotes the diameter after hydrate correction assuming MgCl₂·6H₂O. The κ values are only presented for anhydrous MgCl₂, i.e. using D_{corr}.

D _{set} [nm]	D _{corr} [nm]	SS _{crit}	Model SS_{crit} (D _{set})	Model SS _{crit} (D _{corr})	ĸ _{CCN}	Model κ_{CCN}
40	27.27	0.784	0.433	0.783	1.103	1.117
45	30.67	0.651	0.362	0.657	1.124	1.119
50	34.08	0.569	0.308	0.563	1.072	1.122
60	40.90	0.418	0.266	0.411	1.151	1.130
70	47.71	0.333	0.184	0.328	1.141	1.138

	,			
D _{set} [nm]	$D_{corr} (2 \cdot H_2 O) [nm]$	$D_{corr} (4 \cdot H_2 O) [nm]$	$D_{corr} (6 \cdot H_2 O) [nm]$	SS _{crit}
47.25	40.92	37.90	34.90	0.573
53.16	46.04	42.67	39.27	0.460
59.06	51.15	47.38	43.63	0.391
75.00	64.96	60.17	55.40	0.275
100.00	86.61	80.22	73.87	0.183

Table S12: Measured CaCl₂ CCNc data. D_{set} corresponds to the diameter selected in the DMA, while D_{corr} denotes the diameter after different hydrate corrections (either CaCl₂·2H₂O, CaCl₂·4H₂O or CaCl₂·6H₂O).

Table S13: Modelled critical super saturations for $CaCl_2$ corresponding to the set and corrected diameters presented in Table S12. $SS_{crit,obs}$ represents the results directly measured with the CCNc (same as SS_{crit} entries in Table S12).

SS _{crit} D _{set}	SS_{crit} D _{corr} (2·H ₂ O)	SS _{crit} D _{corr} (4·H ₂ O)	SS_{crit} D _{corr} (6·H ₂ O)	$SS_{crit,obs}$
0.376	0.468	0.525	0.595	0.573
0.315	0.394	0.439	0.498	0.460
0.268	0.334	0.375	0.425	0.391
0.186	0.232	0.261	0.295	0.275
0.120	0.149	0.168	0.191	0.183

Figure S4: Water activities of solutions of MgCl₂·6H₂O and CaCl₂·4H₂O measured with the water activity meter and the osmometer as a function of molality. Note that the shown molalities are of the anhydrous salts. Furthermore, modeled values from the ACCENT model⁽¹⁾ and table values from Robinson and Stokes⁽³⁾ are plotted.

Water activity measurements

C_{CaCl_2} [mol/kg]	$a_{w,WAM}$	$a_{w,OSM}$
0	0.9995	1
0.1240	0.9951	0.9949
0.2427	0.9906	0.9900
0.3409	0.9861	0.9853
0.4548	0.9811	0.9787
0.8199	0.9608	0.9581
1.1773	0.9391	-
1.4776	0.9182	-
2.3252	0.8489	-
2.8330	0.7956	-
3.4618	0.7224	-
5.9286	0.4498	-

Table S14: Water activity measurements on solutions of $CaCl_2 \cdot 4H_2O$.

C _{CaCl2} [mol/kg]	<i>a_w</i> ACCENT Model	a_w Robinson & Stokes
0.1	0.99537	0.995
0.2	0.99070	0.991
0.3	0.98587	0.986
0.4	0.98084	0.981
0.5	0.97559	0.976
0.6	0.97008	0.970
0.7	0.96431	0.964
0.8	0.95826	0.958
0.9	0.95190	0.952
1.0	0.94525	0.945
1.2	0.93100	0.931
1.4	0.91549	0.915
1.6	0.89874	0.899
1.8	0.88078	0.881
2.0	0.86166	0.862
2.2	0.84145	-
2.4	0.82021	-
2.5	-	0.8091
2.6	0.79804	-
2.8	0.77503	-
3.0	0.75126	0.749
3.2	0.72685	-
3.4	0.70189	-
3.5	-	0.6875
3.6	0.67648	-
3.8	0.65073	-
4.0	0.62475	0.624
4.2	0.59862	-
4.4	0.57246	-
4.5	-	0.5601
4.6	0.54636	-
4.8	0.52041	-
5.0	0.49470	0.499
5.2	0.46432	-
5.4	0.44430	-
5.5	-	0.4425
5.6	0.41982	-
5.8	0.39585	-
6.0	0.37248	0.392

Table S15: Table- and model values for solutions of $CaCl_2$.

C_{MgCl_2} [mol/kg]	$a_{w,WAM}$	$a_{w,OSM}$
0	0.9982	-
0.0979	0.9946	0.9956
0.2093	0.9898	0.9903
0.2967	0.9864	0.9856
0.3988	0.9813	0.9801
0.6785	0.9651	0.9615
0.8937	0.9490	-
1.8541	0.8620	-
2.9219	0.7277	-
4.0086	0.5699	-
4.2557	0.5356	-

Table S16: Water activity measurements on solutions of $MgCl_2 \cdot 6H_2O$.

C_{MgCl_2} [mol/kg]	a_w ACCENT Model	a_w Robinson & Stokes
0.1	0.99535	0.995
0.2	0.99060	0.991
0.3	0.98562	0.986
0.4	0.98037	0.980
0.5	0.97482	0.975
0.6	0.96894	0.969
0.7	0.96271	0.963
0.8	0.95613	0.956
0.9	0.94917	0.949
1.0	0.94184	0.942
1.2	0.92600	0.926
1.4	0.90861	0.909
1.6	0.88968	0.890
1.8	0.86927	0.870
2.0	0.84745	0.848
2.2	0.82430	-
2.4	0.79993	-
2.5	-	0.7881
2.6	0.77445	-
2.8	0.74798	-
3.0	0.72065	0.722
3.2	0.69260	-
3.4	0.66397	-
3.5	-	0.652
3.6	0.63491	-
3.8	0.60555	-
4.0	0.57604	0.580
4.2	0.54651	-
4.4	0.51711	-
4.5	-	0.5082
4.6	0.48797	-
4.8	0.45920	-
5.0	0.43093	0.439
5.2	0.40327	-
5.4	0.37631	-
5.6	0.35014	-
5.8	0.32484	-
6.0	0.30049	-

Table S17: Table- and model values for solutions of $MgCl_2$.

Bibliography

- S. L. Clegg, J. H. Seinfeld, and P. Brimblecombe. Thermodynamic modelling of aqueous aerosols containing electrolytes and dissolved organic compounds. *Journal of Aerosol Science*, 32:713–738, 2001.
- [2] A. D1141-98. Standard Practice for the Preparation of Substitute Ocean Water. ASTM International, West Conshohocken, PA, USA, 2013. doi: 10.1520/D1141-98R13. URL http://www.astm.ofg.
- [3] R. A. Robinson and R. H. Stokes. *Electrolyte Solutions*. Dover Publications, Inc., second revised edition edition, 2002.